

Brock University

Department of Computer Science

Automatic Evolution of Conceptual Building Architectures

Corrado Coia and Brian J. Ross
Technical Report # CS-11-02
January 2011

Brock University
Department of Computer Science
St. Catharines, Ontario
Canada L2S 3A1
www.cosc.brocku.ca

Automatic Evolution of Conceptual Building
Architectures

Corrado Coia
Dept. of Computer Science

Brock University
St. Catharines, Ontario

Canada L2S 3A1
Email: year7c0@gmail.com

Brian J. Ross
Dept. of Computer Science

Brock University
St. Catharines, Ontario

Canada L2S 3A1
Email: bross@brocku.ca

Abstract—An evolutionary approach to the automatic genera-
tion of 3D building topologies is presented. Genetic programming
is used to evolve shape grammars. When interpreted, the shape
grammars generate 3D models of buildings. Fitness evaluation
considers user-specified criteria that evaluate different aspects of
the model geometry. Such criteria might include maximizing the
number of unique normals, satisfying target height requirements,
and conforming to supplied shape contours. Multi-objective
evaluation is used to analyze and rank model fitness, based
on the varied user-supplied criteria. A number of interesting
models complying to given geometric specifications have been
successfully evolved with the approach. A motivation for this
research application is that it can be used as a generator of
conceptual designs, to be used as inspirations for refinement or
further exploration.

I. INTRODUCTION

The design of building structures is a complex endeavor
requiring considerable architectural knowledge and experi-
ence. A successful building design requires attention to many
requirements regarding functionality, structural integrity, cost,
and aesthetics [1], [2]. Although computer technology is a
fundamental tool of architects and designers, the entire archi-
tectural task is too complex and multifaceted to be completely
automated at present time. On the other hand, specific aspects
of architectural design can be effectively automated. For
example, CAD systems aid in drafting exterior and interior
designs, while structural analyses are supported by finite-
element analyses software.

The external structural form of a building is a basic aspect
of architecture. Computer tools are commonly used to aid
in the design of architectural forms. An example of such a
computational tool is the shape grammar[3]. Shape grammars
are used for the computer-supported generation and editing of
design ideas. They permit complex shapes to be refined via
the structure of shape-generating rules in the grammar. Minor
changes in the rules can result in new styles of generated
models. This results in an efficient means for automating the
generation of new design styles of building structures. For
example, Stiny creates objects from blocks based on spatial
relationships, using hand-coded shape grammars to extrude,
split, add blocks, remove blocks, and other basic commands
[4]. In another study, Stiny uses shape grammars to create

paintings through the use of commands such as location,
rotation and scale [5]. Tapia uses a visually guided shape
grammar system to let the user specify the grammar, while
the system displays the results, giving the user an interface
to explore the designs from the specified language [6]. The
designer specifies an initial shape on a 2D grid and at least
one production rule prior to getting, exploring, and refining
the grammar. Ando et al. use shape grammars to analyze well-
known architectural structures [7]. The commercial application
CityEngine [8] uses a shape grammar to create everything from
building facades and structures[9], to entire layouts of cities
[10]. Generated results can be used for architectural studies,
computer games, and computer animations. Halatsch et al. use
shape grammars to design city layouts [11].

Evolutionary design is a research field concerned with the
application of evolutionary computation (EC) towards prob-
lems in modeling, structural engineering, image generation,
music composition, and others [12], [13]. A comprehensive
survey of evolutionary computation and structural design is
by Kicinger et al. [14]. Since model topology design is the
primary focus of this paper, the following is a brief survey
of work in evolutionary design and model generation. Gero
et al. use shape grammars with automated EC to produce
topologies of a beam section conforming to specified physical
criteria [15]. Buelow evolves trusses which are structurally
optimal for withstanding loads [16]. Jackson evolves 2D L-
systems with interactive genetic programming [17]. The Genr8
system of Hemberg et al. uses shape grammars and genetic
programming to interactively evolve 3D surfaces [18]. O’Neill
et al. use genetic programming to construct shape grammars
that generate specified 2D images [19]. They extend their
ideas to 3D in [20], and study the interactive generation of
3D shelters. EC and shape grammars are used to create 3D
medieval Italian architectures, using human-guided subjective
and creative interpretation to recreate a landscape representing
that time period [21]. Gero and Sosa use automatic EC to
design automotive instrument panels that display situational
information which adapt to traffic conditions and driving
actions [22]. Hornby uses EC and L-systems to evolve 3D
table designs[23]. Fitness considers balance, height, surface
area, and the quantity of material needed for the design. Jacob

evolves models of flowers and plants using L-systems [24].
Beaumont and Stepley use grammatical evolution to evolve
L-systems [25].

This paper presents research in which genetic programming
(GP) is used to automate the construction of external build-
ing structures. The GP language used is CityEngine’s shape
grammar [8]. This language is a well-designed, sophisticated
implementation of a shape grammar, that has an extensive
track record of real-world applications. The shape grammar
is denoted within the GP system as an ADF tree, where
ADF modules represent shape grammar non-terminal rules.
The GP system uses fully-automated fitness evaluation, where
an assortment of geometric criteria is supplied by the user.
Examples of these criteria include the characteristics of poly-
gon normals, structure height, orthographic shape contours,
and others. Multi-objective evaluation strategies are used to
find the aggregate fitness scores for the multiple geometric
specifications. A population diversity strategy helps promote
genetic diversity during the run.

Our motivation is to use evolution as a means for automatic
generation of concepts for 3D building design. Although shape
grammars are powerful tools, they also require considerable
technical expertise to use and debug effectively. We suggest
that GP can be used to automatically explore shape-grammar
generated building models without the need of shape grammar
programming by the user. The intention is that evolved shape
grammars will result in phenotypes (3D models) that comply
to the given geometric specifications required by the user. We
consider this approach as one that uses evolution to produce
inspirational building concepts. The evolved structures might
be the seeds of concepts, to be used as a basis for further de-
sign. Alternatively, models could be immediately used within
computer animations and games.

The paper is organized as follows. Section 2 reviews back-
ground information in shape grammars and geometric specifi-
cations for 3D models. Section 3 describes aspects of the GP
system and experiments, such as the multi-objective fitness
strategy, shape grammar representation, and overall system
architecture. Example experiments and results are given in
Section 4. Section 5 gives concluding remarks, and directions
for future work.

Further details and results of this research can be found in
[26].

II. BACKGROUND

A. Shape Grammars and CityEngine
A grammar is defined as follows:
• The alphabet A = {w1, w2, w3, ..., wn}, is a set of

commands which can be used within the grammar.
• An axiom I → α ∈ A, which contains a string of

commands from the alphabet which defines the initial
state of the system.

• A set of production rules Rn → α ∈ A , where each
production rule contains elements of the alphabet.

A shape grammar is a grammar in which the alphabet denotes
the generation, manipulation, and alteration of 2D or 3D

TABLE I
SELECTED FUNCTIONS OF SHAPE GRAMMAR LANGUAGE

Function Meaning

extrude(N) Extrudes the shape N units along the
face normal.

split(X)C Subdivides current shape along axis X ,
and applies command C to each subdivision.

r(Rx, Ry , Rz) Rotates current shape around the pivot point
using angles Ri.

s(Sx, Sy , Sz) Sets size of the shape using scales Si.
insert(S) Adds an object S (3D model, polygon mesh).
[and] Stack operations.

Fig. 1. (a) Model before initial extrude. (b) After split and rotate.

objects [3], [4], [15]. The rules within the grammar can specify
shape replacements, translations, rotations, scaling, repetition,
moving, splitting, and extruding. Once the grammar is defined,
it is executed sequentially and the actions specified within the
grammar are performed on the shape.

In the case of architectural design, the resulting 3D models
arising from shape grammars represent building structures.
The benefit of using a grammar to generate a building model
is due to the fact that individual aspects of the building can be
developed and reused multiple times during its construction.
For example, a set of rules can be made which describe the
structure of a floor within a building. This set of rules can be
called multiple times to create multiple floors of the same or
similar design, saving the designer from having to create each
floor explicitly.

CityEngine is a commercial system used to create models
of cities [8]. It uses grammars to create a system of roads
[10] and 3D shape grammars to generate building models
[9]. It is capable of generating huge city models, as well as
many varieties of building styles. In order to create a building,
a grammar must be hand-coded. A trail-and-error process is
required, to inspect results and refine the grammar as required.
Like any programming task, precision and care is required to
obtain suitable results.

The CityEngine shape grammar functions used in our ex-
periments are listed in Table I. This is a small subset of
the full CityEngine language. The selected functions in this
table define a small but powerful subset of useful expressions,
that enable a variety of building structures to be constructed.
The actual language implementation is much more detailed
than shown. It supports such things as variables, mathematical
expressions, and a comprehensive library of useful functions.

An example CityEngine grammar is as follows:

Start → Extrude(10) Split(z){5 : RuleA}∗
RuleA → Rotate(45, 0, 0)

The initial shape is the square lot. It is first extruded (Figure
1(a)). Then the extruded model is split along its z-axis into
objects 5 units wide. RuleA is applied to each resulting sub-
object, which rotates each 45 degrees along the x-axis. The
final result is in Figure 1(b).

B. Geometric Properties and Building Models

There are many factors an architect needs to consider when
designing a building, due to the fact that every building is
designed with specific goals in mind. Many of these goals
can revolve around space, function, and form [1]. Space use
may be reflected by maximizing the space allocated for the
building, perhaps to fit the size of a lot. Function refers to
constructing the building such that it is able to accomplish
its task. Form refers to the external appearance of structures.
Certain building designs could benefit from having a complex
form. One example could be of an architect designing a
building which is meant to represent the wealth of a particular
financial corporation: the final design would require a high
level of complexity to achieve the correct form. A design might
be made more complex by considering offset levels, spiral and
circular designs, and multi-tiered sections.

This research considers factors which fall into the space
and form categories. Fitness evaluation considers different ge-
ometric properties of 3D models. For example, one geometric
property of a sphere is that each surface normal is unique.
One could also use this property as a criteria for generated
building models. The greater the number of unique surface
normals seen in a model, the closer it comes to matching
this particular property of a sphere. Other properties would
need to be satisfied, however, for a sphere model to arise.
Another geometric property we use is to match the orthogonal
projection of a structure to a target shape. If viewing the model
from above, the result would be a 2D shape representing its
silhouette or footprint. This silhouette can be compared to a
specified shape, such as a triangle or a star. The goal is to
have the model silhouette conform to the supplied shape.

The spectrum of results that can be obtained by different ge-
ometric requirements can be highly specific and well-defined,
or vague and open-ended. For example, criteria specifying
that the resulting building surface must contain 95% unique
surface normals, be exactly 500 units tall, and fill a pentagon
footprint 75 units wide, would over-specify the criteria, and
possibly very challenging for evolution to satisfy. On the
other hand, under-specifying the criteria permits too many
extraneous solutions. A balanced set of criteria is preferable.

III. SYSTEM

A. Architecture

The system architecture is depicted in Figure 2. Genetic pro-
gramming is implemented with RobGP, a C++ based genetic

Fig. 2. System architecture.

programming system [27]. RobGP has a particularly strong
implementation of ADFs, which we use to denote the shape
grammar. Looking at the figure, GP is used to evolve ADF
trees that denote shape grammars. The GP tree is translated
into a CityEngine-compliant shape grammar. The grammar is
transferred to the CityEngine application. CityEngine parses
the grammar file, and then executes the grammar, resulting
in the generation of a 3D model. This model is exported as
a Collada file [28], which is then read back into RobGP for
fitness evaluation. A report file for each model is also gener-
ated by CityEngine, which can contain useful information to
be used during fitness evaluation.

Seven ADFs are defined in each GP tree. Each ADF
represents one production rule within the shape grammar. This
allows each production rule to evolve as its own unit, yet
still able to reference other production rules. Program bloat
is possible with the shape grammar. A tree may define unused
production rules, which will simply be ignored during model
generation by CityEngine. Certain sequences of commands
can be ignored as well. For example, if a series of “size”
commands are used in succession, only the final command
has an effect. We rely on fitness pressure to penalize less
productive grammars.

We use CityEngine’s shape grammar language [8].
CityEngine implements a comprehensive shape grammar lan-
guage, which can generate a huge variety of realistic build-
ing structures. A fully general shape grammar such as this,
however, will be ineffective for use with genetic program-
ming. A 3D shape grammar has the potential to create a
vast number of structures. Many generated structures will
contain disconnected components; for example, consider 100
cubes scattered randomly in space. Since we are primarily
interested in models of buildings, such disconnected models
are unlikely to be of interest. Furthermore, the generality of
shape grammars permits the definition of virtually an infinite
number of varied models, for example, buildings, furniture,
cars, and people. Evolved models can diverge considerably
from typical building structures, which can be a blessing or
curse, depending on ones intended use of evolution.

In order to improve the likelihood of evolving models that
look like buildings, it is necessary to constrain the shape
grammar used by genetic programming. Rather than supply
genetic programming with the entire definition of CityEngine’s
shape language, we use a subset of useful CityEngine func-
tions (Table I). These functions provide a powerful subset of

TABLE II
GP PARAMETERS

Parameter Value

Runs 10
Generations 60
Population 300
Crossover 0.90
Mutation 0.08
Elite migration 0.02
ADFs 7
Initial tree method Grow
Max tree size 50
Tournament size 3
Fitness multi-objective
Individual ranking ranked sum
Diversity penalty 20

geometric constructions, and when placed into shape grammar
rules, permit a variety of interesting models to be generated.
The exact set of primitives chosen for an experiment should
be tailored to the style of models to be evolved.

Language primitives themselves can be further constrained,
depending on the goals of a particular genetic programming
run. Some function parameters can have sensible values hard-
coded into them, or useful ranges of values predefined. The
grammar itself can be partially predefined as well, in order
to direct evolution towards sensible models of interest. For
example, consider the situation in which a skyscraper or tower
complying to user-supplied specifications is to be evolved. For
this task, the base grammar expression in the genetic program-
ming tree can be preset to use a given primitive (eg. extrude
in the y (up) direction). This helps the grammar generate
models that are likely to be tower structures. Evolution can
then concentrate on searching the space of towers, rather than
search for tower structures themselves. Supplying problem-
specific constraints to the shape grammar is a great benefit
to the evolutionary design process. With minimal technical
intervention, the user can predefine the desired family of
structures to be investigated, thereby allowing evolution to
concentrate on searching for more refined solutions to the
problem at hand.

Table II summarizes some typical parameters and their
values used in our experiments. Most parameters are self-
explanatory (see [29]). Unfortunately, system issues beyond
our control were encountered early in our research. Since a
single license of the CityEngine system was available, this put
a ceiling on the number of runs and duration of experiments
possible. Furthermore, memory leaks in CityEngine severely
handicapped the scope of runs, and resulted in the necessity
for modest population sizes and generation durations. Nev-
ertheless, experiments were performed within the limitations
and resources available.

B. Multi-objective Fitness Evaluation

When evolving 3D building models, there will be different
geometric criteria to use. These criteria can conflict with one
another. For example, one goal might be to maximize the
number of unique surface normals, while another goal can be
to define the silhouette of the building shape. The larger the
building is, the greater the surface area, which makes having a
greater number of unique normals easier to obtain. However,
this conflicts with the second goal, which limits the unbounded
size of a model.

The above is a natural multi-objective problem [30], [31].
An advantage of using multi-objective evaluation is that dif-
ferent criteria can be evaluated independently of one another,
without introducing user bias that arises with a weighted sum
formula. This is especially relevant when different criteria use
quite different measurements and metrics for fitness scoring.
Also, multiple diverse solutions can be produced during a run
using multi-objective evaluation.

We use a ranked sum fitness approach for multi-objective
evaluation. This strategy was originally derived for high-
dimensional multi-objective problems [32]. However, expe-
rience shows that it is also effective for low-dimensional
problems [33], [34]. Consider a fitness vector [f1, . . . , fk] for a
k-objective problem. Each fitness fi has its rank ri determined:
[r1, . . . , rk], where (1 ≤ ri ≤ N) for a population of size N .
Then the sum rank is:

fitness =
k∑

i = 1
wiri

where wi is an optional weight (default 1). An option is to
normalize each rank before summation:

[
r1

R1
, . . . ,

rk

Rk
]

where Ri is the maximum rank found for objective i.
A diversity promotion strategy is used. A penalty factor

(eg. 20 in Table II) is added to every rank ri of an individual
each time its raw fitness vector is found to be identical to
another in the population. This has the effect of penalizing
the overall sum of ranks score for that duplicate individual.
Multiple duplicates are assigned even further penalized scores.

IV. RESULTS

A. Single-objective

This section shows selected results using single objective
criteria. Simply put, the architectural goal is to evolve complex
building structures. Initial runs tried to maximize the polygon
count as an objective. This resulted in unfeasibly enormous
models evolving within a few generations, and which also
crashed the system. Maximizing the number of surface nor-
mals was also tried, but without success. Usually, GP evolved
shape grammars that repeatedly split and subdivided polygons
into highly tiled planar surfaces, and each polygon’s normal
was treated as a new normal. The models, however, were
not complex. We discovered that maximizing the number of

Example 1

Example 2

Example 3

Fig. 3. Maximizing unique normals.

unique surface normals gave the most interesting results, since
it requires shape grammars to orientate surfaces into new
directions.

Figure 3 shows some results for maximizing the number of
unique surface normals in the model. Example 1 has a total
of 542 unique normals. This is less than number of polygons,
as some structures (floors) are repeated, which results in
duplicate normals. Example 2 has 987 normals. Although
example 3 only has 61 unique normals, its repetitive structure
is interesting. All 3 examples show symmetric, repetitive
patterns, which arise directly from the calling patterns used
in their shape grammars.

Figure 4 shows further results that search for a maximized
unique normal count. Here, a 224-polygon sphere is made
available as a basic building component. The resulting mod-
els include many spheres, in order to increase the unique
normal count. The first example has 4184 normals, while
the second has 1330. Example 2’s simpler, balanced design
is more visually appealing to our tastes. Note that spheres

Example 1

Example 2

Fig. 4. Using spheres to increase unique surface normals.

cannot be recursively split and duplicated, and so we did not
obtain models with thousands of spheres (unlike the divided
polyhedra in Figure 3).

B. Multi-objective evolution

More advanced multi-objective evolution was performed
using image-based model shaping. The goal is to make a
complex skyscraper whose vertical projection is as close as
possible to a triangular boundary. The objectives are (i) reach
a target height of 1500, (ii) maximize unique normals, and (iii)
fit the top-view projection of the model to a given shape mask.
The target height is actually higher than necessary, especially
relative to the dimensions of the shape mask. Models even
half this height will take the form of high towers. Note that
the shape objective inhibits the maximizing of normals, since
unbounded models are more likely to have many normals.
A distance measure is used to evaluate the proximity of
model heights to the target height. This will penalize models
shorter and taller than the target. The vertical projection shape
used is the equilateral triangle in (e). The fitness test for
shape fitting first renders the model using an orthographic
projection down the Y (vertical) axis. The resulting bitmap
is then compared to the target triangle. A perfect score is if
the rendered model image corresponds exactly to the triangle.
Otherwise, the percentage of erroneous pixels are determined.
These are pixels within the triangle that are not rendered, or
pixels rendered outside the triangle. Normalized sum rank is
used for scoring. The base model that the grammar works from
is a box 50 units high, laying within the triangle.

A few results are shown in Figure 5. The tower (a) is one

(a) Tower. (b) Detail. (c) Vertical projection.

(d) Spiral tower. (e) Vertical projection target shape.

Fig. 5. Multi-objective results: maximize normals, reach target height, shape
fit vertical projection.

of the more pleasing solutions. Its vertical projection in (c)
conforms fairly well to the target shape. Although its height
is just 314, which is well below the target of 1500, its ability
to conform to the vertical shape means that a tower structure
has evolved. Its normal count is 538, due to rotated structures
(see detail in (b)). For comparison, another evolved solution
is in (d). Its height (189.8) and shape scores are much weaker,
but its normal count of 1610 is very high. It also shows an
intriguing “conch shell” shadow.

C. Comparing multi-objective strategies

TABLE III
MULTI-OBJECTIVE COMPARISON STATISTICS: SOLUTION QUALITY

(N=NORMALS, H=HEIGHT)

Norm. sum rank Sum rank Pareto
N H N H N H

µ 1442.7 248.6 1332.6 342.8 1295.2 3165.5
σ 1191.0 237.8 1087.9 272.6 1108.5 15901.3
min 90 2.2 6 2.5 92 3.8
max 4098 650.0 3340 683 4961 138215

The multi-objective runs in Section IV-B use variations
of sum rank scoring. To see how sum rank results compare
with those using the more common Pareto ranking technique,
runs were performed using the objectives of maximizing
unique normals, reaching a target height of 750, and constrain
the model to a given square boundary. A total of 10 runs
were done for each of sum rank, normalized sum rank, and

Fig. 6. Scatter plot of all multi-objective solutions.

Fig. 7. Comparing sum rank and Pareto. Tower in (a), with detail in (b),
from a normalized sum rank. Model in (c) is a Pareto outlier with low height
and normal scores.

TABLE IV
GRAMMAR FOR TOWER IN FIGURE 7(A).

::: predefined variables
attr baseHeight = 50

::: Evolved rules...
Lot -->
extrude(baseHeight) [s(1.72999, 1.72999, 0.742476)
[r(scopeCenter, 0, 157*split.index/split.total, 0)
[split(y){ baseHeight : RuleC }*] s(0.362006, 1.72999,
1.72999) RuleC s(0.362006, 1.72999, 0.742476) s(0.362006,
1.72999, 1.72999) [split(y){ baseHeight : [RuleB
s(0.362006, 1.72999, 0.742476) s(0.362006, 1.72999,
0.742476) RuleC [RuleB RuleC s(1.72999, 1.72999,
0.742476) RuleC RuleC]] }*] s(0.362006, 1.72999,
1.26481) RuleC RuleC RuleC] s(0.362006, 1.72999,
0.742476) RuleC RuleC]

RuleA --> r(scopeCenter, 0, 183* split.index/split.total, 0)

RuleB -->
[[r(scopeCenter, 0, 283*split.index/split.total, 0)
split(x){ baseHeight : r(0, 108*split.index/split.total,
0) }* [[r(scopeCenter, 0, 283*split.index/split.total,
0) split(x){ baseHeight : r(0, 108*split.index/
split.total, 0) }* split(y){ 18 : RuleA }* r(scopeCenter,
0, 279* split.index/split.total, 0) RuleA] split(x){
baseHeight : RuleA } split(y){ 43 : [RuleA split(y){
baseHeight : RuleA }] }*] r(scopeCenter, 0, 279*
split.index/split.total, 0) RuleA] split(x){ baseHeight
: RuleA } split(y){ 43 : [r(scopeCenter, 0, 279*
split.index/ split.total, 0) RuleA split(y){ baseHeight
: RuleA }] }*]

RuleC --> RuleB split(x){ 16 : RuleB }* split(x){ baseHeight
: RuleA }*

::: Unused rules...
RuleD --> r(scopeCenter, 0, 281*split.index/split.total, 0)
RuleE --> r(scopeCenter, 0, 252*split.index/split.total, 0)
RuleF --> s(1.13894, 0.433669, 0.554051)
RuleG --> s(0.284231, 1.81872, 0.815832)

Pareto ranking. 10 elite individuals were saved from each run,
resulting in 100 solutions from each of the 3 strategies.

After completing the runs, duplicate solutions, as indicated
by identical fitness vectors, were pruned from the 100 solutions
from each strategy. This resulted in 52 normalized sum rank,
38 sum rank, and 83 Pareto solutions. This immediately
showed that the sum rank strategies were converging faster
than the Pareto runs, the latter having significantly more
genetic diversity. In hindsight, a stronger diversity penalty than
what we used would have been useful.

Statistics for the normal and height scores for the pruned
solutions are shown in Table III, and a scatter plot for all the
solutions is in Figure 6. A t-test shows that the normalized
sum rank results are statistically significant with respect to
the height scores, in comparison to the sum ranks (92%
significance). T-tests also show that both sum rank strategies
produce statistically significant compared to the Pareto results,
with respect to height scores (95% significance). Unique to the
Pareto runs were models with heights far above the target of
750. These are easily seen in the top portion of the scatter
plot. The strategies are generally comparable with respect to
normal scores.

Not shown in the table is that Pareto runs were poor
performers on the boundary condition. 60 out of 83 (or 72%)

of the unique Pareto solutions violated the boundary test. In
comparison, only 3 out of 52 normalized sum ranks failed the
boundary test, while none of the sum rank solutions violated
it. The Pareto boundary violators help allow many outliers,
including those with excessive heights.

A few examples of results are shown in Figure 7. The tower
in (a), with detail in (b), is a good quality solution from a
normalized sum rank run. It has 1624 normals, its height is
within 24 units of the 750 target altitude, and it lays within
the boundary. Its evolved grammar is shown in Table IV. The
Pareto solution in (c) is an example of an outlier. It has a good
score only in the boundary condition, while having only 222
normals and a height of 99.

We generally found that the normalized sum rank gener-
ates the highest quality solutions. Non-normalized sum rank
solutions tend to be more idiosyncratic, having converged to
more unusual areas of the search space. Pareto results tend to
be the most varied, and outliers are common. Although our
insights are based on limited runs, we conjecture that these
results would be more apparent with larger populations and
longer runs.

V. CONCLUSION

A method for evolving 3D building models using fully auto-
mated fitness evaluation has been presented. After specifying
geometric criteria to be used as building specifications, GP
evolves shape grammars whose phenotypes are 3D models
that hopefully satisfy the specifications. A spectrum of pos-
sible building shapes will arise in this approach, depending
upon the number and scope of the supplied geometric con-
straints. Our experience is that a balance must be maintained
between under- and over-specifying building requirements.
Multi-objective evaluation is particularly useful in this problem
domain, since it does not introduce user bias as occurs with
single-objective evaluation with weights. The shape grammar
language should be tailored to conform to the styles of building
structures to be evolved.

Our approach is intended to be a means for exploring
possible building structures, for use as concepts and inspi-
ration by the user. Even when a solution satisfies the fitness
criteria, however, it still may be unsatisfactory, due to a user’s
subjective opinions and aesthetic sensibilities. There is always
be a large degree of subjectivity in art and architecture. In this
case, it is up to the user to inspect solutions and select those
that are most appealing. An architect might take an evolved
model, and use it as a conceptual design basis for a more
serious and functional end result. Alternatively, the models
can be suitable as-is for a computer animation or video game.

Our experiments used fitness objectives based on rudimen-
tary geometric properties of 3D models. We were primarily
motivated to evolve complex models, as determined by high
unique normal counts. This usually results in models that are
visually engaging, albeit perhaps impractical as real structures.
Of course, many other styles of models are evolvable, should
suitable fitness criteria be used. We have not considered
functional requirements here, and it is indeed possible to do so.

Structural analyses and other functional considerations might
be included during fitness evaluation. In terms of functional
usage considerations, an approach similar to that used by
Flack for 2D floor plan evolution could be adopted [34].
He uses a number of efficiency considerations and room
assignment analyses during evaluation of house floor plans.
Similar analyses could be applied to 3D building models, to
consider cost, structural integrity, component usage, energy
efficiency, building codes, and other factors.

Fully automated evolution of 3D structures has not been
extensively examined in evolutionary design. Rather, most
research uses interactive evolution of 3D models, possibly
guided by automatic fitness scoring of the population. For
example, Genr8 evolves 3D structures using interactive ge-
netic programming [18]. Hornby’s work in evolution of table
designs uses automatic evaluation of geometric and physical
properties, which are similar in spirit to the geometric analyses
we use [23]. O’Neill et al.’s work in using genetic program-
ming with 2D [19] and 3D [20] shape grammars also shares
similarities with ours. Their 3D application requires interactive
guidance by the user.

There are many future directions for this work. More
advanced evaluation criteria are possible, including functional
and structural evaluations. Enhancements and fine-tuning of
the shape grammar would permit evolution of particular fami-
lies of building shapes and styles. An interface that combines
interactive and automatic evolution is worth considering. This
would allow a user to become a more active participant in the
evolutionary process, without discarding automatic evolution
as a primary evolutionary force.

ACKNOWLEDGMENT

Research partially supported through NSERC Operating
Grant 138467.

REFERENCES

[1] F. D. Ching, Architecture - Form, Space, and Order. Wiley, 2007.
[2] Vitruvius, Ten Books on Architecture. BiblioLife, 2009.
[3] G. Stiny, “Introduction to shape and shape grammars,” Environment and

Planning B, vol. 7, pp. 343–351, 1980.
[4] ——, “Kindergarten grammars: designing with froebel’s building gifts,”

Environment and Planning B: Planning and Design, vol. 7, no. 4, pp.
409–462, July 1980.

[5] G. Stiny and J. Gips, “Shape grammars and the generative specifica-
tion of painting and sculpture,” in Information Processing ’71, C. V.
Friedman, Ed., Amsterdam, 1972, pp. 1460–1465.

[6] M. Tapia, “A visual implementation of a shape grammar system,”
Environment and Planning B: Planning and Design, vol. 26, pp. 59–
73, 1999.

[7] N. Ando, N. Yamahata, S. Masumi, and M. Chatani, “Shape grammar
and form properties of architectural figures,” Journal for Geometry and
Graphics, vol. 5, no. 1, pp. 23–33, 2001.

[8] “CityEngine,” 2011, last accessed January 4, 2011. [Online]. Available:
http://www.procedural.com/

[9] P. Muller, P. Wonka, S. Haegler, A. Ulmer, and L. V. Gool, “Procedural
modeling of buildings,” in Proc. SIGGRAPH ’06. New York, NY, USA:
ACM, 2006, pp. 614–623.

[10] Y. I. H. Parish and P. Müller, “Procedural modeling of cities,” in SIG-
GRAPH ’01: Proceedings of the 28th annual conference on Computer
graphics and interactive techniques. New York, NY, USA: ACM, 2001,
pp. 301–308.

[11] J. Halatsch, A. Kunze, and G. Schmitt, “Using shape grammars for
master planning,” in Design Computing and Cognition ’08. Springer,
2008.

[12] P. Bentley and D. Corne, Creative Evolutionary Systems. Morgan
Kaufmann, 2002.

[13] J. Romero and P. Machado, The Art of Artificial Evolution. Springer,
2008.

[14] R. Kicinger, T. Arciszewski, and K. Jong, “Evolutionary computation
and structural design: A survey of the state-of-the-art”,” Computers and
Structures, vol. 83, no. 23–24, pp. 1943–1978, 2005.

[15] J. S. Gero, S. J. Louis, and S. Kundu, “Evolutionary learning of novel
grammars for design improvement,” AIEDAM, vol. 8, pp. 83–94, 1994.

[16] P. von Buelow, Genetically Engineered Architecture - Design Explo-
ration with Evolutionary Computation. VDM Verlag, 2007.

[17] H. Jackson, “Toward a symbiotic coevolutionary approach to architec-
ture,” in Creative Evolutionary Systems. Academic Press, 2002.

[18] M. Hemberg, U.-M. O’Reilly, A. Menges, K. Jones,
M. da Costa Goncalves, and S. R. Fuchs, “Genr8: Architects’
experience with an emergent design tool,” in The Art of Artificial
Evolution. Springer, 2008.

[19] M. O’Neill, J. Swafford, J. McDermott, J. Byrne, A. Brabazon, E. Shot-
ton, C. McNally, and M. Hemberg, “Shape grammars and grammatical
evolution for evolutionary design,” in Proc. GECCO ’09. ACM, 2009,
pp. 1035–1042.

[20] M. O’Neill, J. McDermott, J. Swafford, J. Byrne, E. Hemberg, and
A. Brabazon, “Evolutionary design using grammatical evolution and
shape grammars: designing a shelter,” Intl. Journal of Design Engineer-
ing, vol. 3, pp. 4–24, 2010.

[21] C. Soddu, “Recognizability of the idea: The evolutionary process of
argenia,” in Creative Evolutionary Systems. Academic Press, 2002.

[22] J.S.Gero and R. Sosa, “Complexity measures as a basis for mass
customization of novel designs,” Environment and Planning B, vol. 35,
no. 1, pp. 3–15, 2008.

[23] G. Hornby, “Functional scalability through generative representations:
the evolution of table designs,” Environment and Planning B, vol. 31,
no. 4, pp. 569–587, 2005.

[24] C. Jacob, “Evolving evolution programs: Genetic programming and L-
systems,” in Proc. Genetic Programming 1996. MIT Press, 1996, pp.
107–115.

[25] D. Beaumont and S. Stepney, “Grammatical evolution of l-systems,” in
Proc. CEC 2009. IEEE Press, 2009, pp. 2446–2453.

[26] C. Coia, “Automatic evolution of conceptual building architectures,”
Master’s thesis, Department of Computer Science, Brock University,
2011, (expected).

[27] R. Flack, “Robgp - robust object based genetic programming system,”
Dept of Computer Science, Brock University, Tech. Rep., Nov. 2010.
[Online]. Available: http://sourceforge.net/projects/robgp/

[28] “Collada,” 2011, last accessed Jan 5, 2011. [Online]. Available:
http://www.collada.org/

[29] J. Koza, Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, 1992.

[30] C. M. Fonseca and P. J. Fleming, “An overview of evolutionary al-
gorithms in multiobjective optimization,” in Evolutionary Computation,
1996, pp. 3(1):1–16.

[31] Coello, C. Coello, Lamont, G.B., and Veldhuizen, Evolutionary Algo-
rithms for Solving Multi-Objective Problems, 2nd ed. Kluwer, 2007.

[32] P. Bentley and J. Wakefield, “Finding acceptable solutions in the
pareto-optimal range using multiobjective genetic algorithms,” in Soft
Computing in Engineering Design and Manufacturing. Spinger Verlag,
1997.

[33] S. Bergen and B. Ross, “Evolutionary Art Using Summed Multi-
objective Ranks,” in Genetic Programming - Theory and Practice.
Springer, May 2010.

[34] R. Flack, “Evolution of architectural floor plans,” Master’s thesis,
Department of Computer Science, Brock University, 2010.

