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Abstract—Stochastic models defined in the stochastic pi-
calculus are evolved using genetic programming. The interpreta-
tion of a stochastic model results in a set of time series behaviors.
Each time series denotes changing quantities of components
within the modeled system. The time series are described by
their statistical features. This paper uses genetic programming
to reverse engineer stochastic pi-calculus models. Given the
statistical characteristics of the intended model behavior, genetic
programming attempts to construct a model whose statistical
features closely match those of the target process. The fea-
ture objectives comprising model behavior are evaluated using
a multi-objective strategy. A contribution of this research is
that, rather than use conventional Pareto ranking, a summed
rank scoring strategy is used instead. Summed rank scoring
was originally derived for high-dimensional search spaces. This
paper shows that it is likewise effective for evaluating stochastic
models with low- to moderate-sized search spaces. A number
of stochastic models with oscillating behaviors were successfully
evolved. Attempts on a larger-sized model were not successful.
Reasons for its poor performance are likely due to poor choices
in feature selection, and too many selected features and channels
contributing to a overly difficult search space.

I. INTRODUCTION

Systems biology uses the perspective that biological behav-
iors emerge from the complex interactions of separate com-
ponents. Bio-network modeling is one application of systems
biology, which involves modeling and simulating biological
phenomena on the computer. In recent years, a variety of
computational environments and formalisms have been used
for simulating these phenomena [1]. Formal systems used for
bio-network modeling include Petri nets [2], [3], [4], Bayesian
networks [5], [1], P-systems [6], [7], cellular automata [8],
[9] and ODE’s [10]. All have their particular strengths and
weaknesses. However, few comparative analyses of them exist
in the literature.

Stochastic process algebras are another formalism for mod-
eling and analysing biological and chemical processes [11],
[12], [13]. One such process algebra is the stochastic pi-
calculus (or SPI calculus) [14], [15]. It has been used to
concisely representing stochastic models for a variety of
biological and chemical systems.

Genetic programming (GP) has been used to automatically
synthesize models written in the SPI calculus [16], [17].
Given a time series plot of a bio-chemical processes desired

TABLE I
SPI-CALCULUS SYNTAX

P ::= 0 | P#P | Proc = P | Σ
Σ ::= π.P | delay(t).P | Σ + Σ
π ::= in(c) | out(c)

behavior, for example, a plot of quantities of proteins over
time, GP attempts to evolve a SPI calculus model that produces
a similar time-series behavior. The stochastic time series is
characterized by a set of statistical feature scores [18], which
allows behaviors with different degrees of stochastic noise to
be handled. The work in [16] examined the problem using a
single-objective fitness framework, while [17] took a multi-
objective approach.

This paper extends earlier research in [17], by considering
an alternative means for multi-objective scoring. The ranked
sum scoring multi-objective scoring strategy was proposed for
use in high-dimensional optimization problems [19]. Recently,
other research has shown its suitability for low-dimensional
problems as well [20], [21]. Benefits of summed rank over
traditional Pareto ranking are that outliers are discouraged, and
an improvement over all objectives arises. This paper shows
that the summed rank scoring strategy is similarly effective
for SPI calculus modeling with GP. However, the appropriate
selection of statistical features is critical for success.

Section II briefly reviews the stochastic pi-calculus process
algebra. The multi-objective evaluation of stochastic processes
is discussed in Section III. The grammatical GP system is
described in Section IV. Section V presents some example
experiments and results, which are discussed and compared to
related work in Section VII. Some summary conclusions end
the paper in Section VIII.

II. STOCHASTIC PI-CALCULUS

The stochastic pi-calculus (SPI) is a process algebra used
for the stochastic modeling of concurrent processes [22], [23].
Like the pi-calculus before it [24], SPI has the ability to denote
concurrent communications, as well as mobility (dynamically
changing networks). SPI is effective for modeling various
complex behaviors as seen in chemical and biological systems
[12], and a simulation environment is available [15].



A subset of the stochastic π-calculus is used here (Table I).
We are primarily interested in the stochastic characteristics
of the algebra, and we have no interest in mobility here.
Therefore, the process algebra could be called stochastic CCS
(based on an earlier formalism [25]). The operators used are
as follows. A null process is 0. Sequential ordering is done
with “.”. Concurrency (#) allows the concurrent interaction
of expressions. Process definition (Proc=) defines a process
that can be called via a “Proc” call (possibly with arguments).
Choice (+) permits the stochastic selection of a term. A term
is an input (in(c)) or output (out(c)) communication on a
channel c. Each channel c has a quantitative rate assigned
to it. A delay delay(t) advances the clock by a stochastically-
computed duration indicated by argument t. The notation K@P
means P#P#...#P repeated K times.

The SPI calculus’s main feature of interest is its stochastic
semantics. The semantics use the Gillespie algorithm [26], a
well-known stochastic algorithm used in chemical simulations.
Consider the following:

(in(x).P1 + Σ1)|(out(x).P2 + Σ2)|P3
rate(x)→ P1|P2|P3

Here, if the Gillespie algorithm selects in(x) and out(x), then
a handshake arises between them. The expression transforms
to that on the right-hand side. The quantities of channel x
have been used up by this transition, and the availability of
x in the overall expression has been reduced. On the other
hand, new quantities of other channels (including x) may now
be added via the resulting terms P1 and P2. When channels
denote biochemical substances, such as proteins, enzymes, or
other molecules, their quantities can be measured over time,
resulting in quantitative time series for process behavior.

In the above, the Gillespie algorithm selects the execution
of x stochastically, in a manner similar to that used by
Roulette Wheel selection in evolutionary computation [27].
The probability of choosing a channel depends on the quantity
of that channel available for communication, as well as the rate
of that channel.

III. STOCHASTIC MODEL EVALUATION

A. Characterizing time series

TABLE II
STATISTICAL FEATURE TESTS USED FOR TIME SERIES ANALYSIS.

Test Description

1. µ Mean.
2. σ Standard deviation.
3. Kurtosis Degree of peakness or flatness relative

to normal distribution.
4. Serial correlation (sc) Degree of fit to a white noise model.
5. Chaos Sensitivity dependence on initial values.
6. Teravirta Degree of non-linearity.
7. Adjusted frequency Measure of cyclic activity of possibly

varying frequency.

The interpretation of SPI calculus models results in time
series output – one time series sequence per channel. Each

time series denotes the quantities of active instances for that
channel during the course of the simulation. There is a wide
variety of possible behaviors for these time series. Some
models exhibit highly regular and predictable behaviors, while
others result in time series with considerable stochastic noise
and variability.

Time series analysis is a long studied discipline [28]. We
characterize time series behaviors by sets of univariate statis-
tical feature tests. The tests used here are taken from Imada
[18], which were based on ones in [29], [30]. Although a suite
of 17 tests are implemented in [18], selected combinations of
those in Table II are used here. The tests are implemented in
C and R (a statistical package) [31]. See [18] for more details
on these tests and their implementation.

To determine the statistical feature characteristics of a target
model, the target SPI model is interpreted 1000 times. The
mean and standard deviations of the feature values over all
the runs was computed. The mean scores are potential feature
values to be used for the target model. As done by Imada [18],
when examining the feature scores, the stability (z score) of
each feature f is also calculated:

Stabilityf =
µf

σf

Features having a high stability mean that they vary less,
and may be a more accurate characterizations of the target
behavior. On the other hand, some feature tests are naturally
stable, and hence stability may not be a useful heuristic
for them. Although stability analysis may help in selecting
suitable features for a model, the overall decision procedure
is ad hoc. In two experiments, a fortuitous selection of features
proved to be effective. However, we were less fortunate in one
experiment (Oregonator) in this regard.

B. Multi-objective scoring

The weighted summed rank strategy is a scoring strat-
egy presented by Bentley and Wakefield [19]. It was origi-
nally proposed for high-dimensional multi-objective problems,
where the more conventional Pareto ranking would fail [32].
However, it has since been shown to be effective for low-
dimensional problems as well, with the added benefit of
discouraging outlier solutions [20].

Consider an individual with a fitness vector < f1, ...fk >.
The objective scores for the individuals in the population is
ranked separately, resulting in a rank vector < r1, ..., rk > for
each individual. Each ri is the ordered rank of fi with respect
to the rest of the population. For example, the individual
with the best fi score for some objective will have ri = 1
for that objective. Once the fitness ranks are determined, an
individual’s fitness is computed as:

fitness =
k∑
i

wiri.

Lower scores are preferrable. The wi term is the weight for
objective i (default 1). A higher wi increases the priority of
objective i in the score. Note that fitness is equivalent to the



average (weighted) rank for the individual. Also note that this
strategy converts the problem into a single-objective score.
This is done via measuring relative independent performance
on each objective, rather than via a combination of absolute
scores as done by weighted sums.

A variation of the above is the normalized summed rank:

fitness =
k∑
i

wi
ri

Ri

where Ri is the maximum rank value in the population for
that objective.

Another variation is the sum of dominance ranks. The
dominance rank di of an individual for objective i is the
number of individuals in the population that have a better score
on objective i. Once the dominance rank vector < d1, ..., di >
is determined, the sum of dominance ranks is computed
similarly to the sum of ranks above.

C. Evaluation of GP solutions

The identification of high-performing solutions from GP
runs is a challenging task when stochastic processes are being
considered. SPI models produce stochastic behaviors when
interpreted, and a given SPI expression can generate highly
variable behaviors during independent simulations. Further-
more, even targeted solution expressions may occasionally
exhibit behaviors that are far removed from the expected norm.
Depending on the statistical features used to characterize the
behavior, the feature scores themselves may vary significantly.

To find solutions from each experiment, a “wide net” is cast,
which examines a large assortment of generated models. When
a run terminates after reaching the maximum generation, the
top 25 scoring individuals are saved. After all the 20 runs
for an experiment have completed, these top 25 scorers from
each run are combined together, resulting in 500 candidate
models. Each expression is then interpreted 100 times, and
the mean statistical feature score is calcuated for each feature
of interest. The z-score is determined between the expression
score and the corresponding score of the target model. A 95%
match is considered a “hit”, and this is recorded. This results
in a hit vector per candidate solution. The individuals with
the highest-performing hit vectors can then be given closer
scrutiny as potential solutions for the experiment.

IV. GRAMMATICAL GP

TABLE III
SPI GRAMMAR

Expr ::= Processes
Processes ::= (proc0 ≡ Choice) # (proc1 ≡ Choice)

Choice ::= Term | Choice + Choice
Term ::= Delay(i) | Pi | Pi.Pi | Pi.Proc(i) | Pi.Pi.Proc(i) |

Delay(i).Pi.Proc(i) | Pi.Delay(i).Proc(i) |
Pi.(Proc(i) # Proc(i)) | Delay(i).(Proc(i) # Proc(i)) |
(Proc(i) # Proc(i))

Pi ::= in(c) | out(c)
Delay(i) ::= delay(time) (time = 10(i mod 7)−4)

Proc(i) ::= procj (j = i mod 2)

Table III shows a CFG grammar used to implement the
SPI-calculus in the GP system. This grammar is used for
the Lotka-Volterra and Repressilator experiments. The vari-
able i (used in Proc(i) calls and delay terms) is a terminal
representing an ephemeral integer. The variable c (in the Pi
rule) is an ephemeral channel label. The rule Expr defines
two processes, proc0 and proc1. Each process is a choice
expression. The terms in these expressions consist of a variety
of patterns of communications (Pi), stochastic delays (de-
lay(time)), and calls to the processes. The Term rule definition,
albeit not very elegant, results in trees with reduced depth.
The rule for delays uses the integer argument to create a
floating-point delay value, selected uniformly from the set
{0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0}. In this way, the in-
teger argument represents a (discrete) logarithmic distribution
of delay values. Compare this to using a uniformly distributed
float variable, which would be biased against smaller values.

The Oregonator experiment uses a variation of the grammar
in Table III, in which either 2 or 3 processes are possible
(Processes), and no delay terms are used (Term).

The GP system used is the DCTG-GP system [33]. This is
a Prolog-based GP system that uses definite clause translation
grammars (DCTGs) – a form of logic-based attribute grammar.

V. EXPERIMENTS

A. Lotka-Volterra Model

Proc0 = in(c1).P roc0

Proc1 = out(c1).((Proc1#Proc1) + in(c2))
Proc2 = out(c2).((Proc2#Proc2) + delay(10.0))
Lotka = Proc0#(500@Proc1)#(500@Proc2)
rate(c1) = 10.0
rate(c2) = 0.01

Fig. 1. Lotka-Volterra target model and plot

The first process studied is the Lotka Voltera Equation [34].
This is a dynamic model of predator-prey relationships, in
which the number of predator and prey species varies over
time. The model shows the dynamic relationship between
predators and prey population levels in an environment. It is



TABLE IV
STATISTICAL FEATURES FOR LOTKA-VOLTERRA

Feature c1 c2

σ 630.8 630.1
sc 6.94 7.03

TABLE V
SPI EVALUATION PARAMETERS FOR LOTKA-VOLTERRA.

Parameter Value

MOP strategy sum of dominance
Rank weights no
Stream filter 50
Max time 5.0
Max ticks 400,000
Log delays yes

an example of an autocatalytic reaction, as the product of the
reaction (increasing predator or prey population) will act as
a positive feedback for continued increases of species levels.
This continues until an untenable population level is reached,
which results in a decline in levels. The effect is a pair of
oscillating curves.

The SPI model for the Lotka Volterra model is shown in
Figure 1, and is taken from [15]. The expression in boldface is
the SPI expression to be reconstructed with GP, while the rest
of the SPI model is supplied to GP as a wrapper expression.
The graph shows the varying predator and prey species levels
over time. The two curves exhibit both regularity (period) and
irregularity (magnitude). The curves are correlated with each
other (although multivariate statistics such as correlation are
not used here). The target SPI model was simulated 1000
times, and the average values for a number of statistical
features were determined. The set of features selected for
the GP runs are shown in Table IV. Both channels exhibit
essentially the same behavior, and differences shown are due
to statistical variance.

Parameters used for evaluating the Lotka-Volterra models
are shown in Table V. Many of these parameters are chosen
with the particular behavioral characteristics of the model in
mind. For example, limits of 5.0 simulation time units and
400,000 simulation iterations are used. Delay term transitions
are counted as events in the stream. The resulting time series
is filtered by selecting one out of every 50 consecutive values
in the series. The MOP strategy used here is the sum of the
(unweighted) dominance rank score.

The GP parameters used for this and the other experiments
are in Table VI. Most of the parameters are standard in the
GP literature (eg. [35]). Of note is that the initial randomized
population is oversampled. A total of 4000 trees are generated,
and the fittest 1500 scoring trees in it are selected as the
starting population. All the GP trees in the population are
unique. (Syntactically and behaviorally identical models can
arise after translation to SPI, however.)

TABLE VI
GP PARAMETERS FOR ALL EXPERIMENTS

Parameter Value

Runs 20
Solutions per run 25
Initial popn. 4,000
Population 1,500
Unique popn. yes
Max tree depth (init) 8
Max tree depth 12
Prob. crossover 90%
Prob. internal crossover 85%
Prob. terminal mutation 75%

B. Repressilator

Gene(a,b) = delay(0.1).(Prot(a,b)#Gene(a,b))
+ in(a).delay(0.0001).Gene(a,b)

Prot(a,b) = out(b).Prot(a,b) + delay(0.001)
Repressilator = Gene(x, y)#Gene(y, z)#Gene(z, x)
rate(x) = rate(y) = rate(z) = 1.0

Fig. 2. Repressilator target model and plot

TABLE VII
STATISTICAL FEATURES FOR REPRESSILATOR

Feature Value

µ 34.42
σ 40.27
sc 16.09
chaos 0.029
freq 11694.0

The repressilator is a synthetic gene regulatory network
[12]. The SPI model in 2 shows 3 Gene(a, b) terms. When
the a argument is strengthened in quantity (probability) in the
system, the b argument quantity is inhibited. Conversely, a
reduction in a results in an increase in b. When this logic gate
behavior is placed in a feedback loop of 3 genes, the irregular



TABLE VIII
SPI EVALUATION PARAMETERS FOR REPRESSILATOR.

Parameter Value

MOP strategy sum of ranks
Rank weights freq=3 (rest=1)
Stream filter 3
Max time 200,000
Max ticks 20,000
Log delays yes

oscillations in the given plot arise. These oscillations are much
more irregular and noisy than those in Figure 1. The period
and duration of each channel’s plot is determined by stochastic
influences in the system. A detailed discussion of stochastic
models of the Repressilator using SPI are in [12].

The irregular nature of the repressilator makes it a good
candidate for description by statistical features. As is often
the case, the problem becomes one of selecting effective
features to use. This experiment uses the features in Table
VII. An intention here is to see whether evaluating one of the
three channels will be sufficient for inferring the Repressilator
model.

The GP parameters used are in Table VI. The SPI parame-
ters are in Table VIII. Here, a sum of ranks scoring is used,
where the frequency rank uses a weight of 3 (the rest use 1).
See Section V-A for a description of the other parameters.

C. Oregonator

TABLE IX
STATISTICAL FEATURES FOR OREGONATOR

Feature c1 c3 c5

µ 165.2 87.2 173.5
σ 172.0 189.5 339.4
kurt -0.21 3.68 3.00
tera 0.24 1.80 1.88
freq 1.00 0.63 0.72

TABLE X
SPI EVALUATION PARAMETERS FOR OREGONATOR.

Parameter Value

MOP strategy normalized sum of ranks
Rank weights freq=2 (rest=1)
Stream filter 25
Max time 3.5
Max ticks 250,000

Like the Lotka-Volterra model, the Oregonator model (Fig-
ure 3) is an autocatalytic reaction [36]. The SPI expression is
based on one in [15]. It is more complex than the previous SPI
models. The example plot shows three oscillating curves for
3 channels. The first cycle is irregular from the other cycles,
as the system is moving from its initial state at that time.
Afterwards, the oscillating curves are fairly regular.

P0 = in(c1).P0

P1 = in(c3).P1

P2 = in(c5).P2

P3 = out(c2) + out(c4) + in(c4)+
out(c3).(P5#P3#P3)

P4 = out(c1).P3 + in(c2)
P5 = out(c5).P4

Oregonator = P0#P1#P2#P3#P4#P5

rate(c1) = rate(c) = 2.0
rate(c3) = 52.0
rate(c4) = 0.008
rate(c5) = 26.0

Fig. 3. Oregonator target model and plot

The Oregonator experiment uses statistical features for 3
channels corresponding to the behavior plot (Table IX). As
usual, these are mean values computed from 1000 simulations
of the target model. Since each curve in Figure 3 shows
noticeable differences in shape, the feature values have cor-
responding differences. The GP parameters used are in Table
VI, and the SPI parameters are in Table X.

VI. RESULTS

TABLE XI
SUMMARY OF SOLUTION EXPRESSION RESULTS. TOTAL 500 SOLUTIONS

PER EXPERIMENT (20 RUNS).

# Exact # Unique # Duplicated
solutions expressions expressions

Lotka-Volterra 25 64 436
Repressilator 24 161 339
Oregonator 0 439 62

Table XI summarizes the results of the runs. Examining the
data for the Lotka-Volterra experiment, the solution was found
25 times during the 20 runs. Because GP trees duplication
is not allowed in a population, these copies of solutions can
be produced during separate runs, or after conversion to SPI
calculus expressions after a single run. From the total pool of



TABLE XII
NUMBER OF UNIQUE SOLUTIONS HAVING GIVEN NUMBER OF FEATURE

HITS. MAXIMUM POSSIBLE HITS: LOTKA 4, REPRESSILATOR 5,
OREGONATOR 15.

Total unique Total hits
solutions 0 1 2 3 4 5

Lotka-Volterra 64 44 14 3 2 1 -
Repressilator 161 62 68 14 16 0 1
Oregonator 439 76 108 130 83 36 6

500 candidate solutions, 64 unique SPI-calculus expressions
were generated, while the remaining 436 models were dupli-
cates of these 64 expressions. Similarly, the repressilator runs
also successfully found the exact solution multiple times. The
Oregonator experiment, however, was unsuccessful in finding
the target model. It also resulted in the greatest variety of
solutions (439), probably due to a lack of convergence to
behaviorally strong niches in the search space.

Table XII show the spread of feature hits amongst the unique
solutions from each experiment (see the discussion of feature
hits in Section III-C). These histograms show the quality
of solutions from the runs after duplicate expressions are
removed. Although there are many solution expressions with
low numbers of overall feature hits, this might indicate that
the generation of 25 solutions per run is excessive. The table
indicates that evolution is honing in on feature characteristics
with a high degree of precision. The ability of a candidate
solution to be within a feature score of the target model within
a 95% significance level is fairly impressive. When this is done
with multiple features simultaneously, evolution is having a
positive effect.

The performance of the Oregonator hits is mediocre. Of the
total of 15 feature tests used, 6 expressions manage to obtain
hits on 6 of the features simultaneously.

The performance charts in Figure 4 plot the average error
per generation for the best performer and population average,
for the Lotka-Volterra and Oregonator experiments. The plots
are averaged over 20 runs. The error (Y axis) uses a log
scale. In the Lotka-Volterra plots, the top 2 curves are for the
standard deviation feature scores, while the bottom 2 are serial
correlation. The Oregonator show curves for all 15 features
(5 per channel) that were tested. In the “best” plots in (a)
and (c), there is a general downward trend in some curves,
although others do not show noticeable improvement. This is
best explained in the population average plots in (b) and (d).
A characteristic of sum of rank scoring is that the performance
of some features will be sacrificed, should that promote the
improvement of the best performing models in the population.
In chart (d), most Oregonator features incur an increase in error
during the first 10 generations – directly opposite to that seen
in the best performers in chart (c). The bottom set of features
in the plot, however, improve throughout the run, and many of
the initially sacrificed features then begin improving as well.

Despite the failure of the Oregonator runs to find the target
solution, one solution in Figure 5 showed oscillating behavior
somewhat similar to the desired behavior. This expression had

P3 = out(c1).out(c1).P3 + out(c5).out(c5)+
out(c3).(P4#P3) + in(c5).P5

P4 = out(c5).out(c1) + in(c1).out(c1)+
out(c4).P4 + out(c3).(P4#P5)

P5 = out(c3).P4

Fig. 5. Oregonator solution and plot

feature score hits on 4 objectives: c3 kurt, c3 freq, c5 tera, c5
freq. It is possible that the matches to the adjusted frequency
scores resulted in this oscillation.

VII. DISCUSSION

The positive results of the Lotka-Volterra and repressilator
experiments shows that an effective selection of statistical
features is critical for success of model evolution. One obser-
vation is that all the solutions that are behaviorally equivalent
to the target (100% hits) are also syntactic matches to the
target expression. In other words, the features effectively
characterized the target model behavior. Additionally, in the
case of the repressilator, only one channel was required to
characterize it.

The impressive performance of the Lotka-Volterra and re-
pressilator runs is also due to the sum of ranks strategy.
Previous attempts used Pareto ranking were not as effective
at finding repressilator solutions [17]. The tendency of Pareto
domination to allow outlier solutions is detrimental to solution
quality. Initial attempts that used single-objective statistical
weighting were even less effective [16].

The reasons for the failure of the Oregonator experiment
may be due to a number of factors:

1) The features selected were inappropriate.
2) An excessive number of features and channels were

used, resulting in a difficult search space.
3) The time limit for the simulation was too short. It was

purposefully minimized due to the lengthy simulation
times encountered. This gave too small a window for
GP to evolve the desired oscillating behavior.

4) The SPI calculus expression complexity in the target
warrants further grammatical constraints.



(a) Lotka best. (b) Lotka population average.

(c) Oregonator best. (d) Oregonator population average.

Fig. 4. Error plots for Lotka-Volterra and Oregonator. Averaged over 20 runs.

On the other hand, the existence of similar oscillating behavior
in one Oregonator model shows that there is the potential for
success.

There is very little research applying computational intel-
ligence techniques to process algebra. Earlier work evolved
CCS expressions [37], [38], which were neither stochastic
nor time-based in nature. More complex bio-network models
are effectively evolvable if higher-level modeling languages
are considered. Imada used GP with a logic gate language,
implemented on top of the SPI-calculus [18]. Target models
were characterized with statistical features (this paper borrows
some of them), and multiple feature scores were combined
with statistically weighting. A number of gene regulatory
networks were succesfully evolved with GP. Another example
is the PIM bio-modeling algebra, which is also implemented
in the SPI calculus [39]. The techniques of this paper were
applied to PIM, and a number of models were successfully
evolved [40].

Related work using evolutionary computation and bio-
modeling includes work in Petri nets [41], [42], S-systems
[43], and nonlinear differential equations [44], [45]. The work
by Koza et al. using GP to evolve metabolic networks is
particularly interesting [46]. Also related is work in using GP

to evolve models of noisy time series [47], [48], [49], [50].

VIII. CONCLUSION

This research shows a technique by which modest-sized
bio-network models expressed in the SPI calculus can be
automatically evolved with GP. The combination of gram-
matical constraints, statistical feature tests, and multi-objective
summed rank scoring was shown to be effective for evolving
two example stochastic models. One of the models, the repres-
silator, has a considerable degree of noise as well. The use of
sum of ranks was found to be superior to Pareto ranking done
in earlier work on the repressilator [17].

A more complex model, the Oregonator, proved to be a
challenge. The main issue with it is conjectured to be the
use of too many inappropriate statistical features. With further
refinements, it is hoped that the Oregonator and similar models
will be tractable.

Current research is examining the issue of feature selection
in more detail. More systematic feature selection strategies
are being investigated [51]. Other forms of feature tests
for time series are being considered [28]. A more detailed
examination of grammatically-constrained subsets of the SPI



calculus practical for bio-network modeling is a longer-term
project being undertaken.
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