

Brock University

Department of Computer Science

Generative Representations for Artificial Architecture and Passive Solar Performance

Adrian Harrington and Brian J. Ross
Technical Report # CS-13-02
March 2013

Brock University
Department of Computer Science
St. Catharines, Ontario
Canada L2S 3A1
www.cosc.brocku.ca

Generative Representations for Artificial
Architecture and Passive Solar Performance

Adrian Harrington
Dept. of Computer Science

Brock University
St. Catharines, Ontario

Canada L2S 3A1
Email: ajpharrington@gmail.com

Brian J. Ross
Dept. of Computer Science

Brock University
St. Catharines, Ontario

Canada L2S 3A1
Email: bross@brocku.ca

Abstract—This paper explores how the use of generative repre-
sentations improves the quality of solutions in evolutionary design
problems. A genetic programming system is developed with
individuals encoded as generative representations. Two research
goals motivate this work. One goal is to examine Hornby’s
features and measures of modularity, reuse and hierarchy in new
and more complex evolutionary design problems. In particular,
we consider a more difficult problem domain where the generated
3D models are no longer constrained by voxels. Experiments are
carried out to generate 3D models which grow towards a set of
target points. The results show that the generative representations
with the three features of modularity, regularity and hierarchy
performed best overall. Although the measures of these features
were largely consistent to those of Hornby, a few differences were
found.

Our second research goal is to use the best performing
encoding on some 3D modeling problems that involve passive
solar performance criteria. Here, the system is challenged with
generating forms that optimize exposure to the Sun. This is
complicated by the fact that a model’s structure can interfere
with solar exposure to itself; for example, protrusions can block
Sun exposure to other model elements. Furthermore, external
environmental factors (geographic location, time of the day, time
of the year, other buildings in the proximity) may also be relevant.
Experimental results were successful, and the system was shown
to scale well to the architectural problems studied.

I. INTRODUCTION

Artificial architecture is an area of research which combines
the fields of architectural design and computer science [1].
Challenged with the difficult task of designing entire building
structures, architects are using computer technology to aid in
the design task. A call for systems which aid in the creative
design process for generating structural form has been made
[2], to alleviate problems such as design fixation by providing
a range of inspirational models.

There are many directions of research in artificial archi-
tecture, which is understandable given the many goals when
developing architectural forms. An example of such a goal is
to maximize the amount of natural light that hits a model.
Watanabe tackled this in his Sun God City project, which
built form through rule-based logic [3]. Work has also inves-
tigated the procedural synthesis of structures using generative
grammars, which are amenable to computer implementation
and control. Shape grammars [4] have been used in creating

plans for whole cities [5], [6], procedurally model and generate
buildings [7], including structurally-sound masonry buildings
[8]. Systems have also been created which allow for interactive
editing of grammars for the generation of architecture [9].

In pursuit of the goal of creating higher-level, more au-
tonomous software tools for artificial architecture design, ideas
from artificial intelligence are being investigated. For example,
evolutionary design explores the power of evolutionary com-
putation for (semi-)automatic generation of design solutions
to complex, difficult problems [10], [2]. Selected examples
of such systems are the following. GENR8 is a design tool,
developed using grammatical evolution for the generation of
organic surface [11], [12]. Frazer evolves building envelopes
and towers using mathematical functions to generate form
[13], [14]. Shape grammars have been used with genetic
programming for the creation of 3D models [15], [16], [17].
Kicinger et al. present a survey of research using evolutionary
algorithms for stuctural design [18].

One branch of evolutionary design research in artificial
architecture is the use of generative representations for model
synthesis. Many researchers are examining the evolution of
grammar-based model generators, which are used to create so-
lutions or families of solutions [19], [15]. Using this technique,
the creation of robust phenotypes is made possible through
the evolution of simple genotypes. For example, the use of
L-systems [20] has proven to be successful in this regard
[21], [22]. It is of interest how these grammar-based systems
compare, in both achieving high fitness scores and enabling
better solutions for problems of increased complexity.

The generation of higher quality results in architectural
applications is an important research goal in evolutionary
design. Research has examined this issue, with the goal
of improving upon the complexity of problems solved by
evolutionary systems [23], [24]. Hornby identifies three basic
characteristics of designs to complex problems – modularity,
reuse and hierarchy (see Table I). These factors are present
in solutions in both engineering and software development
[24]. Furthermore, the attributes which enable these three
characteristics are identified to be combination, control-flow
and abstraction [23]. Hornby develops an evolutionary system
which enables these three attributes and creates metrics which

attempt to monitor how each of them is present in a candidate
solution. His findings suggest that the best solutions are found
when all these characteristics are enabled.

The research in this paper uses genetic programming (GP)
and L-systems to automatically synthesize 3D models for
artificial architecture. There are two main research objectives
in this investigation. The first objective is to re-examine the
applicability of Hornby’s generative representations for the au-
tomatic generation of 3D models in a scalable design problem.
We will consider a more difficult problem domain, one where
the 3D models are not constrained to a voxelized space (unlike
in [23], [24]). Here, the target model is represented by a set
of randomly created points. We will establish the complexity
and performance issues that Hornby identified, as they arise
in this new problem setting.

Our second research objective is to examine how the system
performs by adding a new architectural evaluation criteria,
that being passive solar performance. Passive solar design
is based on the idea that the Sun can be used as a source
of heating and illumination for a building [25]. A building’s
passive solar performance is a measurement of its success in
accomplishing such tasks in a given problem setting. Such
factors are important in designing buildings that are energy
efficient, especially in today’s environment of growing climate
change.

The paper is organized as follows. Section II contains
details on enabling and measuring scalability with generative
representations. Section III presents the design language and
evaluation methods used. Section IV shares results from ex-
periments performed using generative representations. Section
V contains experiments on architectural synthesis. Section
VI provides conclusions. See [26] for further details of this
research.

II. GENERATIVE REPRESENTATIONS

Tree-based genetic programming (GP) represents programs
as a syntax trees [27]. These trees are directly interpreted
in order to solve a problem. In the evolutionary design of
architectural models, the language denoted in such a tree may
represent aspects of a model to be built, for example, each of
the four legs and top surface of a table [24]. There is a concern
with this “direct encoding” method, however, that it does not
scale well to problems of growing complexity. This is because
complex problems will require correspondingly complex trees,
which may be difficult for GP to discover in the search space.

Generative representations are a different approach to the
encoding of individuals in GP. In this technique, syntax trees
(genotypes) create some form of grammar which is then
translated in order to generate a solution (phenotype). In
Hornby’s work, the generative representations are encoded
as L-systems, which allow for abstraction, control flow and
combination [19].

We have developed a GP system which extends ECJ
[28], allowing for individuals to be encoded as tree-based
generative representations. For more information on how a
grammar is represented in tree form, see [26]. An individual

is transformed from tree-form into a parametric L-system with
conditionals, loops (represented by {body}(n)), and push\pop
operators (represented by [and]). The grammar is composed
of a starting string, value for rewrite depth and a set of
production rules. Each production rule can maintain one to
many condition-pairs, where a condition must be met before
a rewrite operation can be performed. The starting string in
the developed system always calls the first production rule
A(), with a number of arguments. An example of a grammar
with one production rule and two condition-pairs is as follows:

Starting string: A(1,3)
Rewrite depth: 3

First, the arguments and rewrite depth are determined
by ERCs. Next, the production rules are determined by
parsing the GP-tree:

A → b > 4: rt(1) [] A(3,a)
A → b > 1: {ex(a)}(2) [] A(b,4+a)

Once the generative system has been created, it is rewritten
as follows:

Starting string: A(1,3)
Rewrite 1: {ex(1)}(2) [] A(3,5)
Rewrite 2: {ex(1)}(2) [] rt(1) A(3,3)
Rewrite 3: {ex(2)}(2) [] rt(1) {ex(3)}(2) [] A(b,4+a)
Design encoding: ex(2)ex(2) rt(1) ex(3)ex(3)

The design encoding is then taken and executed to generate
a three-dimensional model. In this context, ex() and rt() are
two design operators that alter a 3D model in some way.
In this example, all of the features of modularity, reuse and
hierarchy are enabled.

Five encodings are implemented, that incorporate various
combinations of the characteristics of modularity, reuse and
hierarchy. These representations are:

1) Simple: No features are enabled in this representation.
It contains only one procedure, whose condition always
evaluates to true. This representation is similar to the
classical GP encoding.

2) Modular: In this encoding, procedures and procedure
calling are allowed. Only the first procedure is allowed to
execute any other procedure. The number of condition-
pairs are limited to one.

3) MR: This representation enables repetitions as well as
procedures. It enforces all of the constraints of the
Modular encoding, though the condition-pairs can be set
to more than one.

4) MH: Hierarchy is enabled by allowing procedures to call
one another, creating a stack of procedure calls. Each
procedure is limited to a maximum number of times it
may be called.

5) MRH: This encoding enables all of the features. It allows

TABLE I
MEASURES OF COMPLEXITY.

Measure Description
Modularity The number of times a structural module is contained

in a design.
Reuse The average number of times elements are used to

create a design.
Hierarchy The number of layered modules in a design.

for multiple procedures, procedures to call any other
procedures and the use of repetitions.

A new set of parameters are accepted by the system, to setup
the generative representations. Procedure amount determines
the number of procedures. Procedure arity determines the
number of arguments each procedure accepts. Symbol arity
determines the number of arguments a build operator has. Seed
object is the geometry the system begins with. Condition pairs
is the amount of conditional pairs per procedure.

A. Measuring complexity

It is important to understand how these features correlate
with fitness. To gain some perspective on how the features of
generative representations play a role in allowing evolutionary
design systems to perform better in more complex problem
domains, Hornby’s metrics were implemented that examine
individuals in both genotype and phenotypic form (see Table
I). Hornby measures the characteristics of modularity, reuse
and hierarchy in his representations to contrast how they relate
to fitness scores [24]. Here, modularity refers to the grouping
of elements so that they can be manipulated as a unit. Reuse
is a repetition or reuse of elements in a design. Hierarchy
refers to the amount of layers of modules and elements in a
structured design.

III. DESIGN LANGUAGE AND EVALUATION

A. Design Models

The goal of this research is to apply an evolutionary system
for the automatic generation of 3D models. We wish for the
creation of diverse architectural forms, which are compelling,
novel and inspirational. The creation of these models will be
directed by both the design operators that are available to the
system and the types of fitness functions that will guide the
evolution of those models.

The architectural designs generated by the system will be
both fully connected and watertight. A fully connected model
is one that does not have any disjoint components. Watertight
is a term used to describe if a model is suitable for 3D printing.
This means that there are no holes or missing faces which
expose the interior of the model. These two properties ensure
that the model has some structural integrity and will allow
for the models to be rapidly prototyped with a 3D printer
– an important feature when attempting to create form for
inspirational purpose. Typically, the generation of 3D form
in evolutionary design is done using either only surface-
based techniques or in a voxelized space. In this research, we
wish to generate polygonal models with minimal constraints.

TABLE II
DESIGN OPERATORS

Operator Description
Extrude Extrudes the currently active face along its normal.
Left Changes the currently active face to its neighbour on the

left.
Right Changes the currently active face to its neighbour on the

right.
Up Changes the currently active face to the neighbour above

it.
Down Changes the currently active face to the neighbour below

it.
Rotate Rotates the currently active face.
Scale Scales the currently active face.
[,] Push and Pop the currently active face.

The benefits of using polygonal form include being able to
evolve more novel models with many unique surface-normals,
removing the need for post-processing steps which can bias
the emerging design process.

Examining a non-voxelized space presents extra difficulties.
A lack of strict boundaries means that a system can evolve a
model which is large and time consuming to evaluate. Also,
the evolved models can generate embedded structures. This
can potentially create non-visible geometry within the design.

B. Design Language

The design languages are composed of a seed object and
a set of design operators. The seed object is the starting
geometry with which the system can begin to alter. The design
operators are applied to the structure to refactor its form.

A parametric language is used in this research, allowing
for parameters to be passed to design operators. It is based
on a LOGO-style turtle drawing system, with extensions for
rotation and scaling. The seed object is a plane, and the
operators are made up of extrude, rotate and scale operators
which can be applied to the currently focused polygonal face.
It is also possible to change the currently focused polygon
with a set of change-face operators. Table II provides a list of
the operators used and [26] contains further details on design
languages.

C. Fitness objective

Multiple kinds of fitness objectives are used. Some of
them evaluate basic geometric characteristics of a model. For
example, surface area attempts to minimize or maximize the
overall polygonal surface area of a model, or match it’s surface
are to a target value. Similarly, polygonal count considers the
number of polygons composing a model.

The form filling fitness objective is designed to guide the
generation of design models towards some rough form. Form
filling works by inputting a set of 3D coordinate targets into
the system and having the generated geometry attempt to
fill towards those target positions. The use of form filling
is important, as it is likely the system would only generate
very simple models - single cubes for example - to achieve
the goals of other architecturally related evaluation functions.
The technique works by calculating distances between each

polygon within the model and the targets. The algorithm
matches each polygon to its closest target, adding the distance
between the target and the polygon’s furthest vertex to that
targets score. As evolution progresses, each polygon is drawn
in towards it closest target. This results in a set of faces which
roughly approximate a set of targets.

The Sun exposure fitness function calculates the approx-
imate amount of Sun exposure the model is receiving. Each
polygon in the model is divided into a grid of N by N points.
A ray casting algorithm, as used in raytracing systems, is
implemented [29]. A ray is cast from the sun to a grid point,
and the relative intensity of exposure to the Sun (angle of inci-
dence) is measured. Furthermore, solar exposure obstructions
with other components of the model are determined with ray
collisions. The overall exposure score can be calculated using
one-to-many sun vectors, which allows the solar exposure to be
averaged over a day. It can also be minimized or maximized, in
the case of summer or winter. Finally, external objects can be
added to cast shadows onto the design model and ray casting
will determine (via ray collisions) if portions of the model are
exposed to the Sun.

D. Multi-objective evaluation

Our modeling problems are instances of multi-objective
problems (MOP), in which multiple objective must be simul-
taneously optimized [30]. We use the normalized summed
rank (or average rank) MOP scoring scheme [31], [32]. It
is effective for low- and high-dimension MOP problems. It
benefits over the more common Pareto ranking in that outlier
solutions are unlikely to be produced.

Given a search problem in which each individual i has a
feature vector −→V

i
= (f i

1, ..., f
i
k), where each f i

j(j = 1, ..., k)
is one of the different fitness scores out of the k used in total.
For each feature j, all the individuals in the population are
assigned an integer rank for each of its features. For example,
the individual with the best score for a particular objective gets
assigned a rank 1 for that objective, the next best a rank 2, and
so on. After all individuals are ranked over all objectives, each
individual i is assigned a rank vector −→R

i
= (ri1, ..., r

i
k), where

1 ≤ rj ≤ N , for a population of size N . The maximum rank
can be less than N , due to tied scores. −→R is then normalized,
by dividing each ri by the maximum rank found for that
objective. The sums of the normalized ranks are used as fitness
values (low values are preferred).

E. Diversity

The creation of diverse population sets is extremely im-
portant in the domain of evolutionary design. To enforce
this, a diversity strategy created by Flack was implemented
to penalize potential duplicate individuals [33]. The strategy
works by examining the fitness vector of each individual per
generation. If two individuals are evaluated to the same fitness
scores, they are deemed to be clones of one another and one
individual is given a penalty score. It is important to note that
it is possible that two individuals could potentially differ as
individuals but achieve the same fitness scores. This fact is

TABLE III
GP AND ENCODING PARAMETERS FOR EXPERIMENTS WITH GENERATIVE

REPRESENTATIONS.

GP Parameter Value
Generations 3000
Population Size 100
Crossover Rate 90%
Tournament Size 4
Elite Count 1
Maximum Crossover Depth 10
Mutation Rate 10%
Maximum Mutation Depth 17
Prob. of Terminals in Cross/Mut 10%
Initialization Method Half-and-half
Tree Grow Max / Min 5 / 5
Tree Full Max / Min 12 / 5
Experimental Trials 30
GR Parameter Value
Procedure Amount 7
Procedure Arity 2
Condition Pairs 2
Design Language Growth
Seed Object Cube

(1x1x1 units)

disregarded when using this strategy, as it is an uncommon
event in this problem domain.

IV. EXPERIMENTS WITH GENERATIVE REPRESENTATIONS

A. Problem Description

The goal of these experiments is to investigate and compare
the use of generative representations in a new problem area,
with focus on examining their performance in comparison
to one another. It will also determine if the space-filling
evaluation strategy is valid for generating forms. We also wish
to identify the features of complexity that are important for
evolutionary 3D structure synthesis. Two sets of experiments
are carried out in this section.

The goal of the first experiment is to have the evolutionary
system generate an arch whose geometry approximates a set
of target points. These points all lie within the same plane,
along the z = 0 axis, making it a simplified version of the
space filling problem. It is a minimization problem, where the
system must attempt to reduce the error between the evolved
shape and the target point set. Three sizes of the arch problem
are considered: small (28x24 units), medium (56x48 units) and
large (112x96 units). This will allow for comparison on the
scalability of the generative representations if needed.

The random targets problem is designed as a difficult
evolutionary design problem. The goal is to generate a form
whose geometry approximates a set of N random points.
Four sets of experiments are undertaken using 5, 10, 20
and 50 target points. Random points are used instead of a
preconceived construct to gain a better understanding of the
style of design objects that are created using these techniques.
Another reason for this is to eliminate any potential bias that
could be present by selecting an object that would be better
suited for a particular representation. Parameters are shown in
Table III.

TABLE IV
AVERAGE AND BEST FITNESS FROM THE FIVE REPRESENTATIONS ON THE

SMALL, MEDIUM & LARGE ARCH PROBLEM OVER 30 TRIALS. (BEST
SCORES IN BOLDFACE.)

Rep Small Medium Large
Avg Best Avg Best Avg Best

Simple 45.0 18.8 111.5 72.5 292.6 231.3
M 30.2 9.2 60.4 21.4 150.6 58.3
MR 28.8 12.1 72.5 31.5 145.4 61.8
MH 23.8 8.5 53.4 19.1 112.8 66.5
MRH 47.0 11.4 91.2 26.0 188.4 52.1

B. Arch Experiment Results

Table IV displays the average of mean and average of best
scores of the final population from the fifteen experiments,
taken over thirty trials. Here we see that all five representations
perform relatively close in the small arch problem. In the
medium arch problem, the simple representation begins to
diverge from the four generative representations. In the large
arch problem, the simple representation garners approximately
double the score of the other four representations. MH per-
forms the best overall in all categories except one, where MRH
outperformed it in best scores on the large arch problem.

Equipped with a very simple design language, the evolution-
ary system was successful in automatically generating form
that resembled the target point set. The designs that were
created using the system were generated as single, water-tight
objects. Generated arches came in a wide variety of styles, as is
shown in Figure 1, validating its usefulness in design problems
as an inspiration tool. The four generative representations did
reasonably well in discovering an arch for all sizes of the arch
problem, the simple representation was not able to do as well
in larger versions of the problem. By adding more objectives
to the form-filling problem, we were able to generate more
specific designs, showing great promise in what is possible
with this technology.

C. Random Target Experiment Results

Table V contains the final population results from the four
experiments. It can be seen that the simple representation
performs the worst in each field and is not able to scale
effectively to larger problems. MH performs best overall in
the five and ten point experiments, with the M and MRH
representations performing very closely. In the twenty point
experiment, MRH takes over as the leader, with both M
and MH doing nearly as well. In the fifty point experiment
MRH clearly outperforms all others, showing its ability to
scale well to larger and more complex problems. A one-
tailed t-test was performed on the results from the fifty point
experiment and it was seen that the MRH outperformed all
other representations, and each representation outperformed
the Simple representation with a 95% confidence.

Samples of the best individuals from the ten point experi-
ment are shown in Figure 2. From this image, we can see that
the simple representation is not able to handle this problem,
generating stick-like design objects rather than voluminous
ones. While MH appears to achieve high fitness scores, it

TABLE V
AVERAGE AND BEST FITNESS FROM THE 5 REPRESENTATIONS ON THE 5,

10, 20 AND 50 RANDOM POINT PROBLEM OVER 30 TRIALS. (BEST SCORES
IN BOLDFACE.)

Rep 5 Point 10 Point 20 Point 50 Point
Avg Best Avg Best Avg Best Avg Best

Simple 161 147 267 236 483 429 1165 1026
M 103 77.2 169 130 290 215 592 431
MR 112 92.9 186 150 299 242 595 473
MH 94 70 164 128 279 216 640 497
MRH 109 73 182 133 292 210 586 409

does so by creating large container structures to envelope all
target points, failing to provide geometrical detail. The M and
MR representations are able to generate interesting results,
though they do not contain the geometric fidelity of the MRH
representation. The models created by the MRH encoding are
very compelling, creating sub-structures and detailed geometry
that are appealing to the eye.

Figure 3 displays measures of modularity of both the
program and design encoding, reuse, and hierarchy from the
fifty point experiment. Each scatter diagram contains nodes
from each individual of the final population from the 30 MRH
trials, totalling 3000 individuals.

Modularity scores are calculated for the design encoding.
There is a cluster of strong performing individuals with a high
modularity score. Measures of reuse show a pocket of very
strong individuals sitting at around a reuse of 40 similar to that
of the modularity metric. Hierarchy of all strong individuals
is in the range of 5 to 7.

It is important to note that these measurements are taken
on the final population of the MRH experiment. Typically, the
final population will contain a set of relatively good solutions.
It appears in these experiments that the measures of reuse and
modularity were the most useful. They clearly show that the
best individuals in the population were enabled by these fea-
tures of complexity. Hierarchy displays interesting results. In
this cases, seven was the highest score that could be achieved
for this experiment, and the populations tended towards higher
values of Hierarchy. The measurements explored here, help
to verify that modularity, reuse, and hierarchy are important
features in encoding individuals for evolutionary design.

V. EXPERIMENTS WITH PASSIVE SOLAR PERFORMANCE

A. Problem Description

In the previous section, we have shown that the MRH
representation performs well in this problem domain, and so
we will only be using that representation in this section. Here,
we will examine the generation of forms that are optimized
for passive solar performance.

In passive solar building design, the building is made to
collect solar energy in the form of heat during the winter and
reject it during the summer [25]. A set of problems which
examine the Sun in various ways were designed. The generated
designs are influenced by multiple objectives, these being the
Sun exposure and form filling fitness functions. A series of
Sun vectors were created to simulate the change of location

Fig. 1. Variety of arch designs.

Fig. 2. Images of best results from the S, M, MR (top: left to right), MH
and MRH (bottom: left and right) representations in the Ten random target
problem.

in the sky over the course of a day in Toronto, Canada, during
the summer and winter solstices.

In this section, we performed three experiments related so
Solar performance. The first experiment will generate models
that maximize exposure to the Sun, averaging exposure based
on multiple Sun positions. This experiment is based on two
objectives, the ten-point random target form filling objective

and the winter Sun exposure objective, in which scores are to
be maximized.

The second experiment extends upon the first. In this
experiment we add three extra structures externally, blocking
sunlight to the design models. The goal is that the evolved
structures grow around the blocking models, to maximize
exposure to sunlight.

The final experiment examines passive solar performance. In
this experiment we create a set of target points which represent
a “skyscraper”. Three objectives are evaluated, the first is
a form filling objective using the target points mentioned
previously. The second is the winter Sun objective, in which
the Sun exposure is to be maximized. The third objective is
the summer Sun objective, in which the Sun exposure is to be
minimized.

B. Results

1) Winter Sun: Experiments were performed taking into
account the movement of the Sun through the sky during the
course of a day. Images of a strong and poor result are seen
in Figure 4. The Sun is shining from the bottom-left direction
in the figure. The images display the average intensity of light
from all Sun positions using a greyscale, where white indicates
high exposure and black indicates no exposure. The strong

Fig. 3. Measured values of modularity, reuse, and hierarchy for MRH
individuals, from the fifty target point experiment.

individual is quite interesting, in that it contains a number of
gaps which allow more light to get into the interior of the
model. These results resemble that of Watanabe’s Sun God
city, where form was generated using rule-based logic [3].
The individual that performed poorly is composed of larger
block structures and its front facing surfaces are taking much
of the sunlight away from the rest of the structure.

2) External obstructions: Experiments were executed, us-
ing a set of external models to block Sun exposure to the
evolved models, to represent other buildings in a city. A
surface area minimization objective was added to these exper-
iments, as per observations from the winter Sun experiments.
Figure 5 contains images of a top performing result found in
these experiments. The left image shows the three volumes
(lower-left in the image) which are blocking sun from the

Fig. 4. Example results of a strong (top) and poor (bottom) performing
individuals from the winter Sun experiment. The bright/dark shades denote
relative solar intensity on surfaces.

evolved model. We can see that the design structure has grown
out sideways to capture more light. It has also grown at a
distance from the blocking objects and maintains features that
resemble a staircase, as seen in the good result from the winter
experiment in Figure 4.

3) Passive-solar tower: Experiments were performed to
generate form using target points representing skyscraper
structures. We found that the form fitting scores were all
within the same range as those from the experiments in the
previous section, proving that the system can scale to more
objectives. Examples of individuals from the passive solar
experiment can be seen in Figure 6. In this figure, cyan is
shown where surfaces are more receptive to the winter Sun.
Some interesting building structures begin to appear which
do resemble skyscrapers. In the passive solar trials, we see
overhanging and sloping surfaces, exposing more surface area
directly towards the winter Sun.

C. 3D Printing

The system is capable of generating novel design structures,
which are able to be created with a 3D printer as seen in

Fig. 5. Generated model from external obstruction experiment with three
blocking forms shown (top). Texture and shading applied as a post-processing
effect (bottom).

Figure 7. With the growing popularity and affordability of
3D printing, it is possible to create a pipeline in which an
evolutionary system is able to automatically generate models
and have them rapidly prototyped for inspection as real-world
objects. This is a new and exciting feature in the development
of inspirational tools and future evolutionary tools should
consider this.

Fig. 6. Example individuals from the passive solar trials. Cyan is shown
where winter Sun exposure is stronger than the summer Sun exposure.

Fig. 7. Generated model from passive solar skyscraper experiment.
Smoothed, textured and shaded (left). 3D print (right).

VI. CONCLUSION

This paper shows that the classic GP encoding is not
sufficiently scalable in complex design problems, validating
the use of generative representations, and the features of
modularity, reuse and hierarchy. These results are consis-
tent with those of Hornby [19], [24], although some minor
differences arose in the measures of complexity. We found
that high values in the complexity metrics did not equate to
better fitness, but rather, individuals with good fitness scores
tended to have higher scores in the features of complexity. The
measurements of modularity, reuse and hierarchy were very
useful in highlighting how the features of complexity enabled
higher quality solutions.

We also showed that the form filling fitness function is an
effective method for guiding an ED system to create geometry.
Using the parametric growth language, a variety of models
were evolved. These rough forms guided by random target
points could be refined using architecturally related fitness

evaluations. The passive solar performance criteria showed
that the proposed system generates building models that are
applicable to an assortment of architectural problems. It was
also shown that passive solar performance did not negatively
impact the form filling scores, proving that the system can
scale to handle more objectives.

The system is also capable of generating models that can be
processed by 3D printers. There are a number of ways in which
the methods proposed here could be enhanced to generate even
better results. To enhance this research, one could improve
on the generative representations, design languages, evaluation
functions, or perform continued experimentation. With more
refined design languages and evaluation measures, we will
be able to provide human-competitive results in artificial
architecture.

Acknowledgements: This research was supported by fund-
ing from Brock University, OGS and NSERC Discovery Grant
138467. Thanks to Steven Bergen, Beatrice Ombuki-Berman,
and Sheridan Houghten for their advice and assistance. Also
thanks to Javelin Technologies for access to their 3D printer.

REFERENCES

[1] K. Terzidis, Algorithmic Architecture. Architectural Press, 2006, vol. 1.
[2] P. von Buelow, Genetically Engineered Architecture - Design Explo-

ration with Evolutionary Computation. Saarbrücken, Germany: VDM
Verlag, 2007.

[3] M. Watanabe, Induction Design: A Method for Evolutionary Design.
Birkhäuser, 2002.

[4] G. Stiny, “Introduction to shape and shape grammars,” Environment and
Planning B: Planning and Design, vol. 7, no. 3, pp. 343–351, May 1980.

[5] J. Halatsch, A. Kunze, and G. Schmitt, “Using shape grammars for
master planning,” Proc. Design Computing and Cognition 08, pp. 655–
673, 2008.

[6] Y. I. H. Parish and P. Müller, “Procedural modeling of cities,” in
ProceedingsSIGGRAPH ’01. New York, NY: ACM, 2001, pp. 301–308.

[7] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and L. Van Gool, “Procedural
modeling of buildings,” ACM Trans. Graph., vol. 25, no. 3, pp. 614–623,
Jul. 2006.

[8] E. Whiting, J. Ochsendorf, and F. Durand, “Procedural modeling of
structurally-sound masonry buildings,” ACM Trans. Graph., vol. 28,
no. 5, pp. 112:1–112:9, Dec. 2009.

[9] M. Lipp, P. Wonka, and M. Wimmer, “Interactive visual editing of gram-
mars for procedural architecture,” in ACM SIGGRAPH 2008 papers,
2008, pp. 102:1–102:10.

[10] D. W. Corne and P. J. Bentley, Creative Evolutionary Systems (The
Morgan Kaufmann Series in Artificial Intelligence), 1st ed. Morgan
Kaufmann, Jul. 2001.

[11] U.-M. O’Reilly and M. Hemberg, “Integrating generative growth and
evolutionary computation for form exploration,” Genetic Programming
and Evolvable Machines, vol. 8, no. 2, pp. 163–186, June 2007, special
issue on developmental systems.

[12] M. Hemberg, U.-M. O’Reilly, A. Menges, K. Jonas, M. Gonçalves, and
S. Fuchs, “Genr8: Architects’ experience with an emergent design tool,”
in The Art of Artificial Evolution, 2008, pp. 167–188.

[13] J. Frazer, An evolutionary architecture. Architectural Association, 1995.
[14] J. Frazer, J. Frazer, L. Xiyu, T. Mingxi, and P. Janssen, “Generative and

Evolutionary Techniques for Building Envelope Design,” 2002.
[15] M. ONeill, J. McDermott, J. M. Swafford, J. Byrne, E. Hemberg,

A. Brabazon, E. Shotton, C. McNally, and M. Hemberg, “Evolutionary
design using grammatical evolution and shape grammars: Designing a
shelter,” International Journal of Design Engineering, vol. 3, no. 1, pp.
4–24, 2010.

[16] J. McDermott, J. M. Swafford, M. Hemberg, J. Byrne,
E. Hemberg, M. Fenton, C. McNally, E. Shotton, and
M. ONeill, “String-rewriting grammars for evolutionary architectural
design,” Environment and Planning B: Planning and Design,
vol. 39, no. 4, pp. 713–731, 2012. [Online]. Available:

http://EconPapers.repec.org/RePEc:pio:envirb:v:39:y:2012:i:4:p:713-
731

[17] C. Coia and B. J. Ross, “Automatic evolution of conceptual building
architectures,” in IEEE Congress on Evolutionary Computation, New
Orleans, LA, USA, 2011, pp. 1140–1147.

[18] R. Kicinger, T. Arciszewski, and K. D. Jong, “Evolutionary computation
and structural design: A survey of the state-of-the-art,” Comput. Struct.,
vol. 83, no. 23-24, pp. 1943–1978, Sep. 2005.

[19] G. S. Hornby, “Generative representations for evolutionary design au-
tomation,” Ph.D. dissertation, Brandeis University, USA, 2003.

[20] A. Lindenmayer, “Mathematical models for cellular interaction in devel-
opment: Parts i and ii.” Journal of Theoretical Biology, vol. 18, 1968.

[21] S. Bergen, “Automatic structure generation using genetic programming
and fractal geometry,” Master’s thesis, Brock University, 2011.

[22] C. Jacob, Illustrating Evolutionary Computation with Mathematica.
Morgan Kaufmann, 2001.

[23] G. S. Hornby, “Functional Scalability through Generative Representa-
tions: the Evolution of Table Designs,” Environment and Planning B:
Planning and Design, vol. 31, no. 4, pp. 569–587, Jul. 2004.

[24] ——, “Measuring, enabling and comparing modularity, regularity and
hierarchy in evolutionary design,” in GECCO ’05. New York, NY,
USA: ACM, 2005, pp. 1729–1736.

[25] B. Anderson and M. Wells, Passive solar energy: the homeowner’s guide
to natural heating and cooling. Brick House Pub. Co., 1981.

[26] A. Harrington, “Enabling and measuring complexity in evolving designs
using generative representations for artificial architecture,” Master’s
thesis, Brock University, 2012.

[27] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA, USA: MIT Press,
1992.

[28] S. Luke, “ECJ - a java-based evolutionary computation research system,”
in http://cs.gmu.edu/ eclab/projects/ecj/.

[29] A. Glassner, An Introduction to Ray Tracing. Academic Press, 1989.
[30] C. A. C. Coello, G. B. Lamont, and D. A. V. Veldhuizen, Evolutionary

Algorithms for Solving Multi-Objective Problems (Genetic and Evolu-
tionary Computation). Secaucus, NJ, USA: Springer-Verlag New York,
Inc., 2006.

[31] P. J. Bentley and J. P. Wakefield, “Finding acceptable solutions in the
pareto-optimal range using multiobjective genetic algorithms,” in Soft
Computing in Engineering Design and Manufacturing, P. K. Chawdhry,
R. Roy, and R. K. Pant, Eds. Springer-Verlag, Jan. 1998, pp. 231–240.

[32] D. Corne and J. Knowles, “Techniques for highly multiobjective optimi-
sation: Some nondominated points are better than others,” in Proceedings
GECCO 2007. ACM Press, 2007, pp. 773–780.

[33] R. W. J. Flack and B. J. Ross, “Evolution of architectural floor plans,”
in EvoApplications (2), 2011, pp. 313–322.

	/
	Brock University
	Department of Computer Science
	Generative Representations for Artificial Architecture and Passive Solar Performance
	Adrian Harrington and Brian J. Ross
	Technical Report # CS-13-02
	March 2013
	Brock University
	Department of Computer Science
	St. Catharines, Ontario
	Canada L2S 3A1
	www.cosc.brocku.ca

