

Brock University

Department of Computer Science

Evolutionary Approaches to the Generation of Optimal Error Correcting Codes

D. McCarney, S. Houghten, B.J. Ross
Technical Report # CS-12-02
March 2012

Brock University
Department of Computer Science
St. Catharines, Ontario
Canada L2S 3A1
www.cosc.brocku.ca

Evolutionary Approaches to the Generation of Optimal
Error Correcting Codes

Daniel E. McCarney
Carleton University

School of Computer Science
5302 Herzberg Bldg.

1125 Colonel By Drive
Ottawa, Ontario

K1S 5B6, Canada
dmccarney@ccsl.carleton.ca

Sheridan Houghten
Brock University

Dept. of Computer Science
500 Glenridge Ave.

St. Catharines, Ontario
L2S 3A1, Canada

shoughten@brocku.ca

Brian J. Ross
Brock University

Dept. of Computer Science
500 Glenridge Ave.

St. Catharines, Ontario
L2S 3A1, Canada

bross@brocku.ca

ABSTRACT
Error-correcting codes allow for reliable transmission of data
over mediums subject to interference. They guarantee de-
tection and recovery from a level of transmission corrup-
tion. Larger error-correcting codes increase the amount of
error tolerable, which improves system reliability and perfor-
mance. However, discovering optimal error-correcting codes
for different size specifications is equivalent to the NP-Hard
problem of determining maximum cliques of a graph.

In this research, three different binary error correcting
code problems are considered. Both genetic algorithm and
genetic programming are examined for generating optimal
error correcting codes for these problems. A new chromo-
some representation of the GA system is examined, which
shows some benefits in certain conditions. The use of GP is
novel in this problem domain, and in combination with the
Baldwin effect, it is shown to be a promising new approach
for code discovery.

1. INTRODUCTION
Error correcting codes are mathematical constructs from

the field of coding theory that offer communication error
detection and correction. Employing error correcting codes
allows for reliable transmission of data subjected to interfer-
ence. The amount of information that can be expressed, the
overhead involved, and the maximum tolerance for error are
theoretically proven, and in many cases can be shown to be
optimal. A q-ary error correcting code is written a(n, d)q ,
where q represents the radix, n the length of each codeword
and d the error threshold, where (d − 1)/2 symbols can be
detected and corrected. In a q-ary code, faulty data can be
repaired to an uncorrupted state by means of a correction
process. The ability of an error correcting code to perform
this restoration independent of re-transmission helps to min-
imize overhead while maintaining confidence in accuracy.

.

The search for larger and more robust codes is computa-
tionally difficult. This search is justified, however, as larger
codeword sets permit an increased tolerance to error, and
improved correction capabilities. The massive number of
potential codewords in a large-sized error correcting code
requires an exponential number of comparisons in order to
maintain the distance requirement of the code while expand-
ing the number of codewords available for use. The search
for an optimal code is equivalent to the NP-Hard maximum
clique problem.

In this paper, different evolutionary search techniques are
explored to test their efficacy in searching for optimal codes
of increasing difficulty. In particular, genetic algorithms
(GA) and genetic programming(GP) are both investigated.
Design decisions related to representations, program lan-
guages, tree traversal order, and evolution parameters are
explored. The intension is to determine effective search tech-
niques for three target codes under investigation.

It is not a goal of this paper to discover new optimal codes
for large, difficult code sets. The search for new codes typi-
cally requires CPU-months of dedicated search. It would be
premature and distractive to consider new code discovery
here, before an understanding of the GA and GP represen-
tations are understood in detail. Rather, all our experiments
explore codes with known optima. Thorough analyses were
done on GA and GP configurations, which required substan-
tial computational time to accomplish. New insights into
the effectiveness of GA and GP representations for code dis-
covery will be useful in the future, when computationally-
intensive searches for new codes are desired.

Section 2 surveys relevant background literature. Section
3 introduces necessary concepts in coding theory. Exper-
iment designs are described in Section 4, and results are
presented and discussed in Section 5. Section 6 summa-
rizes main contributions of this research.

2. LITERATURE SURVEY
Haas and Houghten[4] compare several traditional search

algorithms with evolutionary algorithms in the search for
improved lower bounds for optimal error correcting codes.
They use an indexed representation (Section 4.5.1), as well
as Conway’s Lexicode algorithm (Section 4.4) to help con-
struct codes.

The search for optimal error correcting codes is closely
related to the search for the maximum clique for a graph.

Jagota and Sanchis[7] use greedy heuristic-based search for
finding cliques in large graphs with a high node to edge ra-
tio. Also related is Pelillo’s survey of heuristic approaches to
maximum clique [9]. The heuristics aim to decrease the time
required to find optimal codes in difficult parameter sets.
Additionally, this paper introduces basic GA techniques as
an alternative search methodology. Marchiori [8] examined
a GA paired with a heuristic algorithm for optimization pur-
poses. The heuristic used is based on a naive greedy heuristic
procedure in which randomly built non-clique subgraphs are
corrected to clique status. The use of a vanilla GA paired
with a simple heuristic offered promising results.

Using a GA and several modifications, Carter et al. [1]
evaluate algorithm performance for finding large cliques in
the difficult DIMACS graph test data. They conclude that
an unmodified GA will not be suitable for the problem, and
that the use of a GA can only be justified by significant
improvement over more simple heuristic based search due
to the added algorithmic complexity.

GP has also been used for maximal clique discovery. Haynes
et. al. [6] use strongly typed GP to detect and enumerate
the cliques of a graph structure. Their results demonstrate
that GP based solutions can effectively locate the maximum
clique, although they are not as suitable for clique enumer-
ation. On the other hand, Soule et. al [11] use a minimalist
GP, which uses only the union operator. They show that a
complex GP language is not required, and may in fact be a
detriment to performance.

3. ERROR CORRECTING CODES
Error correcting codes were conceived by Hamming[5] and

others in order to allow for the detection and correction of
errors in digital information as a result of transmission error
and corruption. The amount of information a given code
can express is dependent on the length of each codeword
and the alphabet from which the codewords are created.
Longer codewords, or a larger radix for each digit of the
codeword, results in a greater number of possible codewords.
Unfortunately as the number of possible codewords grows,
so does the search space for the codewords that share the
required relationship with each other. The degree of error
tolerance required by a code is defined by its minimum dis-
tance requirement. Each codeword must differ from every
other codeword in the code by at least the same number
of symbols as the minimum distance requirement. In this
paper, the distance measure used is Hamming distance –
the number of corresponding bits that differ in two binary
strings of the same length[5]. If a corrupted codeword that
does not match a known codeword is received, it is corrected
by replacing it with the closest known codeword.

3.1 Maximum Clique
The construction of binary error correcting codes reduces

to the NP-hard problem of finding a maximal clique of a
graph. Given a graph G composed of a set of vertices V and
a set of edges connecting these vertices E, a clique is a sub-
set of V such that for any node pair x,y in V there exists an
edge directly connecting x and y. The maximum clique of G
is the clique subset of V with the largest number of nodes.
By defining a graph such that V is the set of all possible
codewords and E is composed of connections between code-
words that meet the minimum distance requirement, then
the graph’s maximum clique is equivalent to the optimal

error correcting code.

3.2 Compatibility Matrix
For any given A2(n, d) code, processing speed can be im-

proved by pre-computing a static compatibility matrix[4].
A n by n matrix can be constructed such that a true value
in the nth row and kth column indicates that codeword n
and codeword k meet the minimum distance requirement.
Testing the validity of a codeword becomes a simple matrix
lookup. With respect to the maximum clique problem, the
compatibility matrix defines the graph G. When each code-
word defines a vertex in V , then an edge is present in E
whenever node x and node y are compatible per the com-
patibility matrix. The graph for the fictional compatibility
matrix shown in 1 is shown in Figure 2.

Figure 1: Compatibility matrix for a A2(4, 2) code[4]

Figure 2: Graph of a A2(4, 2) code[4]

4. EXPERIMENTS

4.1 Overview
Both GA and GP approaches were applied towards find-

ing codes for the binary (12,6), (13,6) and (17,6) error cor-
recting codes. The GA experiments were inspired by prior
research in [4] that used a GA on these problem sets. The
GP experiments were new to code word search. Several GP
specific variations were explored. It was postulated that a
GP system might be ideal for this problem, as it might be
less prone to the effects of epistasis. Epistatis is a measure
of difficulty imposed by the fitness of a solution being highly
dependent on the position of gene values in the chromosome.

4.2 Data Sets
The following codes are considered, in increasing order of

difficulty:

1. A2(12,6): The total number of codewords possible is
2,510. The known optimal code size is 24 codewords.

2. A2(13,6): There are 5,812 potential codewords. The
optimal code size is 32 codewords.

3. A2(17,6): There are 121,670 codewords possible. The
optimal code size is 256 codewords.

The total codewords for the above codes equals the number
of nodes in the graph in which a maximal clique is to be
found (Section 3.1). Letting N be the total number of code
words for a code set, the size of the search space is

NX
k=1

N

k

!
� 2N .

This combinatorial size prohibits naive exhaustive search.
By using the notion of parity to compute the leading bit,

the length of each codeword can be reduced by one bit with-
out loss of generality. Thus, to construct a code for the
A2(12, 6) code, the codewords for the smaller but equiv-
alent A2(11, 5) code can be considered. This reduces the
number of codewords by a half for all cases.

4.3 Validation
Validating codes is required during code construction. Each

chromosome produces a list of codeword indexes represent-
ing the optimal code created during evolution. Each index
corresponds to a codeword denoted in the compatibility ma-
trix. All the codewords marked for inclusion in a chromo-
some are compared to each other. If the Hamming distance
between a new codeword and an existing one is less than the
required minimum distance, the new codeword is rejected.

4.4 Conway’s Lexicode Algorithm
Conway’s Lexicode Algorithm (Algorithm 1) is a greedy

algorithm for the creation of minimum edit distance codes[2].
It is used as a specialized local search during some exper-
iments. First, the algorithm sorts all possible codewords
in ascending lexicographic order. In the case of a standard
Conway Lexicode invocation, an empty code list is initial-
ized to be populated by compatible codes. The implemen-
tation used in the GA and GP systems deviates from this
pseudocode by pre-initializing the code list either by the
valid codewords located in the GA chromosome or by the
in-progress code being created by a GP tree. The sorted list

of all possible codewords is then scanned linearly, compar-
ing each sorted codeword to every codeword residing in the
current list. New valid codes are added to the code list.

Algorithm 1 Conway’s Lexicode Algorithm[2]

proc GenerateCode(minDist, codewordLength) ≡
codewords← lexicographic sort(codewordLength);
code← empty();
for i← 0 to length(codewords) step 1 do

for j ← 0 to size(code) step 1 do
if hammingDist(codewords[i], codes[j]) ≤ minDist

then break;
else add(codes, codeswords[i]);

fi
od

od
return codes;

.

4.5 Genetic Algorithms

4.5.1 Representation
As in [4], a fixed length chromosome is used to represent

an evolved code. Genes in the chromosome are indices to
specific codewords. The chromosome length is set in each
experiment to the known optimal size of the code parameters
being considered. For example, a chromosome size of 32
is used for the (13,6)2 code. (Should codes with unknown
optima be considered in the future, a maximum would have
to be strategically set.) As each index value is dereferenced
to a codeword (see below) it is added to the code only if it
is valid.

During chromosome processing, a compatibility bitmask
is maintained, which represents the codewords compatible
with the code being constructed so far. When a new compat-
ible codeword is added, the codewords that are incompatible
with it, as seen in the compatibility matrix, are removed (set
to false) in this bitmask. This reduces the possible remain-
ing choices, until the point where no compatible codewords
are left. The code construction is then finished.

(i) Indirect indexing (I): This representation is from [4].
Each gene is assigned a value between 0 and the number
of compatible codewords available. For the first gene pro-
cessed, its index value corresponds directly to the numeric
codeword from the compatibility matrix. As the first code-
word, it is always added. Each subsequent gene is treated
as an index into the set of remaining compatible codewords
as defined by the current compatibility mask. A modulus
operation is performed on the index, so it references only
the current compatible codewords. This continues until no
compatible codes are left.

(ii) Direct modulo indexing (DM): This is a new indexing
scheme. Each gene is assigned a value from 0 to “max in-
teger” (a large integer). As each gene is dereferenced, the
codeword indexed to the gene value modulo the total num-
ber of codewords is considered for inclusion. In contrast with
indirect indexing, the gene value initially dereferences a code
word directly. If it turns out that a non-compatible code-
word is dereferenced, them a linear search is done from this
codeword onwards (modulo maximum limit) a a compatible
codeword is located, or all are used up. It is conjectured

Table 1: Base Genetic Algorithm Parameters

Parameter Value

Population Size 500

Max Generations 100

Of Runs 20∗

Seed Run start time

Selection Tournament (size 3)

Elitism 1 Individual

Crossover Chance 85%

Crossover Two-point

Mutation Chance 15%

Mutation Operator Random Gene Mutation

that this may reduce epistasis, so that patterns of compati-
ble codewords may be effectively inherited during evolution.

4.5.2 Conway Finish
In [4], two different combinations of the Conway Lexicode

Algorithm (Section 4.4) and the GA were explored. One
scheme involved running the Conway Lexicode algorithm to
generate seed codes that were then extended by codewords
the GA chromosomes selected to be included during evolu-
tion. The other approach reversed this, by using the GA to
evolve seed codes that were extended by the Conway greedy
algorithm. They found that seeding the Conway algorithm
with a small code evolved by the GA resulted in the best per-
formance. Smaller seed codes between 3 and 9 codewords
were most effective.

For the GA implementations tested here, the greedy finish
procedure was added as an option. By limiting the fixed size
of the chromosome for a Conway Finish, it was possible to
evolve seed codes that were then extended using the greedy
Conway Algorithm (algorithm 1) during fitness evaluation.

4.5.3 Fitness and GA Parameters
Fitness is defined as the number of compatible codewords

included in a generated code. We always try to maximize
the number of compatible codewords (i.e., maximal clique).

Common GA parameters are shown in Table 1. All are
self-explanatory.

4.6 Genetic Programming

4.6.1 GP Language
Each GP tree denotes a complete code. In contrast with

the fixed length GA chromosome, GP trees are variable
sized. It is conjectured that this size flexibility, as well as
the nature of GP reproduction operations, would minimize
the harmful effects of epistasis. The variable length trees
may improve the convergence speed of the GP system by
avoiding the vestigial genes that occur from a non-optimal
code being represented in an over-sized chromosome.

During evaluation of the GP tree, a state object is passed
from node to node as the tree is evaluated. This tree state
object contained within it an in-progress code list. Func-
tion and terminal nodes add codewords to this list when the

∗Only 10 runs were performed for the (17,6)2 code.

Table 2: GP Types

Type Description

Codeword A single codeword index

Code A collection of n codewords

Code or Codeword Converts codeword to size 1 code

codewords are deemed compatible. In this way, no invalid
codes are created during tree evaluation.

Strongly-typed GP is used (Table 2). A codeword is an in-
teger index value that can be dereferenced to a binary code-
word, while a code is a collection of one or more compatible
codewords. The code or codeword type is a polymorphic
type that converts a codeword to a size 1 code.

Only one terminal is used. A codeword index node is
denoted by an ephemeral integer, in the range [0, n) where
n is the maximum number of codewords available.

Two basic GP operators are used (along with a Bald-
winian State operator described below). (i) Union Oper-
ator: Inspired by work in .[11], a union operator collects the
codes or codewords created by its child nodes. Two versions,
with arity 2 and 3, were created, and permit varying shaped
trees to be defined. (ii) Conway Union Operator: This is
a union function that is augmented to perform the Conway
algorithm. A conwayStart parameter indicates how many
codewords should be present in the in-progress code being
passed between tree nodes before the Conway algorithm is
permitted to extend the code to completion. This parameter
establishes the size of the seed code that is to be extended.

In Baldwinian evolution, a local search is used at the time
of fitness evaluation[12]. Rather than encoding beneficial re-
sults obtained by the local search back into the chromosome,
only the fitness value is updated. In this way, the fitness
landscape changes while the evolution model remains Dar-
winian. A Baldwinian Tree State object is introduced. Each
time a codeword is added to the code list by a GP Function
node or terminal, the Baldwinian Tree State creates a new
in-progress code list by cloning the current code list and
adding the new codeword to it. Then the cloned codelist
is extended as far as possible using the Conway Lexicode
Algorithm. During fitness evaluation, all of the code lists
created in a tree are considered, and the largest found is
used as the fitness value for the individual. The actual tree
is not altered. At the end of a run, however, the code list
found with Baldwinian search is produced as the solution.

4.6.2 Tree Processing Order
The traversal order of a GP tree may impact the code

developed. For instance, a tree traversed in a depth-first
order will result in the leaf nodes from the leftmost branch
be given highest priority. This may be detrimental to the
effectiveness of reproductive search. To address this, both
depth-first and breadth-first traversal were considered. It
was conjectured that breadth-first traversal would allow for
greater flexibility in the placement of codeword terminal
nodes. Placing codewords higher in the tree structure would
result in earlier inclusion and radically different compatibil-
ity options as a result.

4.6.3 GP Parameters and Experiment Configurations
The GP parameters used are in Table 3, and Tree depth

Table 3: Base Genetic Programming Parameters

Parameter Value

Population Size 2000

Max Generations 100

Of Runs 20∗

Tree Initialization Koza Half Builder

Grow Chance 50%

Node Select 10% Terminals,

90% Non-terminals

Selection Tournament

Tournament Size 3

Elitism 1 Individual

Crossover Chance 60%

Tree Mutation Chance 10%

ERC Mutation Chance 30%

Table 4: GP Tree Depth Limits

Code Limit Value

(12,6)2 Half Tree Max Depth 5

(12,6)2 Crossover Max Depth 8

(12,6)2 Mutation Max Depth 8

(13,6)2 Half Tree Max Depth 5

(13,6)2 Crossover Max Depth 10

(13,6)2 Mutation Max Depth 10

(17,6)2 Half Tree Max Depth 8

(17,6)2 Crossover Max Depth 12

(17,6)2 Mutation Max Depth 12

limits are in Table 4.

5. RESULTS

5.1 GA Results

5.1.1 (12,6)2 Results
Based on the results in Table 5, the (12,6)2 code posed lit-

tle difficulty to either GA configuration. Changing indexing
strategies resulted in no performance increase.

5.1.2 (13,6)2 Results
The (13,6)2 code proved challenging for the GA. As seen

in Table 6, no single GA configuration was able to evolve an
optimal 32 codeword code. The largest evolved code for any
configuration was size 27 and the main difference between
configurations was the frequency with which codes of this
size could be evolved.

T-tests show that a statistically significant difference in
performance was noted (p <.05) when the GA chromosome
used the direct modulo indexing scheme (#2) as opposed to

∗Only 10 runs were performed for the (17,6)2 code.

Table 5: GA (12,6)2 Results. Optimal=24. Total 20
runs. (I: indexing, DM: direct modulo)

ID Indexing Best (#runs) Average

1 I 24 (16) 22

2 DM 24 (16) 22

indirect indexing (#1), with the DM representation generat-
ing better solutions in most runs. The performance graphs
of the configurations further substantiate the merit of the
direct modulo indexing scheme.

Upon introduction of the Conway Finish algorithm to the
GA configurations the benefits added by the switch to direct
modulo indexing are lessened. Comparing configuration #3
(Indirect indexing, Conway Finish) with configuration #4
(Direct modulo indexing, Conway Finish) the difference in
indexing is no longer statistically significant (p >.05). Both
configurations were able to achieve codes of size 27 on the
majority of runs. The Conway Finish benefits both indexing
models equally, producing the best results seen for the GA
(13,6)2 configurations.

Unsurprisingly, a t-test shows that the difference between
the random search configuration (#5) and a representative
GA configuration (#3) is statistically significant (p <0.05).

5.1.3 (17,6)2 Results
From Table 7, without the use of the Conway Finish, nei-

ther the direct modulo or indirect representations were able
to evolve optimal codes. However, #2 outperformed #1
on more runs (p <0.05), showing that direct modulo index-
ing seemed more suitable. For the two configurations using
the Conway Finish (#3 and #4), optimal and near opti-
mal results were achieved. The difference between indexing
schemes in these cases was not significant (p >0.05).

Table 6: GA (13,6)2 Results. Optimal=32. Total 20
runs. ID5 uses random search. (CS=Conway Start)

ID Indexing CS Best (#runs) Avg

1 I - 23 (3) 22.1

2 DM - 25 (20) 25

3 I
√

27 (20) 27

4 DM
√

27 (19) 26.9

5 DM - 24 (5) 23.2

Table 7: GA (17,6)2 Results. Optimal=256. Total
10 runs.

ID Indexing CS Best (#runs) Avg

1 I - 135 (2) 133.5

2 DM - 142 (5) 141.3

3 I
√

256 (1) 252.5

4 DM
√

255 (5) 253.8

5.2 GP Results

5.2.1 (12,6)2 Results
Based on the results from Table 8 all of the GP configu-

rations were able to achieve the optimal code size of 24. GP
configurations (12,6)2 #1 and #2 were especially well suited
to the problem, achieving the optimal code size on 19 out of
20 runs.

5.2.2 (13,6)2 Results
From Table 9, no single GP configuration was able to

evolve a code equal to the optimal of 32. However, in com-
parison to the GA approaches, several GP configurations
(#3, 7, 11 and 12) were able to come close, evolving codes
of size 31. Generally, the GP configurations produced codes
of a large size (27 and up).

The difference between configurations that were processed
in depth-first order versus breadth-first order was statisti-
cally insignificant.

There was statistically significant difference (p <.05) in
performance between the arity 2 union configuration (#2)
compared to the arity 3 union configuration (#4) when tra-
versed in a depth-first order. This was not found to be the
case when breadth first order was used.

As seen in [4], the Conway start parameter value had great
influence on the fitness achieved. Using the start value of
3 as in configuration #7 had the best result, achieving a
fitness of 31 in 1/20 runs and an average fitness of 26.85
across all runs. Conway start values of 2 (#5) and 4 (#9)
were also explored, obtaining codes of size 27 in 7/20 runs
and 14/10 runs respectively. The difference between arity
2 and 3 union operators was found to be significant when
paired with the Conway union for two of the three Conway
start parameters.

The best performance encountered was a result of the
Baldwinian tree state coupled with a Conway start of 2
(#12). This configuration was able to achieve codes of size
31 on 3/20 runs with an average code size of 27.6. The power
of this configuration was found to stem from the Baldwinian
tree state and not the Conway union nodes, as a similar
configuration lacking the Conway Union node (#11) was
found to have statistically insignificant difference in fitness
(p >.05).

5.2.3 (17,6)2 Results
Looking at Table 10, the use of the breadth first or depth

first traversal (#1, 2) had minimal effect (p >.05).
Three Conway start values were explored for the (17,6)2

GP configurations. The most successful of these configura-
tions was configuration #3, with a Conway start parameter
value of 10. These results were found statistically significant
when compared to the 20 start value (p <.05) and the 30
start value (p <.05) indicating that it was the primary influ-
ence on the improved fitness of configuration #3 compared
to #4 and #5.

The best results encountered for the (17,6)2 code were
obtained by configurations using the Baldwinian tree state
option. Configuration #6 used the Baldwinian tree state
with the arity 2 union to evolve an optimal code of size 256
on 1/10 runs, with an average fitness of 255.1 across all 10
runs. Configuration #7 was identical save the allowance of
the Conway union node in addition to the standard arity 2
union. The power of configuration #6 and #7 arises from

Table 8: GP (12,6)2 Results. Optimal=24. Total 20
runs. (B=breadth first, D=depth first)

Union

ID Arity Order Best (# runs) Avg

1 2 B 24 (19) 22.75

2 2 D 24 (19) 22.75

3 3 B 24 (16) 22

4 3 D 24 (16) 22

Table 9: GP (13,6)2 Results. Optimal=32. Total 20
runs. (CS=Conway Start, B=Baldwin)

Union Best

ID Arity Order CS B (#runs) Avg

1 2 B - - 27 (11) 26.1

2 2 D - - 27 (5) 25.5

3 3 B - - 31 (1) 25.6

4 3 D - - 27 (1) 24.9

5 2 B 2 - 27 (7) 25.75

6 3 B 2 - 27 (11) 26.1

7 2 B 3 - 31 (1) 26.85

8 3 B 3 - 27 (10) 26.1

9 2 B 4 - 27 (14) 26.45

10 3 B 4 - 27 (6) 25.65

11 2 B -
√

31 (2) 27.4

12 2 B 3
√

31 (3) 27.6

Table 10: GP (17,6)2 Results. Optimal=256. Total
10 runs. Union Arity=2.

ID Order CS B Best (# runs) Avg

1 B - - 163 (1) 156.6

2 D - - 160 (1) 152.3

3 B 10 - 251 (1) 238.7

4 B 20 - 215 (1) 194.5

5 B 30 - 175 (1) 157.4

6 B -
√

256 (1) 255.1

7 B 20
√

256 (1) 255.1

the Baldwinian approach and is not additionally strength-
ened by the explicit use of the Conway algorithm during
evolution.

5.3 Comparing GA and GP
One goal of this research is to compare the efficacy of the

GA and GP for code search. Firstly, it is clear from Tables 5
and 8 that the (12, 6)2 code is easy for both representations,
and not worth further scrutiny.

For the (13, 6)2 runs, the results to consider are the su-
perlative configurations for each: the GA configurations #3
and #4 in Table 6, and GP #11 and #12 in Table 9. Ex-

amining the average scores of the solutions for these config-
urations shows that the GA and GP have equivalent perfor-
mance. The performance graphs for GA #4 and GP #12
in Figures 3 and 4 show similar convergence characteristics.
However, unlike the GA runs, Table 9 shows that the GP
runs were more consistent in returning near-optimal codes.
This gives suggestive evidence that the GP representation
may be worth considering over the GA for this code, and by
extension, others in the future. The statistical significance
of this requires more runs to establish.

Examining the (17,6)2 code, the GA configurations #3
and #4 in Table 7 and GP #6 and #7 in Table 10 all ob-
tain optimal or near-optimal codes. The performance charts
for the GA and GP runs do show some differences. GA #3
and #4 are in Figures 5 and 6, while GP #6 and #7 are in
Figures 9 and 10. The best solution curve in all the charts is
remarkably similar. However, the population mean curves in
the GA charts show a slow convergence in the first 40 gener-
ations to a suboptimal level. The GP populations, however,
converge to a higher fitness in less than half the time, which
suggests a good adaptation of the GP to this search space,
perhaps due to reduced epistasis. For comparison, GP #1 in
Figure 7 clearly converges to a suboptimal level. GP #3 in
Figure 8 shows the most steady progress of all the plots. In
fact, this plot suggests that superior results may have been
obtained with GP #3 (breadth-first, Conway Start of 10, no
Baldwinian) if it were permitted to run to 100 generations.

In summary, the best GA and GP experimental configu-
rations are competitive with one another, and there is no
clearly superior approach for all codes examined. On the
other hand, the (13, 6)2 experiments give suggestive evi-
dence that the GP representation with Baldwinian search
was the best performer for this code. The performance plots
show that most runs with GA and GP are affected by pre-
mature convergence. Better quality results may arise if pop-
ulation diversity strategies were used.

6. CONCLUSION
This research builds on the pioneering work of Haas and

Houghten [4], who established the viability of GAs for gener-
ating binary error correcting codes. The contribution of our
research is to re-examine the generation of error correcting
codes, using a variety of evolutionary computation strate-
gies. This paper shows that, although a variety of techniques
are feasible, different techniques may be especially applica-
ble to particular codes. For example, the direct modulo gene
representation improved the maximum fitness achieved, as
well as the frequency with which these maximized results
were obtained for both the (13,6)2 and (17,6)2 codes without
the use of the Conway algorithm. The benefit of the Conway
Finish algorithm demonstrated in [4] was reaffirmed by the
superior performance of the GA configurations that used it.

Another contribution of this paper is the demonstration
of the effectiveness of using GP to generate error correcting
codes. Elsewhere, GP has been applied to the maximum
clique generation problem [11, 6]. Soule et al. [11] estab-
lished that a simple language could express optimal approx-
imations to the problem of maximum clique – a finding that
heavily influenced the design of our GP language. With our
language, we demonstrated that GP is as equivalently pow-
erful to GAs in the problems examined. The program tree
representation, and its integration with the Conway Lexi-
code Algorithm and the use of the Baldwin search, allowed

for performance that surpassed that of the GA approach in
some cases. One advantage of the GP representation seems
to be the reduction of negative effects of epistasis, which may
be more acute in GA representations. Furthermore, the is-
sues imposed by a fixed GA chromosome length are absent
in a dynamic GP program tree representation. Further re-
search exploring the ability for a GP system to discover opti-
mal codes for code settings that do not have a single known
optimum code size is required to establish these benefits.

Future work involving the integration of more heuristic
information could prove to aid in the quality of results ob-
tained. For instance, a measure of ”near cliqueness” and a
representation able to describe non-clique or partially incom-
patible codes could prevent premature convergence. Multi-
objective scoring may be useful in this regard. Finally, the
use of our best techniques should be considered for use in
discovering new optimal codes in the future.

7. REFERENCES
[1] B. Carter and K. Park. How good are genetic

algorithms at finding large cliques: an experimental
study. Boston University, 1993.

[2] J. Conway and N. Sloane. Lexicographic codes: Error
correcting codes from game theory. IEEE Transactions
on Information Theory, IT-32(3):337–348, 1986.

[3] G. M. U. ECLab. ECJ: Java-based evolutionary
computation research system, 2000–2011.

[4] W. Haas and S. Houghten. A comparison of
evolutionary algorithms for finding optimal
error-correcting codes. In Proceedings of the third
IASTED International Conference on Computational
Intelligence, pages 64–70, 2007.

[5] R. Hamming. Error detecting and error correcting
codes. Bell System Technical Journal, 26(2):147–160,
1950.

[6] T. Haynes and D. Schoenefeld. Clique detection via
genetic programming. In Preceedings of the First
Annual Conference on Genetic Programming, 1996.

[7] A. Jagota and L. Sanchis. Adaptive, restart,
randomized greedy heuristics for maximum clique.
Journal of Heuristics, 7:565–585, 2001.

[8] E. Marchiori. A simple heuristic based genetic
algorithm for the maximum clique problem. In
Proceedings of the 1998 ACM symposium on Applied
Computing, pages 366–373, 1998.

[9] M. Pelillo. Encyclopedia of Optimization, chapter
Heuristics for Maximum Clique and Independent Set.
Kluwer Academic Publishers, 2001.

[10] R. Poli, W. Langdon, and N. McPhee. A field guide to
genetic programming. Lulu, 2008.

[11] T. Soule, J. Foster, and J. Dickinson. Using genetic
programming to aproximate maximum clique. In
Preceedings of the First Annual Conference on Genetic
Programming, pages 400–405, 1996.

[12] D. Whitley, V. S. Gordon, and K. Mathias.
Lamarckian evolution, the baldwin effect and function
optimization. In PPSN III, pages 6–15.
Springer-Verlag, 1994.

Figure 3: GA (13,6)2 Configuration 4

Figure 4: GP (13,6)2 Configuration 12

Figure 5: GA (17,6)2 Configuration 3

Figure 6: GA (17,6)2 Configuration 4

Figure 7: GP (17,6)2 Configuration 1

Figure 8: GP (17,6)2 Configuration 3

Figure 9: GP (17,6)2 Configuration 6

Figure 10: GP (17,6)2 Configuration 7

