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Abstract

This research focuses on generating aesthetically pleasing images in virtual

environments using the particle swarm optimization (PSO) algorithm. The

PSO is a stochastic population based search algorithm that is inspired by

the flocking behavior of birds. In this research, we implement swarms of

cameras flying through a virtual world in search of an image that is aesthet-

ically pleasing. Virtual world exploration using particle swarm optimization

is considered to be a new research area and is of interest to both the sci-

entific and artistic communities. Aesthetic rules such as rule of thirds, sub-

ject matter, colour similarity and horizon line are all analyzed together as a

multi-objective problem to analyze and solve with rendered images. A new

multi-objective PSO algorithm, the sum of ranks PSO, is introduced. It is

empirically compared to other single-objective and multi-objective swarm al-

gorithms. An advantage of the sum of ranks PSO is that it is useful for solving

high-dimensional problems within the context of this research. Throughout

many experiments, we show that our approach is capable of automatically

producing images satisfying a variety of supplied aesthetic criteria.
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Chapter 1

Introduction

1.1 Image Composition

Historically, painting has been the crucial part of human communication and
development. Over the last century there has been a shift from painting
to photography as a means of communication, and artistic expression. The
majority of photographers abide by the same rules of composition which allow
specific content and a feeling to be applied to photographs. Today we can
find these rules not only in photography, but also in movies, video games,
and virtual reality. Recently, researchers have been attempting to develop
a way to assist amateur photographers to generate images that follow rules
of composition. Although there have been recent developments in this field,
there has been little work using computational intelligence algorithms.

The particle swarm optimization (PSO) algorithm is a method that
this thesis will use where there are swarms of cameras that are capable of
exploring a virtual world unsupervised. Each camera will move through the
world in search of an image that satisfies a pre-defined set of aesthetic rules.
When searching for aesthetics in images there are usually more than one
rule to assist in making that image aesthetically pleasing. A multi-objective
approach can be taken here to solve the problem that will eliminate the
traditional weighted result, and result in an image that has hopefully taken
account for all rules provided. One of the main problems that is evident in
this research area of image composition and PSO, is that current research
papers use a vanilla PSO. This requires fine tuning and takes time to achieve
the right weights.

1
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This application can be applied to the real world; for example, the
ability to find an aesthetically pleasing image unsupervised can be used in
applications such as video games. Today’s games strive to generate virtual
worlds that look beautiful to the gamer. These worlds also contain objects of
interest and require designers and programmers to spend countless hours cre-
ating specific cameras to focus on these objects. Using the strategy proposed
in this thesis, game developers could save development time on finding the
best location and rotation for the camera to not only display the object of
interest, but also to place the view of the object in an ideal point on screen.

As robotics technology gets better and the AI community grows closer
to solving computer vision the solution proposed in this thesis can be ex-
panded to NASA and planetary exploration such as the Mars Rover [46].
The United States Army uses unmanned robotic predator drones that are
used for video surveillance [3]. These predator drones are controlled off site
by a human controller. Using planes like the predator drone, and the ability
of unsupervised exploration, NASA could use these to survey planets within
our solar system. In a related field, flying robot swarms have been created to
explore, create flying formations, maneuver around obstacles, and even play
music [43]. Using technology in this thesis, we could see these swarms capable
of generating aesthetically pleasing images. 3d house designs and VR portals
can also be explored. 3d houses are generated by home designers and are an
excellent way of viewing a house before deciding to build it. Using the tech-
niques proposed in this thesis, virtual cameras can travel through the house
in search of appealing images to display to the user. This research will not
only be of interest to the evolutionary computational community, computer
graphics community, but also to the artistic and photographic community.

1.2 Goals

1.2.1 Generating Aesthetically Pleasing Images

The general goal of this thesis is to generate aesthetically pleasing images
using the particle swarm optimization algorithm. There are many composi-
tion rules that determine whether an image is aesthetically pleasing. These
rules are subjective, but are well known and standard. Using rules of image
composition, this thesis will show the ability to generate the following results:

• Optimize multiple composition rules within the rendered image.
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• Find and optimize factors such as: rule of thirds, subject matter, hori-
zon line, and colour similarity.

• Ability to explore unique virtual environments.

1.2.2 A New MOPSO Algorithm

Secondary goal: a new multi-objective particle swarm optimization algorithm
is proposed. Experiments will focus on:

• Establishing effectiveness of a PSO in this application domain.

• Compare a new MOPSO to other traditional and MOPSO techniques.

• Demonstrate its ability to generate results in high dimensional prob-
lems.

Although this thesis focuses on generating aesthetically pleasing images, this
thesis also tests the effectiveness of the particle swarm optimization algo-
rithm and multi-objective evaluation strategies. We explore several highly
dimensional problems using a new multi-objective method. Some tasks are:

• The effectiveness of the particle swarm optimization algorithm for search-
ing a virtual environment to find an aesthetically pleasing image.

• Compare different multi-objective strategies within this problem do-
main.

• Implementation of a new multi-objective strategy for the particle swarm
optimization.

This thesis should be of interest in the particle swarm optimization field
when attempting to solve high dimensional problems, and as well for the
artistic community.

1.3 Outline of Thesis

Subsequent sections are laid out as follows. Chapter 2 gives background in
aesthetic rules of image composition, virtual photography, multi-objective
algorithms, the particle swarm optimization algorithm, and related research.
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Chapter 3 reviews the system design for this thesis. Topics include the imple-
mentation of the image analysis and multi-objective particle swarms, image
generation in a virtual environment, and the system architecture. Basic ex-
periments are presented in Chapter 4 where we compare a variety of PSO
search algorithms in this problem domain. Advanced experiments are re-
viewed in Chapter 5, where we show the ability to solve high dimensional
problems. In Chapter 6 we compare this thesis’ results with previous work.
Finally, Chapter 7 sums up this thesis, and discusses future work in virtual
photography and multi-objective PSO’s.



Chapter 2

Background

When someone searches for the ideal picture, they may take hundreds of pic-
tures before they find the perfect one. But what makes this image perfect?
Artist appreciation is highly subjective, and difficult to formalize. Neverthe-
less, through history we have established rules and principles that determine
if an image is aesthetically pleasing. Although at times these rules conflict
with each other, and cause one to be dominate in the image, they will still be
present. Photography can also be related to a swarm of hundreds of cameras
taking multiple pictures in search for the perfect picture. Throughout this
chapter we will examine several rules of image composition and how other
researchers have attempted to solve virtual photography through rules of pho-
tography. We will also review particle swarm optimization, multi-objective
problems and evaluation methods, which are used in this thesis.

2.1 Aesthetic Composition Rules

Images are not generally considered to be aesthetically pleasing with just one
rule, and are graded based on several rules that can be found in the image.
There are many rules that are considered to be aesthetically pleasing to the
human eye. Because there are so many rules a section of them were considered
for implementation in this research. These rules are based on importance
and the ability to easily implement at this time. These rules range from
rudimentary image analyses to complex computer vision algorithms with no
known solution. The following rules are considered to be some of the more
important rules from [1, 26] and are recognized by the artistic community.

5
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The following sections outline rules of image composition, colour and subject
matter that were achieved.

2.1.1 Composition and Colour

Rule of Thirds

One of the most common rules in image composition is the Rule of Thirds.
This rule has been in existence for over two centuries and is was first noted
by John Thomas Smith in 1797 in his book “Remarks on Rural Scenery” [54].
He discusses a painting by Sir Joshua Reynolds talking about the composition
of light and dark, and creates the “Rule of Thirds”. This rule has been a
focus for many books in circulation that describe how to make your images
look better [1, 26]. In this thesis we will focus on the “Rule of Thirds” as
one of our main image composition rules. Satisfying the criteria for this rule
requires the image to be broken into thirds horizontally and vertically as
seen in Figure 2.1. With this we have four intersecting points, of which, one
should contain an object of interest. This rule allows an image to contain the
object of interest as well as other objects that will not dominate the main
focus. This rule is considered to be one of the most important rules in image
composition [5].

Figure 2.1: Rule of Thirds Composition Rule
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Colour Palette

From the moment we are born colour is all around us. At first we are blinded
by light but as our eyes develop the world of colour starts to evolve. Colour
also plays a very important role in our lives. It shapes our moods, affects our
family and health, and is important in our workplace [21]. Every day we are
surrounded by colours. These colours affect how we feel and can also affect
what we buy. Red is considered to be bold and will draw the attention of the
viewer where white is considered to represent purity or emptiness [60]. Not
only do we see colour as a mood, but also colour is represented in our world
with signage where green represents the permission to do some action, yellow
suggests danger or caution, and red means not allowed. By using the right
colour scheme you can make an image seem hot or cold [1]. In Figure 2.2 we
can see that the blues, greens and grays composition make the painting feel
cold, but reds, oranges and yellows make the image feel warm.

Image colour is one of objectives of focus for this thesis where the
rendered images are compared against a predetermined image with colour.
These predetermined images could be just a colour palette or a complete
image with the goal of matching the final images as close as possible to
the supplied image. More details about this algorithm can be found in the
following Section 3.3.1.

Figure 2.2: Colour Palette Composition Rule
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Horizon Line

The horizon is defined by which the sky and earth appear to meet. The
position of this can be altered by rotating the camera and allowing the user
to place this in many angles and positions in the image [41]. Using the
horizon line in image composition removes dullness and should be placed
around the upper thirds or lower thirds of the image [1]. Not only is the
horizon line used to remove dullness in an image it can also create an illusion
where objects that are closer to the horizon line appear more distant and the
ones that are further away will appear to be closer to the viewer [25]. As well
placing the horizon line extremely low will create the illusion of emptiness
especially when placed against a clear sky. Figure 2.3 demonstrates an image
where the horizon line is placed in the lower thirds of the image and gives us
the illusion of emptiness in the atmosphere.

Figure 2.3: Horizon Line Composition Rule

2.1.2 Subject Matter

Object of interest

In photography finding a subject of interest is important in making an image
interesting and appealing. It should also be a focal point of the image that
draws the eyes of the viewer [13]. The subject should generally be strong
that will ensure it draws the eye of the viewer and at times have a second
object of interest that supports or enhances the main subject as seen in
Figure 2.4. At times other rules may override the subject matter or object
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of interest to ensure the image is still aesthetically pleasing. Sometime the
object of interest may be obscured to satisfy additional rules. Sometimes
when taking photos, you may have the perfect position or have the perfect
subject matter; but the image does not look well. Although subject matter is
important for making images interesting placement and finding the subject
can be a challenge in photography.

Multiple objects of interest

This rule is similar to the object of interest rule; however, when dealing with
more than one object of interest they should also satisfy one of the following
rules: If searching for two objects they should both attempt to follow the
rule of thirds. When searching for three objects they should attempt to form
a triangle with one of the objects satisfying the Rule of Thirds. If searching
for four to five objects then one should satisfy the rule of thirds, but the rest
should attempt to be distributed throughout the image. Finally, if searching
for more than five objects, one should satisfy the rule of thirds and the rest
of the objects should attempt to have different focal depths to create the
illusion of a crowd.

Figure 2.4: Subject Matter Composition Rule
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2.1.3 Image Evaluation Rules

Above lists just a few composition rules that can be used for determining
if an image is aesthetically pleasing. There are many others that exist in
photography and film as mentioned in [26, 59] and seen in Table 2.1. There
are other methods in photography and filmography such as “Headroom” and
“Lead Room” [42] or “Rabatment of the Rectangle” [10] that compose images
where objects occur or are balanced within the image based on these rules
yet these rules require more in-depth analysis or understanding of the canvas
which at this time is difficult for a computer analysis. Rules such as these
could be implemented and used in in this system but were out of scope for
this due to the complexity of implementing these and the requirement of
emotion which cannot be portrayed in a computer yet.

Table 2.1: Aesthetic Rules

Image Contrast
Using the Head as the Focal point
Varied Object Shape
Eye Flow
Social Context
Object Recognition
Allegory
Emotion

2.2 Virtual Photography

Virtual photography has been a research topic in science for over a decade
now, where several papers have been written on photographic composition
for virtual 3D cameras and unsupervised automation of photographic com-
position in still cameras.

Bares and Kim [6] take an approach at solving visual elements in an
image and the composition of these elements. The rules of composition are,
subject size, view angle, location, depth, exclusion, and occlusion. They also
show a different approach at solving the horizon line, based on the position
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of the object, where the object is required to be in either the upper or lower
thirds of the frame. The results were very successful in creating images that
would satisfy rules of composition in a virtual environment that would lead
the way to future research papers. Bares [7] expanded on his earlier research
where a camera is initially placed in a virtual world and with the initial
values for the camera the Virtual 3D Camera Assistant would correct the
camera and objects in the world to generate a better image based on rules
of image composition, like the rule of thirds.

Around the same time as Bares [7], Banerjee and Evan [4, 5] started
research based on using digital cameras instead of a virtual environment.
The focus of both these was papers to find an image that would place the
centroid of the main subject at one of the four locations for the rule of thirds.
Similar to Bares, and Banerjee and Evan they required an initial placement
of a camera and an establishing shot. Two images are generated for this
algorithm so they can apply specific filters to establish the main subject in
the image and shift the image to place this subject at the rule of thirds. What
is new to this research is Banerjee and Evan were successful in adjusting an
image taken with a digital camera and not an image generated in a virtual
environment with hopes that these algorithms could be placed on a processor
in the camera to help amateur photographers.

In more recent research by Liu, Chen, Wolf, and Cohen-Or [38] use rule
of thirds, diagonal dominance and visual dominance to analyze an already
existing photo. Using the analysis from the photos, they will crop the images
allowing them to be more aesthetically pleasing.

Gaspero, Ermetici, and Ranon [40] use a particle swarm optimization
to generate images in a virtual environment with a specific set of rules. For
example player X must be visible, player X and Y must be visible, and player
Y must be facing away from the camera. These rules are not classified as
artistic composition rules, but are defined rules that one might find in video
games or in movies or a shot setup that a filmmaker or cinematographer
prefers. Other research papers such as [52] use virtual world exploration
where an agent explores a 3-dimensional environment in search of points of
interest. The goals of the agent are to explore the world as autonomously as
possible, reach a set number of positions within the world. This design still
required a knowledge base of the world and positions to reach, and did not
use an EC algorithm.
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Most recently there has been research in virtual photography to assist
filmmakers or cinematographers in shot selection. Lino, Christie, Ranon and
Bares [39] allow a filmmaker or cinematographer to use a virtual motion-
tracked hand-held camera that will assist the user in generating a suitable
starting point. This application also assists in generating multiple shots for
when scenes require to be put together. Abdullah, Christie, Schofield, Lino,
and Olivier [50] used a particle swarm to start optimizing actual image com-
position rules. In this paper they use advanced rules such as rule of thirds,
diagonal dominance, visual balance, and depth of field as rules of cinematog-
raphy. The particle swarm algorithm in [50] uses cameras to generate the
images and use the same fitness evaluation used in [40] and [47].

2.3 Particle Swarm Optimization

Throughout this section we will review the Particle Swarm Optimization
(PSO) algorithm and the implementation of this search technique.

2.3.1 PSO

Particle Swarm Optimization (PSO) is a population based algorithm that
uses a stochastic optimization technique that was developed by Eberhart and
Kennedy [19] in 1995. This algorithm is inspired by the social behavior known
as flocking [35, 20]. The PSO shares a similarity to genetic algorithms in that
they both are population based algorithms. The main difference between
these algorithms is the evolution stage. In genetic algorithms, the current
population breeds to create a new population that should hopefully be better
than the previous. In PSO, the same population is used throughout the entire
simulation. Individuals in the swarm have two important attributes, velocity
and position.

These two attributes are best thought of as a Rn size vector. Through-
out a simulation, each individual updates its own position by its own velocity,
and the velocity is modified by one of two influences from within the pop-
ulation and one value from itself. The influence from the population are a
global best gbest, and neighborhood best lbest. The gbest is defined as the
best individual from within the swarm, and lbest is defined as the best from
a subset of the swarm at a specific time of a simulation. The influence from
an individual agent is its personal best pbest, which is the best solution that
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the individual has seen. There are a total of eight different attributes that
contribute to the change of a particles present position or state:

• ~pi: Is the particle position or state

• ~vi: Is the particle velocity

• w - Is an inertia value to control the velocity

• ~pbest - Particles personal best solution

• r1 - Random number between (0,1)

• c1 - Constant constraint for pbest (also considered to be a learning
factor)

• ~gbest - Swarms best solution

• r2 - Random number between (0,1)

• c2 - Constant constraint for gbest (also considered to be a learning
factor)

Using these attributes, individuals in a swarm can update their velocity
using equation 2.1 and update their position using equation 2.2.

~vi = w~vi + c1r1( ~pbest − ~pi) + c2r2( ~gbest − ~pi) (2.1)

~pi = ~pi + ~vi (2.2)

Algorithm 1 outlines a high level view of how the vanilla PSO was imple-
mented for this thesis. As is evident from this description of how a particle
swarm works, the theory lends itself to use with a swarm of cameras within
a virtual 3D world, exploring to find what should be aesthetically pleasing
images.
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Algorithm 1: Vanilla Particle Swarm Optimzation Psuedo Code

1 for i = 1 to N do
2 Initialize particle i State Vector;
3 Initialize particle i pbest;
4 if f(i) < f(gbest) then
5 Set gbest from i;
6 end
7 Initialize particle i velocity vector v;

8 end
9 while Termination Criteria not meet do

10 for i = 1 to N do
11 for d = 1 to D do
12 Generate Random number rp rg;
13 Update particle i Velociy Vector;

14 end
15 Update particle i position state vector v;
16 if f(i) < f(pbest) then
17 Update particle i pbest;
18 if f(i) < f(pbest) then
19 Update gbest with i;
20 end

21 end

22 end

23 end

2.4 Multi-Objective Problems

The multi-objective optimization problems can be found in many fields such
as finance, automobile design, and economics. Photography and image com-
position is also considered to be a multi-objective problem. When taking
a picture with a camera or painting many things must be considered. The
object of interest must be present and how much area in the image will it
consume (more will make it dominate but obscure other objects in the scene).
Our object of interest should be close to one of the four rule of thirds. If
there is a horizon in the distance this should be located as close to one of the
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two thirds of the image. All these can be objectives in image composition
at the same time resulting in a multi-objective problem. As the problem is
optimized some solutions will be considered to be better than others. But
an issue usually arises when trying to optimize one of the objectives in a
solution; other objectives in a solution tend to become worse.

There are several methods to optimize a multi-objective problem, here
we will examine three different evaluation algorithms most commonly used.
Weighted Sum, Pareto Ranking and a Sum of Ranks will be explained in
detail and how each algorithm succeeds at finding an optimal solution to a
problem.

2.4.1 Weighted Sum

One of the simplest algorithms to implement for multi-objective problems
is the weighted sum [62]. In this algorithm every fitness objective is multi-
plied by a weight and is summed together, in essence transforming a multi-
objective problem into a single objective for the agent in the population. In
the following Equation 2.3 the fitness is the summation of all the fitness
values f1, f2, f3...fn multiplied by the respected weight w1, w2, w3...wn for n
objectives.

fitness = f1 ∗ w1 + f2 ∗ w2 + f3 ∗ w3 + ... + fn ∗ wn (2.3)

Although simple to implement this algorithm does not allow a good rep-
resentation of the overall fitness of the individual agent. When dealing with
non-normalized fitness values, some fitness objectives can dominate others
causing other objectives to be optimized faster than others. The ability to
adjust the weight w for every fitness objective is the only way at an attempt
to normalize the values but requires a trial and error approach which can be
time consuming and also supports a bias approach to solving the problem.

2.4.2 Pareto Ranking

The Pareto ranking algorithm is a more commonly used in solving multi-
objective problems that have many objectives where they differ and cannot
easily be compared against [27, 61, 17, 14]. When using a Pareto ranking
algorithm, all the agents in a population are classified by ranks, based on
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the fitness of the objectives and dominance. An agent dominates another
agent if all fitness objectives are at least as good as the other agent and
contains at least one fitness objective that is better as seen in Algorithm
2.4. Using domination to determine which agents are considered to be better
than others allows us to assign a rank value to all agents in the population.
Agents in the population that dominate all others in the population are said
to be Pareto optimal and are considered to be the best of the population at
that iteration. They are considered to be solutions if this were to occur at
the end of a simulation.

A dominates B ↔ (∀obj fobj(A) ≤ fobj(B)) ∧ (∃obj fobj(A) < fobj(B))

where : 1 ≤ obj ≤ n objectives, and f defines a minimization problem

(2.4)

This evaluation is done on all agents in the population to determine their
rank within the population. Agents who are considered to be Pareto opti-
mal on the first pass will have a rank value of 1 and be removed from the
population and placed in our Pareto ranked population. The next pass will
evaluate the remaining individuals and assign a rank value of 2 to all agents
who are considered to be Pareto optimal and be moved to the Pareto ranked
population. This process is repeated until all agents have been assigned a
rank value and have been placed in the Pareto ranked population.

Table 2.2 contains a population of 5 agents that are attempting to
optimize a 2-dimensional problem that lists the raw fitness values for each
objective. Analyzing this population and fitness values for dominance in
Table 2.2 we can see that agent B and E dominates all other agents in the
population but cannot dominate each other and therefor are assigned a rank
of 1. During the next pass on the population agents C and D are assigned
rank 2 and on our final pass agent A is assigned a rank of 3 as seen in the
“Pareto Rank” column of Table 2.2.

From the example give we can see that there are 2 agents in the popu-
lation assigned a rank of 1 and are therefore classified as the Pareto optimal
solutions. Although they have been assigned to be the solutions we can see
from their fitness values that they both had excellent fitness in only one of
the objectives. With small populations having outliers such as these can
cause a population to optimize on one of the objectives and not the other
which is commonly found in the weighted sum algorithm; although there is
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Table 2.2: Pareto: Fitness Population

Agent Objective 1 Objective 2 Pareto Rank

A 1200 98 3
B 1 90 1
C 808 95 2
D 1030 97 2
E 800 1 1

no set size of a population for the particle swarm optimization, most prob-
lems work with a population of 25 to 100 which is considered to be small for a
genetic algorithm or genetic program, and outliers seen in the example above
can happen more often than desired. Besides the size of the population in
relation to the PSO algorithm, another issue the Pareto ranking algorithm
has is when a problem is considered to be high-dimensional. When this oc-
curs the population tends to have more agents as the Pareto optimal and
causes a blind search because there are more options for the particle swarm
optimization to choose from for the gbest seen in Section 2.4.4.

2.4.3 Sum of Ranks

Similar to the Pareto ranking algorithm, the sum of ranks (also called Average
Rank) [9] is one that allows all fitness values in all agents to have equal weight
to the overall fitness of that agent. Table 2.3 is an example population that
consists of four agents that already have fitness values assigned for each
objective. Using the population in Table 2.3 the population will be ranked
a total of three times (once for every objective) and a rank value will be
assigned in replace of each objective. First the population is sorted for the
current objective and then every agent is assigned a rank value. The rank
value starts at one and will progressively increase based on the fitness values.
If multiple agents in the population have the same fitness value for the same
objective, they are both assigned the same rank value and the rank value is
increase for every agent that has the same fitness value. When the next agent
in the population does not have the same fitness value the rank is increased
again and is then assigned to that fitness objective as seen. Table 2.4 lists the
rank values for each objective for each agent based on the method discussed.



CHAPTER 2. BACKGROUND 18

Once all fitness values have been assigned a rank for each objective, the values
are then normalized based on the highest rank value for each objective. After
all the values are normalized they are summed to give a final rank value for
each agent in the population. Table 2.5 lists the final normalized rank values
for each agent in our population from Table 2.3 and from this we can see
that agent C is considered to be the best in the population based on the
normalized rank value assigned.

Table 2.3: Sum of Ranks Population: Fitness Objective Values

Agent Obj 1 Obj 2 Obj 3

A 16000 97 0.4
B 203 113 0.2
C 808 20 0.2
D 1030 97 0.6

Table 2.4: Sum of Ranks Population: Ranked Objective Results

Agent Obj 1 Obj 2 Obj 3

A 4 2 2
B 1 4 1
C 2 1 1
D 3 2 3

This algorithm lends itself very well to the PSO because with every
iteration the algorithm is searching for a global best gbest to lead the popu-
lation. With this, a best can be assigned by the algorithm, in instances where
multiple global bests are found, one is blindly selected to lead the population
to help prevent convergence from selecting the same best. Individual bests
are also needed for the PSO algorithm and a pbest can be assigned to an
individual based on the same method.
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Table 2.5: Sum of Ranks Population: Normalized Rank Values

Agent Obj 1 Obj 2 Obj 3 Rank Fitness

A 1.00 0.50 0.67 2.17
B 0.25 1.00 0.33 1.58
C 0.50 0.25 0.33 1.08
D 0.75 0.50 1.00 2.25

2.4.4 MOPSO

There have been several implementations for solving multi-objective prob-
lems using particle swarm optimization over the last decade. When working
with a PSO there are three key components to the particle swarm that allows
the swarm to optimize, the selection of a gbest or lbest and the selection of
a pbest. These three selections are the main driving force for agents in the
swarm, and has been the focus in solving the multi-objective problems in a
PSO.

Reyes-Sierra and Coello [51] review several different approaches at solv-
ing a MOPSO. One of the methods is an Aggregated Approach[49, 8] where
all objectives are combined into a single fitness value similar to weighted
sum. Another is a Sub-Population Approach[36, 48]. In this approach there
are several subpopulations that attempt to optimize single objectives. Along
with Fieldsend [23], Reyes-Sierra and Coello [51] present several Pareto rank-
ing methods where each system has a different approach to solving gbest or
lbest, and pbest.

Mostaghim and Teich [44] examine several approaches on how to select
gbest, lbest and pbest. The following lists four different methods for selecting
a pbest for each agent in the population.

• Prandom: pbest is replaced if Xi > Pi. If Xi is non-dominating with Pi

then one is randomly choosen

• Pnewest: pbest is replaced if Xi > Pi. If Xi is non-dominating with Pi

then Pi is replaced with Xi

• Pdominating: pbest is only replaced when Xi > Pi.
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• Ppareto: An archive of pbests is maintained by the system. Xi is inserted
into the archive and this archive is then ranked. All Pareto optimal
solutions are maintained in the archive and the others are removed.
Selection of pbest is then determined by a selection method described
in the Chapter 3.

Along with the selection of pbest there were several methods in determin-
ing the gbest or lbest, of which some strategies use similar methods.

• Grandom: Using Pareto front to rank the population the gbest is ran-
domly chosen from the Pareto optimal solutions to lead the swarm.

• Gpartitioned: This method divides the search space into a grid and placed
agents in bins (partitions). Using Pareto front on each partition the
Pareto optimal solutions are chosen to lead all others in is partition
and one is randomly chosen from the Pareto optimal solutions.

• Gdirected: A method similar to partitioned but uses an archive to de-
termine the gbest for each agent in the population based on selecting a
local member from the Pareto optimal archive.

• Gsigma: The Sigma method developed by [45] determines the Pareto
optimal solutions. Each non-Pareto optimal agent is then compared to
the slope of the fitness vectors from Pareto optimal solutions and then
uses the closest slope in comparison.

• Geuclidean: This methods projects agents in the swarm towards an
archive of Pareto optimal solutions using an Euclidean distance.

These methods for solving gbest or lbest or pbest were based on the fol-
lowing:

• Hu and Eberhart [33] using Prandom and Pdominating

• Coello and Lechunga [15] using Gpartitioned and Prandom

• Fieldsend and Singh [24] using Gdirected and Ppareto
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• Mostaghim and Teich [45] using Gsigma and Pnewest

There are several other research papers that implement a MOPSO strat-
egy such as [30, 31, 32, 56]. As seen from these recent research papers at-
tempting to solve the MOPSO is still an active area of research.



Chapter 3

System Design

This chapter reviews the multi-objective particle swarm optimization prob-
lem, a new implementation using sum of ranks, and a Pareto front algorithm
chosen for the particle swarm optimization. We will also discuss the 3d
rendering environment chosen for the virtual environment, and the imple-
mentation of the image tests discussed in the previous chapter. Finally, we
will review how all these components work together.

Figure 3.1: High-level System Design

22
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3.1 Multi-Objective Particle Swarm Optimiza-

tion Implementations

The standard particle swarm optimization algorithm works very well for solv-
ing single objective problems. However, when attempting to solve a multi-
objective problem, issues arise when determining which agents should lead
the swarm because there are multiple optimal solutions. One of the simplest
ways of solving this is to use the sum of weights as described in the previ-
ous chapter. With this implementation it is easy to determine the optimal
solution, but at times leads to trial and error when adjusting the weights
to achieve an overall optimal answer. There has been much research in the
field of multi-objective particle swarm optimization and determining which
agents in the population should be chosen as the pbest and gbest also de-
scribed in the previous chapter. From these approaches, we found the one
by Mostaghim and Teich [45] to be the most suitable solution, as this was
capable of handling more than two objectives and was successful in early
simulations.

Three different algorithms were chosen for comparison during our re-
search: Mostaghim’s and Teich’s Pareto ranking [45], a new hybrid algorithm
(sum of ranks), and sum of weights. These three were chosen as the multi-
objective evaluation algorithms and their methodology is discussed in the
following sections. We will not discuss the sum of weights, as this was de-
scribed in the previous chapter and no changes were necessary.

3.1.1 Particle Swarm Optimization using Sum of Ranks

Similar to the sum of weights algorithm, the sum of ranks algorithm works
well for determining an agent that is considered to be the best of a pop-
ulation. It is based on an approach for high-dimensional multi-objective
evaluation [9, 16]. This lends itself very well to working with the particle
swarm optimization in solving the gbest. However when attempting to solve
the pbest the sum of ranks only has two agents to rank against and the depth
of the selection is weak, this is similar to the Prandom, Pnewest, Pdominating and
Ppareto discussed in chapter 2. Resolving the problem of comparing just two
agents to determine the pbest and simulation best, the concept of having an
archive is used, similar to [45] where archives are generated overtime for the
personal best and simulation best.
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Searching for the simulation best, the sum of ranks algorithm deter-
mines the current gbest from the population and appends this agent to the
simulation best archive. If there is more than one current best when ana-
lyzing the population (multiple individuals have the same normalized rank
value), each best agent is added to the archive. This archive is then sorted
by the sum of ranks algorithm discussed in chapter 2 and the best from the
archive is chosen as the simulation best. If there is more than one best, one
of these is randomly selected. To determine the personal best for each agent
in the population, the agent adds itself to its own personal archive, and each
personal archive is then sorted by the sum of ranks algorithm. The best
from the personal archive is chosen as the pbest, and if there is more than
one best, one of these are randomly selected. When adding agents to the
archive it can grow to be very large over time based on the number of agents
added per iteration and so a limit is placed on the archive to prevent any
memory issues. The pseudo code for this implementation can be seen below
in Algorithm 2.

Algorithm 2: Sum of Ranks Pseudo Code

1 for All Agents in Population do
2 Add Agent to Agent Archive
3 Rank Agent Archive
4 Set pbest from Agent Archive

5 end
6

7 Rank Population
8 Set gbest from Population
9

10 Add gbest to Population Archive
11 Rank Population Archive
12

13 Set SimulationBest from Population Archive
14 .

3.1.2 Particle Swarm Optimization using Pareto Front

Generating aesthetically pleasing images usually involves using more than one
criteria. Problems such as this, that attempt to solve more than one criteria,
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are usually better suited to use Pareto ranking instead of combining weights,
which make it difficult to score well in all required criteria. Since the particle
swarm optimization algorithm is a bio-inspired evolutionary algorithm, it
should lend itself to also be a multi-objective algorithm. However, for the
particle swarm optimization algorithm to work, it relies on knowledge of a
gbest or lbest and a pbest. When using Pareto front ranking the idea of an
individual best is not used and agents are ranked to be the Pareto optimal.
This means that a multi-objective particle swarm can have more than one
gbest or lbest and pbest.

Fieldsend [23] reviews different approaches of multi-objective particle
swarms. For this research the strategy proposed by Mostaghim and Teich
[45] was selected for comparison to the sum of ranks PSO. This strategy is
implemented by assigning each agent in the world a σ value for 2-dimensional
problems, and a ~σ for N−dimensional problems, where both defines a slope
from the agent to the most optimal solution. The slope for σ and ~σ is
calculated in different ways. In both equations f 2

i defines a single objective
to the problem that is multiplied by itself. Equation 3.1 solves the σ value
for a 2-dimensional problem.

σ =
f 2
1 − f 2

2

f 2
1 + f 2

2

(3.1)

In equation 3.2, a σ value is assigned for each objective assigned to ~σ,
where this constructs a vector for N objectives.

~σ =

f 2
1 − f 2

2

f 2
2 − f 2

3

f 2
3 − f 2

1

 /f 2
1 + f 2

2 + f 2
3 (3.2)

This σ or ~σ is then used to determine the closest Pareto optimal agent,
and uses that agent as the gbest. If an agent is already considered to be
Pareto optimal then it uses itself as the gbest. The strategy is well suited for
N -dimensional problems which are seen in generating images and will be seen
in this thesis. To obtain a pbest the method of Pnewest will be implemented
where pbest is replaced if Xi > Pi. If Xi is non-dominating with Pi then Pi
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is replaced with Xi. A high level version of this implementation can be seen
in Algorithm 3.

Algorithm 3: Pareto Ranking Pseudo Code

1 for All Agents in Population do
2 for All Fitness Values in Agent do
3 Calculate Sigma
4 end

5 end
6

7 Add Population to Archive
8 Pareto Rank Archive
9 Prune Archive to be only Pareto Optimal

10

11 for All Agents in Population do
12 Determine gbest for agent using Sigma values
13 Determine pbest using Pnewest

14 end

3.2 Virtual Environment

Although research in image analysis has been done in both virtual environ-
ments and photography, this thesis focuses on using a virtual environment to
generate the source images. To generate the source images for the analysis
required, a 3-dimensional renderer was needed that would meet the require-
ments for the application. There are many applications available that can
generate images from a 3-dimenaional virtual environment, such as 3ds Stu-
dio Max [34], Softimage [34], Blender [11], or a custom rendering engine.
3ds Studio Max offered the most compatibility for the system design. This
software supports the .NET language, which allowed a communication DLL
to be created. It also has 10 years of development of creating stable versions.
A wide selection of free assets is available as well. Although 3ds Studio Max
was chosen for use here, any renderer could be used for this application.

The plug-in for 3ds Studio Max is a custom plug-in written in the C#

language and MaxScript to manipulate an agents camera in the scene and
render the current viewport of this camera. When one thinks of a swarm



CHAPTER 3. SYSTEM DESIGN 27

they can think of each agent in the swarm as a camera in a virtual environ-
ment capable of generating an image based on the direction it is facing. A
camera can have many properties set on it to generate an image for analy-
sis. However, with each property added, the problem will get more complex.
Three properties were chosen to modify on the camera: Location, Rotation,
and Field of View (FoV). To prevent gimbal lock (rotation issues from us-
ing Euler Angles) in the camera from the Rotation and undesired rendering
artifacts from the FoV, constraints were added to these seen in Table 3.1.
These three properties are stored in a vector of seven floating point values
where every agent uses this state vector to determine the cameras location,
rotation and field of view.

Table 3.1: Rotation and Field of View constraints

RotationX min30◦ and max150◦

RotationY No value set as this causes roll on the camera
RotationZ min0◦ and max360◦

FoV min40◦ and max72◦

State V ector =

[[LocationX , LocationY , LocationZ ], [RotationX , RotationY , RotationZ ], FoV ]

(3.3)

3.3 Image Analysis

Images are normally evaluated with multiple aesthetic criteria and there are
many rules that are considered to be aesthetically pleasing to the human
eye. Because there are so many rules a subset of them were considered to
be implemented. The group of rules chosen were based on importance and
their ease of implementation. These rules range from rudimentary image
analysis to complex computer vision algorithms with no known solution.
The following rules are considered to be some of the more important rules
from [1, 59] and are recognized by the artistic community. The following
sections discuss the implementations for rules of image composition that
were achieved.
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Specific simulations require the use of two environments. The first
environment is used to generate the final rendered image that we see. With
the focus of generating images and not computer vision, a second environment
that has exactly the same geometry as the first is used to generate a mask
image. Almost all geometry in the second environment is rendered black,
with the exception of the subject matter. These objects are rendered with a
specific colour. From this render the image analysis can detect the subject
matter allowing it to assign a fitness value. Analysis plug-ins that use this
environment will briefly cover how it is implemented.

3.3.1 Composition and Colour

Rule of Thirds

The implementation for this rule required the use of a second virtual envi-
ronment. All geometry in this mask environment is assigned a pure black
colour, and the object of interest is assigned a unique colour that is specific
for the algorithm to detect. These colours are also rendered with no shading
or lighting allowing the image to generate the mask where the colours are
not modified by any lighting methods. When the mask image is rendered it
is scanned for the unique colour of the object and the centroid of the object
is then calculated in equation 3.4.

C =

∑
[x, y]

n
(3.4)

Once the centroid is determined the distance from all four rule of third points
are calculated and the shortest distance is used as the fitness value. Figure
3.2 shows the centroid C of the red object and determines that D1 is the
shortest distance to one of the four rule of third points [P1, P2, P3, P4].
This implementation allows the object of interest to be focused around the
centroid of the object that is within the image.
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Figure 3.2: Rule of Thirds Composition Rule

Colour Palette

When determine if two images are relevant in respects to colour, a target
image is required to compare against. These target images do not have to be
an exact image of the desired photo but can also be an image that contains a
colour gradient. For this thesis the ColourHistrogramQuadraticMatching
algorithm [53, 57] was chosen to determine the differences between two im-
ages. The algorithm allows for comparison between different colours, for
example, blue is comparable with green, red is comparable with orange. If
this was used in a direct colour match or histogram match it would fail and
be to restricting. This is one of the main reasons for choosing this algorithm
and also because it is not strict like direct colour or histogram matching.
It also allows relaxation in colour comparison which is good for search al-
gorithms [57]. The algorithm breaks down the image into a histogram for
comparison. With this the result of the comparison between two images re-
turns a value between difference = [0.0...1.0]. A perfect match would but
difference = 1.0, however in this application we are looking to minimize the
result and therefore the return value is inverted fitness = 1.0− difference.



CHAPTER 3. SYSTEM DESIGN 30

Horizon Line

By definition the horizon line can be of any object that dominates the screen
that is vertically aligned at a third of the image, either 1

3
or 2

3
. In this appli-

cation the horizon line is considered to be a literal horizon line where the sky
and ground meet in the distance. To implement this, a mask environment
is created where the sky is white and the ground is black. This environment
also surrounds the search space and is represented in the rendering environ-
ment. When rendered the image will be split in half with pure white in the
upper section and black at the bottom. The horizon line cannot be skewed
by the camera because the roll has been removed seen in from the camera
settings in Table 3.1.

The fitness of the horizon line is then calculated by determining the
distance from both the 1

3
and 2

3
of the image and the shortest distance is

returned as the fitness value. Figure 3.3 shows two green lines that display
where the horizon line would be best optimal and the horizon line slightly
below the middle of the image. This figure 3.3 shows an individual from the
swarm optimizing the horizon line to the lower thirds where the distance d1
is shorter than d2.

Figure 3.3: Horizon Line optimizing to the lower thirds
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3.3.2 Subject Matter

Object detection is an active research area of computer vision and is a very
complex open problem. It was not the goal of this research paper to im-
plement actual object recognition. But to find subject matter in images
an alternate solution had to be implemented. Although any algorithm can
replace the one used in this research, it was more feasible at this time to im-
plement a simple solution. To solve object detection, a second environment
similar to the rule of thirds was used to generate a mask image. All objects
except the subject matter is assigned a black material so when rendered it
will render complete black, and also obscure the subject matter when it is
in front of the object. The subject matter is assigned a flat colour with no
shading so when visible in the image the system can detect the object. Once
rendered the system scans the image searching for the specific colour assigned
to the object. For each pixel encountered that matches the objects assigned
identifier colour, a counter is increase, when finished the counter is divided
by the total pixels and gives the percentage of screen space rendered by the
object of interest. This value is then compared to the desired screen space
percentage and is the final fitness value:

fitness =

∑
MatchingP ixels∑

Pixels
(3.5)

3.4 System Architecture

An important architecture design for the system was the ability to replace any
component within the system for a similar or better one. What this means
is the renderer (virtual environment), evolutionary algorithm, and all image
analysis plug-ins could be swapped in and out for newer ones. This was very
important for implementing the image analysis methods discussed in section
3.3. As newer methods become available for detecting object recognition or
more complex aesthetic features like allegory, they can be added with very
little difficulty.

Throughout this chapter we have described in detail about the compo-
nents used for the system architecture. Here we will go into detail on how
all the components work together.

Figure 3.4 shows a high level overview of the system components. To
generate results the core component in 3.4 loads the three components (Image
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Analysis, Particle Swarm Optimization and 3ds Max) so that data can be
handed of to each other while the simulation is running. The Image Analysis
component is responsible for loading the required analysis plug-ins that will
analyze a generated image for the agent and return a fitness value. The
fitness values are raw values that are representative of the analysis.

Once the fitness values have been assigned for every objective, the
population is given to the particle swarm optimization algorithm to determine
the fitness of each agent. The PSO algorithm is responsible for modifying
every agent’s state vector in the population. This is also where one of the
four fitness evaluations will determine the overall fitness of the population.
After all agents in the population have had their state vector modified by
the evolutionary algorithm each agent state vector from the population is
sent to 3ds Max. When a simulation is started an instance of 3ds Max is
instantiated, this in turn loads a .NET DLL that handles communications.
3ds Max will receive each agents state vector one at a time and using this
state vector 3ds Max will modify the Location, Rotation, and FoV of the
camera in the scene and render a new image. Once all agents have rendered
the required images the core will repeat the processes just explained until a
set number of iterations have completed.
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Figure 3.4: System Design



Chapter 4

Basic Experiments

The experiments covered in this chapter deal with two different environments
created in 3d Studio Max. Although these environments are basic ones with
primitive objects, they also pose a level of challenge to the particle swarm.
The solutions are well defined where there is a specific subject matter in each
environment that the swarm will search for and position this object at one of
the rule of thirds. The environments also have the ability to render a horizon
line, and attempt to solve a colour similarity objective. Throughout this
chapter, we will review how different swarm-based search techniques behave
in these environments and how well they perform against each other. In
particular, we will be reviewing how the sum of ranks multi-objective strategy
behaves. This new method will be compared against the standard sum of
weights and another multi-objective particle swarm using Pareto ranking
discussed in the Chapter 2.

4.1 System Parameters

The particle swarm optimization algorithm discussed in Chapter 2 requires
specific settings to control the simulation. Table 4.1 lists the settings that
were used for the simulation in this chapter. A total of 30 unique individ-
ual simulations were completed for each optimization algorithm, and each
simulation contained 25 individual agents. These simulations would run a
total of 100 iterations (or generations) to determine the optimal solution.
The particle swarm optimization used an Inertia of 0.8, 0.45 for the personal
best constraint and 0.5 for the global best constraint. These values control

34
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the swarms actions described in Table 1. Although there could be more re-
search into fine tuning these settings for the particle swarm and this specific
problem, it was found that these settings worked best with our system in
the beginning when attempting to solve all of the single objective problems.
These settings are also consistent with the standards for particle swarm [19].
Throughout this chapter we will be discussing several different search algo-
rithms used in our simulations. Table 4.2 lists seven different methods that
were implemented for generating the results that will be analyzed in this
chapter. As well Table 4.3 lists all fitness evaluations and the short form
that is used in analyzing the images and the ranges for each of the fitness
evaluations in Table 4.2.

The final settings that were globally used for the simulations are related
to the images rendered and the camera options. Table 4.4 lists the settings
for the image size, and whether the cameras can rotate or adjust the FoV.

Models used in “Case 1” were supplied by City Engine [22] and modified
to contain plain colour textures. Models in “Case 2” were generated in 3ds
Max by myself.

Table 4.1: Particle Swarm Optimization Settings

Number of Runs 30
Population 25
Max Iterations 100
Inertia 0.8
Personal Best Constraint 0.45
Global Best Constraint 0.5
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Table 4.2: Search Algorithm Definitions

RAS Random Search. The algorithm randomly
picks a new location rotation and fov
for each iteration for each agent in
the population

WS Sum of Weights Section 2.4.1
WSB Sum of Weights Bootstrapped Section 2.4.1
SR Sum of Ranks Section 3.1.1
SRB Sum of Ranks Bootstrapped Section 3.1.1
PR Pareto Ranking Section 3.1.2
PRB Pareto Ranking Bootstrapped Section 3.1.2

Table 4.3: Fitness Ranges

Fitness Objective Fitness Range

Object Detection (OD) [0...153600]
Rule of Thirds (ROT) [0...800]
Colour Similarity (CS) [0.0...1.0]
Horizon Line (HZ) [0...240]

Table 4.4: Simulation Settings

Image Width 320
Image Height 240
Rotation Enabled True
FOV Enabled True
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4.2 Case 1: Simple Scene

These experiments focus on a simple primitive environment that contains
solid colours and primitive objects. Figure 4.1 and 4.2 show the environment
and all objects contained within this environment. We can see there is a
building that is flat shaded with solid colours, a black floor for the ground
and a teal sky. The floor and sky are also represented in the horizon mask
environment to allow the detection of the horizon line as discussed in Chapter
3. Figure 4.3 shows two spheres (one red and the other orange). The orange
sphere is classified as the object of interest; this sphere is also represented
in the environment mask to allow the object detection for the algorithm to
recognize the specific object. Although simple there is a level of difficulty for
the swarm because the orange sphere is located in the corner of two walls and
can only be seen from one side of the building. If the sphere were placed in
an open space with no obstruction the problem may be too simple to solve.

Figure 4.1: Simple scene render demonstrating the objects within the envi-
ronment
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Figure 4.2: Simple scene render focusing on the building and spheres

Figure 4.3: Simple scene render focusing on the subject matter
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4.2.1 Setup

For this experiment none of the global settings were adjusted for the particle
swarm optimization and the fitness ranges are the same as the ones listed
in Table 4.3. This scene however is not very large so there are constraints
on the starting location of the agents when initially created, listed in Table
4.5. For these simulations there were four separate objectives to solve for
the rendered image; object detection, rule of thirds, horizon line, and colour
similarity listed in Table 4.6. The colour similarity objective used a rendered
image from the scene in Figure 4.4. This image highlights the orange sphere
located around a rule of thirds which is the object of interest.

Table 4.5: Simple Scene Settings

X-Extent -50 ... 50
Y-Extent 0 ... 50
Z-Extent -50 ... 50

Table 4.6: Case 1: Simple Scene Objectives

1. Object Detection Orange Sphere with 20% screen space
3. Rule of Thirds for the Orange Sphere
4. Horizon Line
5. Colour Similarity Figure 4.4

Figure 4.4: Simple Scene Colour Similarity
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4.2.2 Best Solutions

With the goal of optimizing four objectives, determining which agent was
the best required an algorithm that was not biased to any specific objective.
Table 4.7 contains the best scores from each algorithm listed in Table 4.2
and the best for each objective is highlighted in bold font. To determine
which agent was the best, all agents on the last iteration from all thirty runs
were put into one single population of 750 agents. This population is then
sorted using the sum of ranks algorithm. The sum of ranks algorithm was
chosen because it does not have a biases to any one objective and allows the
selection of a single agent to be the best unlike the Pareto front.

Algorithm OD ROT CS HZ

RAS 13029 7.115465 0.03949099 2.999998
WS 0 5.727189 0.006342774 8.000005
WSB 1 13.74744 0.00172127 4.000005
SR 0 3.102498 0.00363057 2.38E-06
SRB 1 0.009403426 0.003280459 240
PR 2827 21.18007 0.005163114 2.38E-06
PRB 1662 2.619171 0.001186606 2.38E-06

Table 4.7: Fitness values for all algorithms

As we can see, in Table 4.7, the best scores of each objective are high-
lighted in bold font. The WS and SR both perform the best at getting an
exact match for the OD, and the WSB and SRB versions were off by one
pixel for an optimal solution. For the ROT objective, the SRB outperformed
all other algorithms. However, most of the other algorithms were relatively
close to the SRB. The CS had better performance compared to the other
algorithms, with the best algorithm being the PRB. The HZ objective has
three algorithms (SR, PR, PRB) obtaining the best solution. What is inter-
esting about this column is the SRB achieves the worst score possible, where
it did not find a solution for the HZ. After analyzing this Table 4.7, it can
be seen that the algorithms perform very well for the best solutions.
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Analyzing the images in Figures 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, and 4.11,
we can see that each simulation was capable of finding the subject matter.
Figure 4.5, which is the RAS struggles to position the subject matter at
the rule of thirds but successfully finds it. Although it cannot be seen, the
horizon line would be visible if the environment chosen was not blocking the
its view. Overall these renders managed to satisfy many rules that were
required as seen in the images and in Table 4.7.

Figure 4.5: Simple Environment best from all agents in the RAS algorithm
with the following fitness values: OD = 13029, ROT = 7.115465, CS =
0.03949099, and HZ = 2.999998
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Figure 4.6: Simple Environment best from all agents in the WS algo-
rithm with the following fitness values: OD = 0, ROT = 5.727189, CS =
0.006342774, and HZ = 8.000005
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Figure 4.7: Simple Environment best from all agents in the WSB algo-
rithm with the following fitness values: OD = 1, ROT = 13.74744, CS =
0.00172127, and HZ = 4.000005
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Figure 4.8: Simple Environment best from all agents in the SR algorithm with
the following fitness values: OD = 0, ROT = 3.102498, CS = 0.00363057,
and HZ = 2.38E-06
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Figure 4.9: Simple Environment best from all agents in the SRB algorithm
with the following fitness values: OD = 1, ROT = 0.009403426, CS =
0.003280459, and HZ = 240
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Figure 4.10: Simple Environment best from all agents in the PR algorithm
with the following fitness values: OD = 2827, ROT = 21.18007, CS =
0.005163114, and HZ = 2.38E-06
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Figure 4.11: Simple Environment best from all agents in the PRB algo-
rithm with the following fitness values: OD = 1662, ROT = 2.619171, CS =
0.001186606, and HZ = 2.38E-06
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4.2.3 Swarm Performance Analysis

Figures 4.12, 4.13, 4.14, and 4.15 show the performance graphs for the average
of the population over time with the objective to minimize the problem. To
generate these graphs, all thirty runs were combined into one population
for each iteration, and for each iteration the new population calculates the
average for each fitness objective.

Figure 4.12: Simple Environment graph shows the average of the population
over the 100 iterations from all 30 runs for OD

Analyzing graphs 4.12, 4.13, 4.14, and 4.15, it can be seen that the
random fitness evaluation does not converge on any of the fitness objectives
and remains to be the worst of all algorithms. Both the Pareto ranking
and Pareto ranking bootstrapped perform poorly on optimizing the object
detection and rule of thirds objectives. However, both perform very well in
the colour similarity and outperform all algorithms in the horizon line. The
weighted sum performs exceptionally better than all other algorithms in the
object detection objective. A reason for this could be because when dealing
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with weighted sum the highest fitness objective will tend to optimize better
due to the value which out weights all others.

Overall there isn’t one algorithm that out performs the next in optimiz-
ing all of the fitness objectives. There are signs of weaknesses in the Pareto
ranking as it seems to do poorly in two out of the four and only excels in
one of the four. The weighted sum and sum of ranks algorithm produces an
average solution to the problem doing well in all fitness objectives.

Figure 4.13: Simple Environment graph shows the average of the population
over the 100 iterations from all 30 runs for ROT
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Figure 4.14: Simple Environment graph shows the average of the population
over the 100 iterations from all 30 runs for CS

Figure 4.15: Simple Environment graph shows the average of the population
over the 100 iterations from all 30 runs for HZ
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4.2.4 Global Best Analysis

Figures 4.16, 4.17, 4.18, and 4.19 show the performance graphs for the average
of the global best solutions. To generate these graphs, all runs analyze their
population at each iteration to determine the current bests. These current
bests are compared a global best. If one of the current best solutions is better
than the global best solution, the global best is replaced with the current best.
Finally, for each iteration the global best for each run is combined into a new
separate population, and this new separate population calculates the average
for each fitness objective.

Analyzing Figures 4.16, 4.17, 4.18, and 4.19 shows the best solutions
follow the same trends of the average population. The major difference here
is that the random fitness evaluation algorithm improves over time. It does
best in object detection because it uses the weighted sum to determine the
overall fitness for all objectives; however it still is an improvement over the
average population results. The reasoning behind this is that until an object
or horizon line is found, all algorithms must run a blind search.

Figure 4.16: Simple Environment graph shows the average of the global best
from all 30 runs over the 100 iterations for OD
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Figure 4.17: Simple Environment graph shows the average of the global best
from all 30 runs over the 100 iterations for ROT

Figure 4.18: Simple Environment graph shows the average of the global best
from all 30 runs over the 100 iterations for CS
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Figure 4.19: Simple Environment graph shows the average of the global best
from all 30 runs over the 100 iterations for HZ

4.2.5 Diversity Analysis

This section we will analyze the diversity of the results by analyzing the global
bests from each run. A global best is considered to be the best solution an
algorithm has found over the entire simulation. Figures 4.20, 4.21, 4.22,
4.23, 4.24, and 4.25 display the best individual from each of the thirty runs.
Each of these graphs have logarithm scaled axes. This adjustment allows us
to more easily visualize the results due to the extreme differences in fitness
values. In all plots, the goal is to minimize the fitness value.

Examining Figures 4.20, 4.21, 4.22, 4.23, 4.24, and 4.25, we can see
that the sum of ranks and sum of ranks bootstrapped are the most diverse,
while all other algorithms tend to converge closer to each other. The random
search does not produce a comparison that trends to optimizing the problem,
similar to the Pareto ranking algorithm. However, it does generate better
results in the colour similarity vs. horizon line Figure 4.25. In general the
sum of weights, sum of weights bootstrapped, sum of ranks and sum of ranks
bootstrapped generate better results overall that are optimized.
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Figure 4.20: Simple Environment best from all 30 runs for RAS, WS, WSB,
SR, SRB, PR, and PRB comparing OD vs. ROT

Figure 4.21: Simple Environment best from all 30 runs for RAS, WS, WSB,
SR, SRB, PR, and PRB comparing OD vs. CS
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Figure 4.22: Simple Environment best from all 30 runs for RAS, WS, WSB,
SR, SRB, PR, and PRB comparing OD vs. HZ

Figure 4.23: Simple Environment best from all 30 runs for RAS, WS, WSB,
SR, SRB, PR, and PRB comparing ROT vs. CS
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Figure 4.24: Simple Environment best from all 30 runs for RAS, WS, WSB,
SR, SRB, PR, and PRB comparing ROT vs. HZ

Figure 4.25: Simple Environment best from all 30 runs for RAS, WS, WSB,
SR, SRB, PR, and PRB comparing CS vs. HZ
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4.2.6 Statistical Comparisson of Algorithms

The confidence tests in Tables 4.8, 4.9, 4.10, and 4.11 use the average of the
population at the last iteration for each run using the Mann-Whitney U test
[58] with a confidence level of 95%. The Mann-Whitney U test was chosen
because it is a non-parametric confidence test. The fitness values obtained
do not fall into a normal distribution, which prevents a t-test or related
analyses. In Tables 4.8, 4.9, 4.10, and 4.11 we use the ↑ and ← symbols
to denote which algorithm out performs another at a 95% confidence level.
When a comparison is not statistically significant, the − symbol is used.

Table 4.12 is a sum of how many times an algorithm was considered
to be significantly better then another algorithm. With this table we can
see that the random search algorithm is considered to be the worst overall
as it was never considered to be better then another algorithm in the object
detection, rule of thirds, colour similarity or horizon line. The Pareto ranking
and Pareto ranking bootstrapped produced results in the colour similarity
and horizon line. However, the sum of weights and sum of ranks (both normal
and bootstrapped) produced the most confidence and the two algorithms can
be considered to be similar based on the total best solution.

WS WSB SR SRB PR PRB

RAS ↑ ↑ ↑ ↑ - -
WS - - - ← ←
WSB - ← ← ←
SR ← ← ←
SRB ← ←
PR -

Table 4.8: Simple Environment Object Detection Mann Whitney-U test with
a confidence level of 95% using the average of the population at the last
iteration for 30 individual runs
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WS WSB SR SRB PR PRB

RAS ↑ ↑ ↑ ↑ - -
WS - - ↑ ← ←
WSB ← ← ← ←
SR - ← ←
SRB ← ←
PR -

Table 4.9: Simple Environment Rule of Thirds Mann Whitney-U test with
a confidence level of 95% using the average of the population at the last
iteration for 30 individual runs

WS WSB SR SRB PR PRB

RAS ↑ ↑ ↑ ↑ ↑ ↑
WS ↑ - ↑ ↑ ↑
WSB - - - -
SR - - -
SRB - -
PR -

Table 4.10: Simple Environment Colour Similarity Mann Whitney-U test
with a confidence level of 95% using the average of the population at the last
iteration for 30 individual runs
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WS WSB SR SRB PR PRB

RAS - - - - ↑ ↑
WS ← - ← - -
WSB - ↑ ↑ ↑
SR ← - -
SRB - -
PR -

Table 4.11: Simple Environment Horizon Line Mann Whitney-U test with
a confidence level of 95% using the average of the population at the last
iteration for 30 individual runs

RAS WS WSB SR SRB PR PRB

OD 0 3 4 4 3 0 0
ROT 0 3 5 3 4 0 0
CS 0 1 2 1 2 2 2
HZ 0 2 0 1 1 2 2
Total 0 9 11 9 10 4 4

Table 4.12: Simple Environment Confidence analysis
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4.3 Case 2: Complex Scene

The complex environment focuses on primitive objects (boxes, circles, tori,
cylinders, and prisms) within the environment that contain basic colours,
materials and textures. Figures 4.26, 4.27, 4.28 show images from the world
that the particle swarm will analyze. Figure 4.26 represents the environment
and all objects contained in this environment. From here we can see many
different shapes and sizes for the primitive objects, as well we can see many
different colours and textures used to hide our object of interest. The floor
and sky are also represented in the horizon mask environment to allow the de-
tection of the horizon as discussed in Section 3.3.1. The image in Figure 4.28
shows a peach prism which is the subject matter for the environment; this
prism is also represented in the environment mask for the object detection
to recognize. From Figure 4.27, it can be seen that there are many objects
that can obstruct the camera from the prism and many different colours and
textures that will compete in the colour similarity analysis.

Figure 4.26: Complex primitive render demonstrating the objects within the
environment
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Figure 4.27: Complex Primitive render focusing on the objects around the
subject matter

Figure 4.28: Complex primitive focusing on the subject matter
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4.3.1 Setup

Similar to the simple environment, the complex adjusted none of the global
settings for the particle swarm and the fitness ranges are the same listed in
Tables 4.1 and 4.3. The differences between the complex environment and
the simple environment, is that the complex environment has more objects
scattered around the environment. As well to make the scene more complex
the colour similarity uses a gradient image that incorporates a colour similar
to tan and blends to a reddish orange colour seen in Figure 4.29.

Figure 4.29: Complex Scene Colour Similarity

With the complex environment being larger than the simple environ-
ment there was one change to the settings. The settings that were changed
are listed in Table 4.13; these settings are the world extents for where an
agent in the population can be initialized. These extents were intended to
allow the agents to search the environment more and should also introduce
obstructions in finding the subject matter. Similar to Section 4.2.1, this sim-
ulation attempts to optimize for objectives for the rendered image, listed in
Table 4.14.
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Table 4.13: Complex Scene Settings

X-Extent 200
Y-Extent 200
Z-Extent 100

Table 4.14: Case 2: Complex Scene Objectives

1. Object Detection for Prism with 20% screen space
3. Rule of Thirds for the Prism
4. Horizon Line
5. Colour Similarity Figure 4.29

4.3.2 Best Solutions

The best solutions that were generated for this experiment were generated
using the same method discussed in Section 4.2.2. Table 4.15 contains the
best solutions from each algorithm. As we can see from this table, fewer
algorithms manage to obtain the best results. For the OD objective, the
only algorithm to obtain an optimal solution was the WS. The WSB manage
to be one pixel off the most optimal again. For the ROT objective, the
SR almost had a perfect fitness value and is considered to be the best in
this objective. From looking at the CS column, we can see most algorithms
produce a similar fitness value, and the PR algorithm performs the best
overall. In the HZ column, all but two algorithms produce best solutions.

Algorithm OD ROT CS HZ

RAS 11024 65.76791 0.4830108 62
WS 1 22.48737 0.4736003 2.38E-06
WSB 0 27.50779 0.462909 5.000002
SR 9769 0.000297546 0.4554022 2.38E-06
SRB 14230 0.01412207 0.4343214 2.38E-06
PR 153600 800 0.1735719 2.38E-06
PRB 14272 41.93584 0.4601543 2.38E-06

Table 4.15: Fitness values for all algorithms
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The images in Figures 4.30, 4.31, 4.32, 4.33, 4.34, 4.35, and 4.36, show the
results for the best solutions listed in Table 4.15. This experiment yielded
some interesting results. Figure 4.35 is the best for the PR simulation. This
experiment did not find a subject but did very well in the colour similarity.
The reason for this is the object it did find was the same colour of the subject
matter but was located very far off in the environment. For the rest of the
images, the subject matter was found in each. The weighted sum experiments
managed to optimize the OD screen space better than the others. The sum
of ranks managed to optimize the ROT best. Again the renders managed
to satisfy many rules that were required as seen in the images and in Table
4.15.

Figure 4.30: Complex Environment best from all agents in the RAS algorithm
with the following fitness values: OD = 11024, ROT = 65.76791, CS =
0.4830108, and HZ = 62
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Figure 4.31: Complex Environment best from all agents in the WS algorithm
with the following fitness values: OD = 1, ROT = 22.48737, CS = 0.4736003,
and HZ = 2.38E-06
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Figure 4.32: Complex Environment best from all agents in the WSB algo-
rithm with the following fitness values: OD = 0, ROT = 27.50779, CS =
0.462909, and HZ = 5.000002
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Figure 4.33: Complex Environment best from all agents in the SR algorithm
with the following fitness values: OD = 9769, ROT = 0.000297546, CS =
0.4554022, and HZ = 2.38E-06
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Figure 4.34: Complex Environment best from all agents in the SRB algorithm
with the following fitness values: OD = 14230, ROT = 0.01412207, CS =
0.4343214, and HZ = 2.38E-06
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Figure 4.35: Complex Environment best from all agents in the PR algorithm
with the following fitness values: OD = 153600, ROT = 800, CS = 0.1735719,
and HZ = 2.38E-06
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Figure 4.36: Complex Environment best from all agents in the PRB algo-
rithm with the following fitness values: OD = 14272, ROT = 41.93584, CS
= 0.4601543, and HZ = 2.38E-06
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4.3.3 Swarm Performance Analysis

Figures 4.37, 4.38, 4.39, and 4.40 show us the performance graph for the
average of the population over time and uses the same method in Section
4.2.3.

Figure 4.37: Complex Environment graph shows the average of the popula-
tion over the 100 iterations from all 30 runs for OD

Analyzing Figures 4.37, 4.38, 4.39, and 4.40 you can see that the ran-
dom fitness evaluation does not converge for any of the fitness objectives
which is similar to the simple environment and is still the worst of all algo-
rithms. Looking at these graphs we can see that both the Pareto ranking and
Pareto ranking bootstrapped perform just as poorly as the random search on
optimizing the object detection and rule of thirds objectives. However, both
perform very well in the colour similarity and outperform all algorithms in
the horizon line.
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Overall there is not one that stands out in optimizing all of the fitness
objectives the best. There are signs of weaknesses in the Pareto ranking as
it seems to do poorly in two out of the four and excel in two of the four.
The sum of weights performs best in two objectives and ranks third in two
objectives. The sum of ranks always ranked second producing an average
solution to the problem doing well in all fitness objectives.

Figure 4.38: Complex Environment graph shows the average of the popula-
tion over the 100 iterations from all 30 runs for ROT
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Figure 4.39: Complex Environment graph shows the average of the popula-
tion over the 100 iterations from all 30 runs for CS

Figure 4.40: Complex Environment graph shows the average of the popula-
tion over the 100 iterations from all 30 runs for HZ
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4.3.4 Global Best Analysis

Figures 4.41, 4.42, 4.43, and 4.44 shows the performance graph for the average
of the global bests over time using the same method in Section 4.2.4.

Figure 4.41: Complex Environment graph shows the average of the global
best from all 30 runs over the 100 iterations for OD

Analyzing Figures 4.41, 4.42, 4.43, and 4.44 we can see that the best
solutions follow the same trends of the average population. The major differ-
ence here is the random evaluation algorithm. This algorithm improves over
time in the object detection and rule of thirds. The algorithm does better
than the others in the object detection and rule of thirds because it uses the
sum of weights to determine the overall fitness for all objectives.
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Figure 4.42: Complex Environment graph shows the average of the global
best from all 30 runs over the 100 iterations for ROT

Figure 4.43: Complex Environment graph shows the average of the global
best from all 30 runs over the 100 iterations for CS
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Figure 4.44: Complex Environment graph shows the average of the global
best from all 30 runs over the 100 iterations for HZ

4.3.5 Diversity Analysis

As done in Section 4.2.5, Figures 4.20, 4.21, 4.22, 4.23, 4.24, and 4.25 display
the best individual from all thirty runs.

Examining Figures 4.45, 4.46, 4.47, 4.48, 4.49, and 4.50 we can see that
the sum of ranks and sum of ranks bootstrapped are the most diverse where
all other algorithms tend to converge closer to each other. The random search
does not produce a comparison that trends to optimize the problem, similar
to the Pareto ranking algorithm. However, the Pareto ranking does generate
better results in the colour similarity vs. horizon line 4.25. In general the
sum of weights, sum of weights bootstrapped, sum of ranks and sum of ranks
bootstrapped generate better results overall that optimize the problem.
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Figure 4.45: Complex Environment best from all 30 runs for RAS, WS, WSB,
SR, SRB, PR, and PRB comparing OD vs. ROT

Figure 4.46: Complex Environment best from all 30 runs for RAS, WS, WSB,
SR, SRB, PR, and PRB comparing OD vs. CS
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Figure 4.47: Complex Environment best from all 30 runs for RAS, WS, WSB,
SR, SRB, PR, and PRB comparing OD vs. HZ

Figure 4.48: Complex Environment best from all 30 runs for RAS, WS, WSB,
SR, SRB, PR, and PRB comparing ROT vs. CS
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Figure 4.49: Complex Environment best from all 30 runs for RAS, WS, WSB,
SR, SRB, PR, and PRB comparing ROT vs. HZ

Figure 4.50: Complex Environment best from all 30 runs for RAS, WS, WSB,
SR, SRB, PR, and PRB comparing CS vs. HZ
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4.3.6 Statistical Comparison of Algorithms

The confidence tests in Tables 4.16, 4.17, 4.18, and 4.19 use the same method
discusses in Section 4.2.6.

Similar to Section 4.2.6 Table 18 is a sum of how many times an algo-
rithm was considered to be significantly better then another algorithm. With
this table we can see that the random search algorithm is considered to be
the worst overall but does rank better in the object detection once. The sum
of weights, sum of ranks bootstrapped and Pareto ranking rank almost ex-
actly the same. The best algorithms for the complex environment are sum of
weights bootstrapped, sum of ranks, and Pareto rank bootstrapped. These
three algorithms are considered to be better than the others but should be
considered to be similar.

WS WSB SR SRB PR PRB

RAS ↑ ↑ ↑ - ← -
WS - ← ← ← ←
WSB ← ← ← ←
SR - - ←
SRB - -
PR ↑

Table 4.16: Complex Environment Object Detection Mann Whitney-U test
with a confidence level of 95% using the average of the population at the last
iteration for 30 individual runs
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WS WSB SR SRB PR PRB

RAS ↑ ↑ ↑ - - -
WS - - - ← -
WSB - - ← ←
SR - ← ←
SRB - ←
PR ↑

Table 4.17: Complex Environment Rule of Thirds Mann Whitney-U test
with a confidence level of 95% using the average of the population at the last
iteration for 30 individual runs

WS WSB SR SRB PR PRB

RAS ↑ ↑ ↑ ↑ ↑ ↑
WS - ↑ ↑ ↑ ↑
WSB ↑ ↑ ↑ ↑
SR - -↑ ↑
SRB ↑ ↑
PR -

Table 4.18: Complex Environment Colour Similarity Mann Whitney-U test
with a confidence level of 95% using the average of the population at the last
iteration for 30 individual runs
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WS WSB SR SRB PR PRB

RAS - - ↑ ↑ ↑ ↑
WS ↑ - - - -
WSB - - ↑ ↑
SR - - ↑
SRB ↑ ↑
PR -

Table 4.19: Complex Environment Horizon Line Mann Whitney-U test with
a confidence level of 95% using the average of the population at the last
iteration for 30 individual runs

RAS WS WSB SR SRB PR PRB

OD 1 5 5 2 0 0 1
ROT 0 2 3 3 1 0 1
CS 0 1 1 5 5 5 5
HZ 0 0 1 1 1 3 4
Total 1 8 10 11 7 8 11

Table 4.20: Confidence analysis
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4.4 Discussion

In Section 4.2 and 4.3, we analyzed each simulation and the results that were
generated. It is evident from this review, that the algorithms presented are
capable of generating aesthetically pleasing images in a virtual environment.
Although no single algorithm was clearly superlative then the rest, we have
seen that some algorithms manage to perform better in specific objectives.

The Simple Scene and Complex Scene both resulted in situations for
the search algorithms which resulted in not finding a subject matter or hori-
zon line in some simulations. The reason for this was because the system
performs a blind search from the beginning to find an object of interest.
Either the object is seen by the swarm or it is not. Although we allowed
some simulations to be bootstrapped, it is evident that just finding one of
the problems sometimes does not allow the camera to focus or optimize all
objectives.

Overall the algorithms studied and proposed for these environments
did well in finding aesthetically pleasing images. The environments used
are made up of primitive objects that were built to demonstrate the ba-
sic problem-solving abilities of the PSO. To test these algorithms further,
Chapter 5 will consider more complex environments and objects. Also, us-
ing the same objectives discussed, the new simulations will introduce more
of the same objectives to the problem where we will attempt to solve a 10-
dimensional problem.



Chapter 5

Advanced Experiments

The advanced experiments in this chapter deal with a variety of environments
created in 3d Studio Max. These scenes are more complex and can be seen in
a typical video game or animation movie unlike the scenes used in Chapter
4. These environments are created to exercise the PSO to a fuller potential
than in Chapter 4, with the goals to generate aesthetic images in a non-
trivial challenging setting. Although we are focused on obtaining these types
of images, the problems and number of objectives have been increased and
the search becomes more difficult to satisfy. The higher level of difficulty
in these experiments is the challenge of finding multiple objects of interest
in the environment (with proper screen space), and the ability to position
more than one of the multiple objects at the rule of thirds. As well the
environments have the ability to render a horizon line that contains a sky
or starry night texture, and will also attempt to solve a colour similarity
objective.

Unlike Chapter 4 where we focused on analyzing the search algorithms,
here we will focus on one specific optimizer for the particle swarm. The
new sum of ranks method was chosen for all simulations in this chapter.
This algorithm was chosen based on the ability to solve high dimensional
problems in a genetic algorithm [9, 16]. Like Chapter 4, the particle swarm
optimization algorithm discussed in Chapter 2 requires specific settings to
control the simulation. Table 5.1, 5.2, and 5.3 list the settings that were
used for all experiments discussed in this chapter. Although there could be
more fine tuning of these settings, it was found that these worked in the
previous experiments and should work for advanced environments as well.
Throughout this chapter we will review four different scenes and show the

84



CHAPTER 5. ADVANCED EXPERIMENTS 85

more interesting results from these experiments.

Models in the scenes were obtained from [2, 55].

Table 5.1: Advanced Experiment Particle Swarm Optimization Settings

Number of Runs 30
Population 25
Max Iterations 100
Inertia 0.8
Personal Best Constraint 0.45
Global Best Constraint 0.5

Table 5.2: Advanced Experiment Fitness Ranges

Fitness Objective Fitness Range

Object Detection (OD) [0...153600]
Rule of Thirds (ROT) [0...800]
Colour Similarity (CS) [0.0...1.0]
Horizon Line (HZ) [0...240]

Table 5.3: Advanced Experiment Simulation Settings

Image Width 320
Image Height 240
Rotation Enabled True
FOV Enabled True
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5.1 Over the Shoulder Conversation

The focus of this environment was to create an over the shoulder shot
that focuses on the shoulder in the front and the person talking facing the
camera. This shot is used in film when two people are talking. Table 5.4
lists the objectives for this simulation and Figure 5.1 is the images used for
the colour similarity objective.

Table 5.4: Over the Shoulder Conversation objectives

1. Object Detection: Male Face
2. Object Detection: Female Back Shoulder
3. Rule of Thirds: Male Face
4. Horizon Line
5. Colour Similarity

Figure 5.1: Over the Shoulder Conversation Colour Similarity Target Image
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Figure 5.2: Over the Shoulder Conversation Scene
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Analyzing four images that were selected from the simulations for the
over the shoulder shot, we can see some interesting renders. Figure 5.3
managed to render an almost perfect over the shoulder shot. This render
demonstrates a classic shot for a conversation between two people. Figure
5.4 is an interesting shot where the face was found between the females arm.
In Figure 5.5 the simulation managed to find the male face but positioned
the female shoulder on the opposite side. For Figure 5.6 the simulation
found an alternate conversation shot where it is a wide shot showing off the
background.

Figure 5.3: Fitness values for the following render are: 6809 for Male Face Ob-
ject Detection, 2205 for Female Face Object Detection, 17.5371838 for Male
Face Rule of Thirds, 0.0607894734 for Colour Similarity, and 2.38418579E-06
for Horizon Line
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Figure 5.4: Fitness values for the following render are: 7185 for Male Face
Object Detection, 10819 for Female Face Object Detection, 38.14502 for Male
Face Rule of Thirds, 0.145751625 for Colour Similarity, and 240 for Horizon
Line
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Figure 5.5: Fitness values for the following render are: 7284 for Male Face
Object Detection, 11013 for Female Face Object Detection, 5.63545275 for
Male Face Rule of Thirds, 0.07316379 for Colour Similarity, and 26.0000038
for Horizon Line
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Figure 5.6: Fitness values for the following render are: 7546 for Male Face Ob-
ject Detection, 11259 for Female Face Object Detection, 40.5236931 for Male
Face Rule of Thirds, 0.128981426 for Colour Similarity, and 2.38418579E-06
for Horizon Line
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5.2 Table Conversation

The focus of this environment was to find two specific people in the
scene but confuse the system by having multiple people. In this simulation
there are eight people around a table. The four male faces have the same
detection mask, and the females have the same detection mask. What makes
the simulation attempt to focus on the desired couple is the colour similarity.
Table 5.5 lists the objectives for this simulation and Figure 5.7 is the images
used for the colour similarity objective. This image can also be found on the
table that the couples are surrounding. The image in Figure 5.7 is used as
a bitmap texture placed as a placemat on the table, seen in Figure 5.8 that
attempts to fool the swarm based on the colour similarity objective.

Table 5.5: Table Conversation Objectives

1. Object Detection: Male Face
2. Object Detection: Female Face
3. Rule of Thirds: Male Face
4. Rule of Thirds: Female Face
5. Horizon Line
6. Colour Similarity

Figure 5.7: Table Conversation Colour Similarity Target Image
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Figure 5.8: Table Conversation Scene
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Analyzing four images that were selected from the simulations for the
table conversation, we can see some interesting renders. In Figure 5.9 the
simulation found multiple faces for both female and male but managed to
find the two people from the colour similarity. Figure 5.10 is another image
that manages to find multiple males and females in the scene but focused
more on the female subject matter from the colour similarity. The simulation
for Figure 5.11 managed to position a male and female very close to the rule
of thirds and also found the proper subject matter. Seen on the table this
was the closest the simulation came to finding our desired shot, and could be
tricked by the target colour image that is on the table. Figure 5.12 is another
simulation that finds multiple males and females and also our subject matter
in the colour similarity.

Figure 5.9: Fitness values for the following render are: 7465 for Male Face
Object Detection, 7589 for Female Face Object Detection, 10.7875986 for
Male Face Rule of Thirds, 7.00793171 for Female Face Rule of Thirds,
0.0609032065 for Colour Similarity, and 2.38418579E-06 for Horizon Line
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Figure 5.10: Fitness values for the following render are: 6227 for Male
Face Object Detection, 7465 for Female Face Object Detection, 7.45043755
for Male Face Rule of Thirds, 21.9426365 for Female Face Rule of Thirds,
0.0860710442 for Colour Similarity, and 4.76837158E-06 for Horizon Line
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Figure 5.11: Fitness values for the following render are: 7302 for Male
Face Object Detection, 7493 for Female Face Object Detection, 8.540246
for Male Face Rule of Thirds, 0.098487854 for Female Face Rule of Thirds,
0.109670557 for Colour Similarity, and 3.00000238 for Horizon Line
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Figure 5.12: Fitness values for the following render are: 7470 for Male Face
Object Detection, 7573 for Female Face Object Detection, 36.73247 for Male
Face Rule of Thirds, 13.81223 for Female Face Rule of Thirds, 0.0811981261
for Colour Similarity, and 28.0000019 for Horizon Line
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5.3 Sunrise

In this simulation we start to expand the number of objectives to solve.
Here we have two boats where the boats are separate objects to detect. One
of the boats is in water and the other on land. There is also a sun in the
scene as another subject matter. Table 5.6 lists the eight different objectives
for the sunrise simulations and Figure 5.13 is the images used for the colour
similarity objective.

Table 5.6: Sunrise Objectives

1. Object Detection: Boat on Land
2. Object Detection: Boat in Water
3. Object Detection: Sun
4. Rule of Thirds: Boat on Land
5. Rule of Thirds: Boat in Water
6. Rule of Thirds: Sun
7. Horizon Line
8. Colour Similarity

Figure 5.13: Sunrise Colour Similarity Target Image
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Figure 5.14: Sunrise Scene
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Analyzing four images that were selected from the simulations we can see
that Figure 5.15 is a good shot of our subject matters but the simulation was
unable to position all objects at the rule of thirds. The image in Figure 5.16
was chosen based on the beauty of the shot. Although there are no boats in
the scene the placement of the sun and horizon line was very nice. Figure
5.17 is another simulation that almost positioned all objects at the rule of
thirds. In Figure 5.18 this simulation was the best from all and managed to
get good screen space for the object detections and rule of thirds positioning.
This scene was considered to be very difficult for the swarm to position all
objects at the rule of thirds with the proper screen space. However, this
experiment managed to position all objects at the rule of thirds as required,
which was an impressive feat.

Figure 5.15: Fitness values for the following render are: 3764 for the suns
Object Detection, 7151 for the boat in the water Object Detection, 5377
for the boat on the land Object Detection, 75.8914261 for the suns Rule of
Thirds, 10.8680134 for the boat in the water Rule of Thirds, 0.333335876 for
the boat on the land Rule of Thirds, 0.0108031332 for Colour Similarity, and
17.9999981 for Horizon Line
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Figure 5.16: Fitness values for the following render are: 3744 for the suns
Object Detection, 3744 for the boat in the water Object Detection, 3744
for the boat on the land Object Detection, 22.3215466 for the suns Rule of
Thirds, 800 for the boat in the water Rule of Thirds, 800 for the boat on the
land Rule of Thirds, 0.0193457063 for Colour Similarity, and 1.99999523 for
Horizon Line
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Figure 5.17: Fitness values for the following render are: 3748 for the suns
Object Detection, 7190 for the boat in the water Object Detection, 6421
for the boat on the land Object Detection, 56.3308144 for the suns Rule of
Thirds, 0.333328247 for the boat in the water Rule of Thirds, 2.603415 for
the boat on the land Rule of Thirds, 0.0112578068 for Colour Similarity, and
4.76837158E-06 for Horizon Line
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Figure 5.18: Fitness values for the following render are: 3788 for the suns
Object Detection, 7037 for the boat in the water Object Detection, 5997
for the boat on the land Object Detection, 6.13279343 for the suns Rule of
Thirds, 7.7746067 for the boat in the water Rule of Thirds, 2.71313429 for
the boat on the land Rule of Thirds, 0.009640827 for Colour Similarity, and
8.000005 for Horizon Line
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5.4 Space

For this simulation we expand the number of objectives even more.
Here we have the same two boats from the sunrise simulation where the
boats are separate objects to detect; one of the boats is in the water and
the other on land. Instead of suns and the sky we have two different moons,
and a night sky with lots of stars. Table 11 lists the ten different objectives
for the space simulations and Figure 5.19 is the images used for the colour
similarity objective.

Table 5.7: Space Objectives

1. Object Detection: Boat on Land
2. Object Detection: Boat in Water
3. Object Detection: Red Moon
4. Object Detection: Blue Moon
5. Rule of Thirds: Boat on Land
6. Rule of Thirds: Boat in Water
7. Rule of Thirds: Red Moon
8. Rule of Thirds: Blue Moon
9. Horizon Line
10. Colour Similarity

Figure 5.19: Space Colour Similarity Target Image
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Figure 5.20: Space Scene
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For our final simulation the images in Figure 5.21, 5.22, 5.23, and 5.24
all manage to produce shots that contain all objects of interest. There is
no perfect or close to perfect render as the swarm struggles to position four
objects at one of the rule of thirds location and satisfy the object detection
screen space.

Figure 5.21: Fitness values for the following render are: 3775 for the red
moons Object Detection, 3761 for the blue moons Object Detection, 6921
for the boat in the water Object Detection, 6481 for the boat on the land
Object Detection, 31.479122 for the red moons Rule of Thirds, 45.8836441
for the blue moons Rule of Thirds, 1.33332825 for the boat in the water Rule
of Thirds, 79.40053 for the boat on the land Rule of Thirds, 0.0233604126
for Colour Similarity, and 11.0000048 for Horizon Line
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Figure 5.22: Fitness values for the following render are: 3813 for the red
moons Object Detection, 3806 for the blue moons Object Detection, 7078
for the boat in the water Object Detection, 4760 for the boat on the land
Object Detection, 37.6696053 for the red moons Rule of Thirds, 24.4000263
for the blue moons Rule of Thirds, 18.113842 for the boat in the water Rule
of Thirds, 43.5204277 for the boat on the land Rule of Thirds, 0.02764751
for Colour Similarity, and 26.9999981 for Horizon Line
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Figure 5.23: Fitness values for the following render are: 3784 for the red
moons Object Detection, 3770 for the blue moons Object Detection, 7132
for the boat in the water Object Detection, 6817 for the boat on the land
Object Detection, 30.4854259 for the red moons Rule of Thirds, 44.0886 for
the blue moons Rule of Thirds, 0.666671753 for the boat in the water Rule
of Thirds, 44.4871979 for the boat on the land Rule of Thirds, 0.01690308
for Colour Similarity, and 23.0000038 for Horizon Line
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Figure 5.24: Fitness values for the following render are: 3812 for the red
moons Object Detection, 3808 for the blue moons Object Detection, 7256
for the boat in the water Object Detection, 6246 for the boat on the land
Object Detection, 31.6946411 for the red moons Rule of Thirds, 37.4202843
for the blue moons Rule of Thirds, 1.943655 for the boat in the water Rule
of Thirds, 13.6177969 for the boat on the land Rule of Thirds, 0.004862515
for Colour Similarity, and 0.999995232 for Horizon Line
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5.5 Statistical Comparison of Algorithms

Similar to Section 4.3.6 a comparison using weighted sum, sum of ranks and
Pareto ranking was completed for the high-dimensional simulations; Sunrise
and Space scene. The results of the Mann Whitney U tests for the Sunrise
simulations can be found in Appendix B and the Space simulations in Ap-
pendix C. From these tables it can be said that Pareto ranking algorithm
did not perform well when compared against the weighted sum and sum of
ranks algorithms. These tables also show that the weighted sum algorithm
performed better then the Pareto ranking and the sum of weights performed
the best based off the confidence tests. Although the sum of ranks algorithm
performed better than the other algorithms in this thesis, it should be studied
further for high-dimensional problems in other research problems.

5.6 Discussion

The advanced experiments in Section 5.1, 5.2, 5.3, and 5.4 were all set up
to find rendered images containing higher dimensional problems unlike the
experiments in Section 4.2 and 4.3. To create the complexity required for
these experiments, several objects of interest were placed in the environment,
and the swarm was forced to position them at a rule of thirds. Generally
we have one or two objects of interest for a scene, and placing these at the
proper rule of thirds with the right amount of screen space can be challenging.
The images generated were impressive and can be classified as aesthetically
pleasing based of our rules of photography in Section 2.1.

Section 5.1 describes the task of finding a common setup for a conver-
sation between two people. We can see from Figure 5.3 that the swarm was
able to find two objects of interest and position at least one at the rule of
thirds. Not only did we find the render that was intended, but the swarm
also found a similar shot that is used through film and photography in Figure
5.6. Section 5.3 produced arguably some of the more aesthetically pleasing
images from all experiments in this chapter. Although not all renders gen-
erated in 5.3 were capable of finding all objectives seen in Figure 5.16, the
results were impressive nevertheless.

The experiment in Section 5.4 was a very high dimensional problem
where the swarm had to optimize 10 objectives. Along with this experiment,
the experiment in Section 5.2 was also posed with a difficult problem of find-



CHAPTER 5. ADVANCED EXPERIMENTS 111

ing a specific pair of people from a group, and at the same time performing
colour similarity matching. A bitmap table cloth that is the same image used
for the colour similarity was added to confuse the swarm. Even with this,
the swarm did solve this problem satisfactorily.

It was shown in Section 5.5 that the sum of ranks algorithm was capable
of outperforming the other algorithms when dealing with high-dimensional
problems. Although proven to perform well in this research it should be
examined further in other multi-objective problems and especially with high-
dimensional problems.



Chapter 6

Comparison to Related Work

6.1 Virtual Photography and Swarms

Gaspero et al. [40], and Burelli et al. [47], both use particle swarms to
solve composition rules similar to this thesis. The rules implemented by
[40, 47] can be used to create aesthetically pleasing images through the rules
of image composition, yet they are implemented quite differently than this
thesis. Rules like Object Occlusion, Object Position in Frame and Object
Distance from Camera can be used to generate similar rules in this thesis.
However, rules such as rule of thirds, horizon line and colour similarity were
not analyzed in [40, 47]. Their focus was around object placement and not
image aesthetics, which is a major difference.

The research in this thesis is similar to Abdullah et al. [50]. Their goal
was to establish a starting camera position for a film director. The swarm
would produce several photos as a starting point and allow the director to
select the desired shot. Image composition was obviously a goal for the
swarm, since if it was not; the director would not be able to select the desired
starting point which would be aesthetically pleasing. This thesis also focused
on the ability to generate an image that would be aesthetically pleasing based
on image composition rules. However, the goal was to generate an image
that could be used as a painting or real life photo, this image could also
be used as a starting point in film. It can also be said that the solution
proposed in this thesis should be capable of generating the similar results as
[50] due to the ability add new aesthetic features, and use different virtual
environments. The major difference here is the method used to optimize
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the multi-objective problem. In [50] a method of weighting was used that
would determine which objectives were more important. For this thesis we
compared several multi-objective particle swarm optimization methods and
also proposed a new method. Neither can be considered to be an advantage or
disadvantage at this time due to the ability to directly compare each system.
However, with our system, all objectives are considered to be equal and the
image can be proportionally balanced with each composition rule.

6.2 Other Virtual Photography Comparison

When comparing against Bares and Kim [6], the system proposed here was
capable of also solving the horizon line and subject size composition rule.
The other rules implemented in [6] such as occlusion and exclusion are not
considered to be rules of image composition and cannot be compared against.
Another major difference is the optimization method. A particle swarm
optimization was used in this thesis where [6] used a constraint-based camera
solver. A similar camera placement solution was used in Bares [7]. Here Bares
solves the rule of thirds which was also an image composition rule of solved
in this thesis.

The major differences between [6] and [7] and the research in this thesis
is the use of a particle swarm to determine final image. Using the particle
swarm allows the system to search for the subject matter and gives more
freedom to the final image.

The research done by Banerjee and Evan [4, 5] has a major difference
where they intend to program a digital camera to generate the images for
analysis. In this thesis a virtual environment was used to generate the anal-
ysis images instead of real photographs. The method of solving the rule
of thirds is also different, in [4, 5] after the camera takes the photo, it is
cropped so the subject matter is located at the rule of thirds and the edges
are mirrored to keep the original image size. In this thesis the swarm was
responsible in finding the rule of thirds for the subject matter.

Research by Liu et al. [38] also studied automatic image composition
using the rule of thirds in digital photographs. It is similar to [4, 5] but the
difference is after the image is cropped it is resized to be the original image
size and not mirrored. Another difference is use of a particle swarm in this
thesis to place the subject matter at the rule of thirds and solve other image
composition rules.
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The major difference between these research papers and the system
proposed in this thesis was the use of digital images generated by a camera.
This can be considered to be an advantage because the problems are being
solved with real data; however the system proposed in this thesis has the
ability to use digital photos or a virtual environment when analyzing the
images. An advantage to the system in this thesis is the ability to label
objects of interest and allow the system to find them and generate an image
that is considered to be aesthetically pleasing by itself through the use of the
particle swarm optimization algorithm. This method removes the user from
having to find the subject matter, adjust cameras, or reduce the quality or
size of the picture from image manipulation. However, if it was to be used in
a real world environment, object detection via computer vision would need
to be used.

With the many different approaches to generating images that are aes-
thetically pleasing, it is difficult to make a direct comparison. What can
be look at are similarities, differences between the research discussed in Sec-
tion 2.2 and this thesis. Table 6.1 shows us the similarities from the several
research papers discussed. These similarities are:

• The most notable similarity is solving the rule of thirds composition
rule and object detection.

• Using particle swarm optimization to optimize the problem

• Allowing a virtual environment to generate analysis images

Although there are a few similarities there are also a few differences:

• Most research papers rely on a custom ranking method for each particle
where in this thesis we choose to use several traditional methods for
ranking multi-objective problems

• Introduced a new method for ranking multi-objective problems in a
particle swarm optimization.

• The use of colour similarity as an objective for image composition

• Although only used one other time, the use of a horizon line as an
image composition rule
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These points show the difference from how the system behaves and were
implemented, along with different composition rules and ways to solve the
multi-objective problem in a particle swarm.

Table 6.1: Research Comparison

Bares [6] Liu [38] Lino [39] Abdullah [50] Barry

PSO X X X
Pareto X
Weighted Sum X
Sum of Ranks X
Custom Ranking X X X
Rule of Thirds X X X X
Object Detection X X X X
Horizon Line X X
Colour Similarity X
Depth of Field X
Diagonal Dominance X X X
Virtual Environment X X X X
Photograph Analysis X

6.3 Multi-Objective PSO

Throughout Chapter 4 we looked at the performance between the different
multi-objective algorithms implemented in this thesis. Overall it was shown
that the commonly used algorithms such as weighted sum, and Pareto rank-
ing performed well for the particle swarm at low dimensional problems. It
was also shown that the new sum of ranks algorithm performed just as well
for these experiments in this thesis. What was not shown were the differ-
ences between ours and the algorithm used in [50] because they analyzed
different composition rules. It can be noted that the Pareto ranking method
did not perform as well as the other methods in Section 4.2, but performed
well in 4.3. However, the weighted sum and sum of ranks had consistent
performances for both experiments in Chapter 4.
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The experiments in Chapter 5 demonstrated that the new sum of ranks
algorithm was capable of generating impressive results when attempting to
solve a 10-dimensional problem. The sum of ranks algorithm was chosen for
these experiments based on its ability to solve high dimensional problems
in genetic algorithms without outliers Wakefield [9]. Due to a lack of time,
the weighted sum and Pareto ranking algorithms were not used for these
experiments in Chapter 5. As well the Pareto ranking produces outliers in
other evolutionary computation algorithms such as genetic algorithms and
genetic programming, and probably does in PSO. And with weighted sum,
outliers can exist, but another issue arises with highly biased single solutions.
When these algorithms are used in high dimensional problems they tend to
produce more outliers and fail to optimize all objectives. Although the sum
of ranks algorithm was capable of generating impressive results with high
dimensions in this research, it should be looked at further in other high
dimensional problems to confirm the results here.



Chapter 7

Conclusion

7.1 Summary

The system proposed in this thesis has shown itself to be capable of generat-
ing images that are considered to be aesthetically pleasing. It was also very
effective in finding solutions in the environment based on simple parameters
that outline what is desired in the image. Once running, there is no user
interaction needed and the system is capable of automatically searching the
given virtual environment to satisfy of these goals. The system is also very
flexible and can adapt to any virtual environment based on the requirements
for the image analysis plug-ins.

For the basic experiments, we examined a selection of multi-objective
algorithms that have been used in solving multidimensional problems. When
working with smaller dimensional problems, such as having one or two objects
of interest and placing just one of these at the rule of thirds, all optimization
algorithms were capable of solving the problem but were all equally effec-
tive. However, by using the sum of ranks multi-objective particle swarm
optimization, we were able to solve 10-dimensional problems. As shown in
the advanced experiments, the sum of ranks algorithm proposed in this thesis
is capable of handling these dimensional problems. It is not conclusive to say
that this algorithm is better than the others, as we saw in chapter 4, without
running comparative tests on a variety of high dimensional problems. How-
ever, it is shown that the system can at least solve these high dimensional
problems in virtual photography.
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Although capable of solving these problems, there are some areas that
can use improvement. One of the main areas that should be looked at is the
image analysis methods used in this thesis. Because the rules are strict in
determining object detection and horizon line, the use of a virtual environ-
ment is required to generate results. It would be ideal to use either a virtual
environment or digital photos where more advanced image analysis methods
can be used in determining what objects are within the image. For example
computer vision algorithms can analyze images to determine content such
as face recognition [12]. Using algorithms such as this, advances AI could
match faces to a data base of celebrities.

Another area of improvement is the initial search for the subject matter.
This search is considered to be a blind search because the swarm has no
knowledge of where the subject matter is. Only when an object of interest
is detected can other comparative rules be used. This problem can also be
considered to be a general search issue. Consider a house with people inside,
where these people are the subject matter. How does the computer know
to look in the house? Although these are not directly related to generating
aesthetically pleasing images, it is an issue at finding the subject matter that
allows the system to compose an aesthetically pleasing image.

7.2 Future Work

Generating aesthetically pleasing images is a new research area and results
will improve as research advances. One of the major improvements in this
research would be replacing the existing image analysis plug-ins with more
current computer vision algorithms. New advanced aesthetic rules could be
incorporated into the system [18]. As these algorithms become better such
as facial recognition [12], and object detection, they can replace the existing
algorithms in this thesis and remove the need for the mask environment.
These new algorithms will allow us to use real world scenarios instead of
virtual environments. Systems such as [43] could use the same system in this
thesis to analyze digital images. Michael, Fink and Kumar [43] use flying
robots as a swarm to perform tasks such as playing music or flying through
obstacles. Using the robotics from [43], better computer vision algorithms;
and the PSO and image analysis components from this thesis, we should
be capable of analyzing digital photos taken in a real world environment to
generate aesthetically pleasing images.
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As computers become more powerful; problems like this could possibly
run in real-time. It will allow directors to specify the subject matter within
the scene and the system would be capable of tracking the objects [37] so that
the images generated are aesthetically pleasing. Faster computers will also
allow the system to handle larger swarms. With the introduction of more
agents in the environment, more images can be analyzed. This will not only
help in finding a better image, it could possibly assist in finding the subject
matter for the scene earlier and reduce the amount of blind search required.

What could be very interesting is merging the system proposed in
this thesis with Google Maps [29] or Google Earth [28]. As Google Maps
and Google Earth become more realistic we could generate images of Earth.
These are just new virtual environments in which PSO’s could be used for
virtual photography. Through the use of PSO’s, architectural buildings and
monuments could be recognized and these objects can generate aesthetically
pleasing images.

The research by Abdullah et al. [50] are using PSO’s algorithm to
optimize image composition rules. Using the PSO is a perfect match for
this simulation, where each agent in the swarm is represented as a camera.
What has not been done is using a genetic algorithm to solve a similar prob-
lem. Genetic algorithms use much higher populations than particle swarms,
and with computers becoming more powerful another evolutionary algorithm
could possibly generate images similar to these.

Finally, the sum of ranks algorithm is an algorithm that is capable of
optimizing high dimensional problems Wakefield [9] and Corne [16]. In this
thesis we proposed a new algorithm for solving multi-objective problems for
the PSO using the sum of ranks algorithm. It was shown in Chapter 5 that
this algorithm is capable of optimizing high dimensional problems for the
particle swarm. Although the algorithm performed well in this research it
should be analyzed more rigorously in other MOP problems where the goal
is to optimize high dimensional problems using the PSO.
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Appendix A

Case 1 and Case 2 Scene
Statistical Analysis

A statistical analysis of the simulation bests. The average (AVG), stan-
dard deviation (STDEV), median (MED), minimum (MIN), and maximum
(MAX) were calculated by using the simulations from Chapter 4 (Simple
Scene and Complex Scene), and using each simulation best from the thirty
simulations. The statistics are calculated for each particle swarm optimiza-
tion method and for each individual objective.
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Table 1: Simple Scene Statistical comparison of global bests

Algorithm OD ROT CS HZ

RAS

AVG 9884.1000 49.7502 0.1491 161.7333
STDEV 4522.4329 23.0438 0.1088 105.4628
MED 11495.5000 46.6754 0.1358 240.0000
MIN 532.0000 7.1155 0.0100 0.0000
MAX 14815.0000 91.7634 0.3910 240.0000

SW

AVG 36334.1333 212.0145 0.1609 126.5667
STDEV 65853.7723 330.6666 0.1437 116.4580
MED 0.0000 43.9806 0.1249 155.0000
MIN 0.0000 0.5377 0.0006 0.0000
MAX 153600.0000 800.0000 0.3984 240.0000

SWB

AVG 15950.8667 105.6066 0.0842 148.3000
STDEV 46721.1101 236.0737 0.1184 107.8089
MED 0.0000 25.6943 0.0370 240.0000
MIN 0.0000 6.7252 0.0018 0.0000
MAX 153600.0000 800.0000 0.3984 240.0000

SR

AVG 41015.7667 193.2847 0.1088 113.3000
STDEV 63452.0875 340.7687 0.1404 120.6051
MED 13262.0000 2.3036 0.0465 16.0000
MIN 0.0000 0.0008 0.0036 0.0000
MAX 153600.0000 800.0000 0.3980 240.0000

SRB

AVG 37240.6667 171.7427 0.0709 144.2667
STDEV 59452.5490 320.5610 0.0949 119.2583
MED 13119.0000 2.2386 0.0450 240.0000
MIN 0.0000 0.0024 0.0033 0.0000
MAX 153600.0000 800.0000 0.3978 240.0000

PR

AVG 128814.7000 670.9175 0.0491 61.3667
STDEV 56412.3107 293.7927 0.0573 100.6837
MED 153600.0000 800.0000 0.0484 3.0000
MIN 349.0000 1.2638 0.0036 0.0000
MAX 153600.0000 800.0000 0.3414 240.0000

PRB

AVG 106706.6333 556.2977 0.0729 30.4000
STDEV 67476.2056 350.6266 0.1016 71.6460
MED 153600.0000 800.0000 0.0486 5.5000
MIN 5796.0000 37.7399 0.0175 0.0000
MAX 153600.0000 800.0000 0.4378 240.0000
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Table 2: Complex Scene statistical comparison of global bests

Algorithm OD ROT CS HZ

RAS

AVG 5936.8667 58.0212 0.4864 160.7000
STDEV 4060.5374 16.9057 0.0217 106.4772
MED 6725.0000 57.8253 0.4824 240.0000
MIN 180.0000 24.5510 0.4616 6.0000
MAX 11753.0000 90.9342 0.5538 240.0000

SW

AVG 22335.4000 136.4611 0.4726 164.2667
STDEV 52587.5426 265.9891 0.0262 109.8073
MED 0.0000 31.4938 0.4785 240.0000
MIN 0.0000 7.2923 0.3800 0.0000
MAX 153600.0000 800.0000 0.5202 240.0000

SWB

AVG 11608.5000 84.7975 0.4756 149.8667
STDEV 38827.9534 195.3354 0.0269 106.5272
MED 0.0000 37.4586 0.4767 240.0000
MIN 0.0000 0.4951 0.3933 0.0000
MAX 153600.0000 800.0000 0.5706 240.0000

SR

AVG 50741.5667 230.4365 0.4369 60.0667
STDEV 63129.5793 349.9333 0.0134 101.3961
MED 14664.5000 39.8340 0.4347 0.0000
MIN 2904.0000 0.0065 0.4208 0.0000
MAX 153600.0000 800.0000 0.4731 240.0000

SRB

AVG 68766.1000 326.7487 0.4232 56.4000
STDEV 70508.6813 393.1648 0.0452 103.0425
MED 14653.0000 26.2407 0.4359 0.0000
MIN 0.0000 0.0141 0.2275 0.0000
MAX 153600.0000 800.0000 0.4713 240.0000

PR

AVG 148915.1667 775.3742 0.3599 26.5000
STDEV 25659.8889 134.8811 0.0745 59.0095
MED 153600.0000 800.0000 0.3590 10.5000
MIN 13055.0000 61.2257 0.1295 0.0000
MAX 153600.0000 800.0000 0.4773 240.0000

PRB

AVG 139602.9667 724.9242 0.3786 26.4000
STDEV 42711.7838 229.1078 0.0630 59.4507
MED 153600.0000 800.0000 0.3762 5.5000
MIN 11519.0000 40.2299 0.2134 0.0000
MAX 153600.0000 800.0000 0.5172 240.0000



Appendix B

Sunrise Scene Statistical
Analysis

A statistical analysis of the simulation bests from Chapter 5’s Sunrise Scene.
The data for these tables were calculated in the same was as Appendix A.
Additional tables included are the Mann Whitney-U tests with a confidence
level of 95% similar to the statistical analysis in Section 4.2.6.
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Table 3: Sunrise Objective Notation

OD1 Object Detection: Boat on Land
OD2 Object Detection: Boat in Water
OD3 Object Detection: Sun
ROT1 Rule of Thirds: Boat on Land
ROT2 Rule of Thirds: Boat in Water
ROT3 Rule of Thirds: Sun
HZ Horizon Line
CS Colour Similarity

Table 4: Sunrise Scene statistical comparison of global bests

Algorithm OD1 OD2 OD3

WSB

AVG 86202 4487.65 12084.1
STDEV 76446.9744 3057.7550 33412.4279
MED 153600 6342.5 6285
MIN 3776 0 0
MAX 153600 7321 153600

SRB

AVG 78680.45 28699.2 13565.65
STDEV 76865.8371 53839.9422 32972.9559
MED 78694 7156.5 6372
MIN 3744 3746 3379
MAX 153600 153600 153600

PRB

AVG 131126 138905.8 80480.35
STDEV 54888.634 45227.8426 75019.4569
MED 153600 153600 80639.5
MIN 3741 6452 6826
MAX 153600 153600 153600
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Table 5: Sunrise Scene statistical comparison of global bests

Algorithm ROT1 ROT2 ROT3

WSB

AVG 488.0439 44.0186 91.6974
STDEV 354.0488 28.7065 169.9027
MED 800 40.8137 56.4450
MIN 83.01422 5.6886 10.0013
MAX 800 89.9283 800

SRB

AVG 440.5046 139.0361 55.6399
STDEV 369.9762 286.0111 176.3337
MED 461.2523 15.2206 11.6787
MIN 6.13279 0.3333 0.3333
MAX 800 800 800

PRB

AVG 688.1597 721.9994 430.1572
STDEV 273.5226 240.1461 380.3662
MED 800 800 455.7891
MIN 24.779 2.7131 4.7726
MAX 800 800 800

Table 6: Sunrise Scene statistical comparison of global bests

Algorithm CS HZ

WSB

AVG 0.1431 96.75
STDEV 0.1337 109.2042
MED 0.0971 27.5
MIN 0.0121 2.38419E-06
MAX 0.4093 240

SRB

AVG 0.0456 5.95
STDEV 0.0365 8.8405
MED 0.03799 1.5
MIN 0.0094 2.38419E-06
MAX 0.1175 31

PRB

AVG 0.0447 13.3
STDEV 0.0174 11.8414
MED 0.04137 11
MIN 0.0172 2.38419E-06
MAX 0.104 37
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Table 7: Object Detection Mann Whitney-U tests for the Sunrise Environ-
ment with a confidence level of 95% using the average of the population at
the last iteration for 30 individual runs

OD1 SRB PRB
WSB - -
SRB -

OD2 SRB PRB
WSB ← ←
SRB ←

OD3 SRB PRB
WSB - ←
SRB ←

Table 8: Rule of Thirds Mann Whitney-U test for the Sunrise Environment
with a confidence level of 95% using the average of the population at the last
iteration for 30 individual runs

ROT1 SRB PRB
WSB ↑ -
SRB -

ROT2 SRB PRB
WSB - ←
SRB ←

ROT3 SRB PRB
WSB ↑ ←
SRB ←

Table 9: Colour Similarity and Horizon Line Mann Whitney-U tests for the
Sunrise Environment with a confidence level of 95% using the average of the
population at the last iteration for 30 individual runs

CS1 SRB PRB
WSB ↑ -
SRB -

HZ1 SRB PRB
WSB ↑ -
SRB ←
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WSB SRB PRB
OD1 0 0 0
OD2 2 1 0
OD3 1 1 0
ROT1 0 1 0
ROT2 1 1 0
ROT3 1 2 0
CS1 0 1 0
HZ1 0 2 0
Total 5 9 0

Table 10: Confidence analysis for the Sunrise Simulation



Appendix C

Space Scene Statistical Analysis

A statistical analysis of the simulation bests from Chapter 5’s Space Scene.
The data for these tables were calculated in the same was as Appendix A.
Additional tables included are the Mann Whitney-U tests with a confidence
level of 95% similar to the statistical analysis in Section 4.2.6.
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Table 11: Space Objectives

OD1 Object Detection: Boat on Land
OD2 Object Detection: Boat in Water
OD3 Object Detection: Red Moon
OD4 Object Detection: Blue Moon
ROT1 Rule of Thirds: Boat on Land
ROT2 Rule of Thirds: Boat in Water
ROT3 Rule of Thirds: Red Moon
ROT4 Rule of Thirds: Blue Moon
HZ Horizon Line
CS Colour Similarity

Table 12: Space Scene statistical comparison of global bests

Algorithm OD1 OD2 OD3 OD4

WSB

AVG 26227.25 26212.35 42814.7 40924.3
STDEV 54897.35143 54903.92587 65655.8158 66777.1388
MED 3790.5 3824.5 6845 4764.5
MIN 3511 3300 0 0
MAX 153600 153600 153600 153600

SRB

AVG 33746.75 18752.3 36257.7 64964.9
STDEV 61483.423 46116.9494 60196.1446 74265.6467
MED 3792 3775 7077.5 7269
MIN 3747 3701 6183 466
MAX 153600 153600 153600 153600

PRB

AVG 123636.85 131128.55 109410.55 138978.5
STDEV 61483.0872 54882.4045 69257.7243 45004.0329
MED 153600 153600 153600 153600
MIN 3765 3772 3933 7316
MAX 153600 153600 153600 153600
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Table 13: Space Scene statistical comparison of global bests

Algorithm ROT1 ROT2 ROT3 ROT4

WSB

AVG 171.3984 187.8087 246.3487 231.2466
STDEV 271.6693 265.4366 328.9518 337.9821
MED 67.6169 85.9085 79.4981 56.7483
MIN 16.1853 10.1277 7.3105 0.1666
MAX 800 800 800 800

SRB

AVG 189.8612 124.2121 173.3795 340.9807
STDEV 313.4939 232.1222 321.9663 385.0056
MED 35.9273 53.2999 13.9136 59.1905
MIN 5.1125 10.9814 0.3333 0.3333
MAX 800 800 800 800

PRB

AVG 649.4438 687.6418 575.6024 724.2445
STDEV 309.0369 274.5201 351.9571 233.1799
MED 800 800 800 800
MIN 24.4526 27.2692 24.6692 35.9783
MAX 800 800 800 800

Table 14: Space Scene statistical comparison of global bests

Algorithm CS HZ

WSB

AVG 0.0887 39.55001
STDEV 0.0656 69.7872
MED 0.0618 18.5
MIN 0.0254 2.38419E-06
MAX 0.2327 240

SRB

AVG 0.0466 7.1501
STDEV 0.0408 8.2925
MED 0.0292 4.4999
MIN 0.0048 2.38419E-06
MAX 0.1788 27

PRB

AVG 0.1168 28.2001
STDEV 0.0890 52.8429
MED 0.1053 13.5
MIN 0.0181 2.38419E-06
MAX 0.3905 240
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Table 15: Object Detection Mann Whitney-U tests for the Space Environ-
ment with a confidence level of 95% using the average of the population at
the last iteration for 30 individual runs

OD1 SRB PRB
WSB - ←
SRB ←

OD2 SRB PRB
WSB - ←
SRB ←

OD3 SRB PRB
WSB - ←
SRB ←

OD4 SRB PRB
WSB - ←
SRB -

Table 16: Rule of Thirds Mann Whitney-U test for the Space Environment
with a confidence level of 95% using the average of the population at the last
iteration for 30 individual runs

ROT1 SRB PRB
WSB - ←
SRB ←

ROT2 SRB PRB
WSB ↑ ←
SRB ←

ROT3 SRB PRB
WSB ↑ ←
SRB ←

ROT4 SRB PRB
WSB - ←
SRB -

Table 17: Colour Similarity and Horizon Line Mann Whitney-U tests for the
Space Environment with a confidence level of 95% using the average of the
population at the last iteration for 30 individual runs

CS1 SRB PRB
WSB ↑ ←
SRB ←

HZ1 SRB PRB
WSB ↑ -
SRB ←
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WSB SRB PRB
OD1 1 1 0
OD2 1 1 0
OD3 1 1 0
OD4 1 0 0
ROT1 1 1 0
ROT2 1 2 0
ROT3 1 2 0
ROT4 1 0 0
CS1 1 2 0
HZ1 0 2 0
Total 9 12 0

Table 18: Confidence analysis for the Space Simulation
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