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Abstract
Computational tools for analyzing biochemical phenomena are becoming increasingly
important. Recently, high-level formal languages for modeling and simulating bio-
chemical reactions have been proposed. These languages make the formal modeling
of complex reactions accessible to domain specialists outside of theoretical computer
science. This research explores the use of genetic programming to automate the con-
struction of models written in one such language. Given a description of desired time-
course data, the goal is for genetic programming to construct a model that might gen-
erate the data. The language investigated is Kahramanoğullari’s and Cardelli’s PIM
language. The PIM syntax is defined in a grammar-guided genetic programming sys-
tem. All time series generated during simulations are described by statistical feature
tests, and the fitness evaluation compares feature proximity between the target and
candidate solutions. Target PIM models of varying complexity are used as target ex-
pressions for genetic programming. Results were very successful in all cases. One rea-
son for this success is the compositional nature of PIM, which is amenable to genetic
program search.

Keywords
Genetic programming, grammar-guided, biochemical modeling, time-series, statistical
features, process algebra.

1 Introduction

Systems biology involves the mathematical and computational modeling of biochemi-
cal systems (Bower and Bolouri, 2001; Fisher and Henzinger, 2007; Tkacik and Bialek,
2009). One such application area is functional genomics, which is concerned with the
modeling of gene and protein interactions, usually with respect to time. Research is
ongoing for new computational tools and techniques that will aid in the automation
of effective models for increasingly complex biological phenomena (Markowetz, 2005;
Markowetz and Spang, 2007; Chou and Voit, 2009; Hecker et al., 2009). The practical
benefits of such tools are many. Given laboratory data such as time-varying protein and
enzyme levels measured for biochemical reactions, the ability to automatically deter-
mine viable genetic, biochemical, and cellular mechanisms that might give rise to them
is a valuable analytical tool. Furthermore, novel discoveries might be found with these
tools, since new mechanisms might arise that were not previously considered by hu-
mans. When this technology matures, it should be possible to specify to the computer
the desired end result of a biological system, for example, particular time-course pat-
terns of proteins. Potential biological models that might give rise to these requirements
could be discovered by the computer system, to could be given further consideration
by the biologist.
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This paper uses genetic program to automatically construct models of biological
reactions. A new modeling language by Kahramanogullari and Cardelli (2009) called
PIM (Programming Interface for Modeling) is considered. PIM describes biochemical
reactions at a high-level, in which basic interactions between species (proteins, genes)
and their binding sites are described. The interpretation of PIM models results in a
set of time series plots. These plots denote the level of interactions between various
components of the biochemical molecules being modeled. The stochastic nature of the
language means that separate simulations of the same PIM model can produce differ-
ent behaviors. In fact, depending on the model, behaviors can vary greatly between
simulations. Therefore, time series are characterized by statistical features, which per-
mit a variety of stochastic and chaotic behaviours to be represented. Fitness evaluation
then finds a closeness of fit between the statistical features of candidate PIM models
and some target behavior of interest. The PIM language itself is implemented within a
grammar-guided genetic programming systems. This permits a nearly direct transla-
tion between PIM expressions and GP grammar trees. It also permits useful grammat-
ical constraints to be specified, for controlling the search space complexity.

The main motivation behind this research is to investigate the effectiveness of ge-
netic programming in evolving models written in the new generation of biological
modeling languages such as PIM. Although the target models investigated here are
necessarily limited in scope and realism, being able to successfully reconstruct them
with genetic programming shows the promise of this technology in future applications.
Automatically synthesizing viable models for real-life laboratory data is an important
application area for computational intelligence.

The paper is organized as follows: Section 2 reviews related research that uses ge-
netic programming for biochemical modeling. The PIM language is reviewed in Section
3, and its implementation for the genetic programming system is discussed in Section
4. Model evaluation strategies are outlined in Section 5. Experiments are described
in Section 6, and the results are shown in Section 7. A discussion of the results, and
comparisons with related work, are given in Section 8. Concluding remarks are given
in Section 9.

2 Related Work

Biological network models can be classified as being deterministic or stochastic. De-
terministic models are those whose behaviors are determined entirely by the starting
environment. In an evolutionary computation setting, the target behavior’s determin-
ism can be exploited during fitness evaluation, by performing error fitting between the
time series curves of the candidate process and the target. Deterministic bio-networks
have been evolved with genetic algorithms, for example, networks represented by Petri
nets (Kitagawa and Iba, 2003), MP systems (Castellini and Manca, 2009), and S-systems
(Kikuchi et al., 2003). GP infers deterministic metabolic networks from target time se-
ries, using an intermediate representation having the form of an artificial electronic
circuit (Koza et al., 2000). GP is used to evolve gene regulatory networks taking the
form of nonlinear differential equations (Sakamoto and Iba, 2001; Ando et al., 2002;
Streichert et al., 2004; Cho et al., 2006; Floares, 2008; Qian et al., 2008). GP has also been
used to evolve S-system models (Wang et al., 2007). Banzhaf (2003) develops a concep-
tual model of artificial regulatory networks using genetic programming. Lee and Yang
(2008) combine GP and neural networks to evolve gene regulatory networks.

Stochastic networks incorporate a probabilistic element to the network semantics,
to account for the stochastic noise seen in biological systems (Raj and van Oudenaar-
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Model ::= Sentence ... Sentence
Sentence ::= site on species Operator site on species {Rate} {Conditions} |

species becomes species {Rate} |
species decays {Rate}

Operator ::= associates | dissociates |
gets phosphorylated | gets dephosphorylated

Rate ::= with rate float
Conditions ::= Condition ... Condition
Condition ::= site on species is bound | site on species is unbound

Table 1: PIM syntax

den, 2008). This stochastic noise makes the characterization of behavior less straight-
forward than with deterministic processes, given the (often significant) variability seen
during separate simulations. Genetic algorithms are used to evolve stochastic bio-
networks in Drennan and Beer (2006) and Chu (2007). Stochastic oscillating behav-
iors are evolved using GP in Leier et al. (2006), Imada and Ross (2010) and Ross (2010).
Fuzzy rules are evolved with GP in Linden and Bhaya (2007), which although not prob-
abilistic, does account for stochastic behavior.

The problem of evolving stochastic bio-networks is closely related to the more gen-
eral problem of evolving models for noisy, chaotic time series. Although such time se-
ries may be deterministic in origin, techniques for handling noise are often applicable
to stochastic models as well. Examples of the use of GP in this area include (Ange-
line, 1998; Zhang et al., 2004; Rodriguez-Vazquez and Fleming, 2005; Schwaerzel and
Bylander, 2006; Borrelli et al., 2006; Zhang et al., 2004).

3 The PIM Language

Process algebra are mathematical languages used to model and analyze concurrency
(Hoare, 1985; Milner, 1989). Specialized stochastic process algebra have been derived,
such as the stochastic pi-calculus, which have been found suitable for modeling biologi-
cal networks (Priami, 1995; Blossey et al., 2006; BioSPI, 2010). The stochastic pi-calculus
features a quantitative characterization of the state of a model, since quantities of com-
ponents denoting molecules, proteins, or gene expression levels can be measured and
displayed during a simulation. This behavior takes the form of time series plots. This
has a correspondence to equivalent time-course behaviors measured in the laboratory.

One disadvantage of process algebra is that they are esoteric formalisms that are
challenging to learn and master, even for seasoned computer programmers. The major-
ity of practitioners using them are theoretical computer scientists specializing in pro-
cess algebra research. Needless to say, most biologists do not have the time nor desire
to master such arcane formal languages.

In an effort to make biochemical modeling accessible to those in the natural sci-
ences, higher-level biological modeling languages have been proposed (Blossey et al.,
2006; Danos et al., 2007; Guerriero et al., 2007; Dematte et al., 2008; Kahramanogullari
and Cardelli, 2009). These languages discard the descriptive generality and computa-
tional power of pure process algebras, in favor of domain-oriented languages that de-
scribe application problems at a higher level. These languages are designed to naturally
express particular classes of problems in biology and chemistry, using domain-based
nomenclatures familiar to domain experts.
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One example of a language for biological modeling is the PIM language (Kahra-
manogullari and Cardelli, 2009) (Figure 1). PIM describes basic reaction events at a
high level. For example, sentences describe how specific proteins may interact at par-
ticular binding locations, and the conditions under which such interactions proceed.
PIM is also compositional, so that models can be refined by adding additional terms
and sentences. Once a model is described in PIM, a PIM translator will convert it to a
lower-level stochastic pi-calculus system, which can then be simulated by a stochastic
pi-calculus interpreter. The time-series curves are normally interpreted as quantities
of molecules (components, genes,...) having particular interactions in the system as a
whole (more later). PIM simulations therefore exploit the computational advantages
of the stochastic pi-calculus, as resulting time-course plots emulate the stochastic and
chaotic characteristics seen in real biological systems. However, PIM models are con-
siderably simpler to specify and understand than models written in lower-level process
algebra.

The following summary of PIM is necessarily of limited depth; please refer to
Kahramanogullari and Cardelli (2009) for details.

In Figure 1, a model is composed of a number of sentences. Each sentence de-
scribes a basic reaction event. Reaction events occur on species, which denote specific
kinds of molecules (proteins, genes). The locations on species at which events occur are
their sites. Species and sites are denoted by problem-specific labels. The following re-
action events are possible. An association event is when a site on a species binds with a
site on another species. Dissociation is when such an association is undone. Phosphory-
lation and its converse are similar, except the association happens with a phosphate on
the species and site specified. Transformations occur when a species becomes another
species. Degradation is when a species decays. All these events happen at particular
frequencies or rates. If a rate is specified, a floating-point number species its frequency
(higher numbers are more frequent). The default rate is 1.0. Finally, condition terms
can be used, which act as constraints for sentences. Conditions specify that particular
sites on a species should be bound or unbound before that event can occur.

An example of a sentence is the following:

site a on ProteinA associates site b on ProteinB with rate 2.5
if site b on ProteinA is bound

ProteinA and ProteinB are labels describing specific protein species of interest. Site “a”
on ProteinA is identified as a site that may bond with site “b” on ProteinB with a rate
of 2.5. This event only happens when site b on ProteinA is in a bound state. Note that
site labels are unique to species, and so the two instances of site “b” in the sentence are
referring to different locations.

Although the syntax of PIM sentences is very straight-forward, it is still possible
that models can be ill-formed. A number of correctness conditions are therefore im-
posed on sentences in a model, to ensure that the model is definable:

1. Species in conditions are referred to in body of sentence.

2. No contradicting conditions in a sentence.

3. Sites in the conditions are defined elsewhere in the model.

4. Associations refer to unbound species.
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5. Dissociations refer to bound species.

6. Transformations refer to unbound species.

7. Conditions do not overlap between sentences.

For example, condition 2 refers to the situation in which two conditions in a sentence
are contradictory (“site b on B is bound and site b on B is unbound”), since the meaning
cannot be determined. Note that adhering to these conditions does not ensure that the
model being written is in any sense correct with respect to the biological phenomenon
being studied. Rather, these correctness conditions discourage ambiguities that are
detectable via syntactic analysis of the model.

A complete PIM model for some phenomenon of interest consists of multiple sen-
tences. The intension is that the sentences describe all the aspects of interest in a given
biochemical reaction. The model will also include a statement that bootstraps the simu-
lation, by specifying the total initial quantities of base species, for example, 1000 copies
of two proteins:

1000@ ( ProteinA | ProteinB )

An adequate description of PIM’s model execution semantics is certainly beyond the
scope of this paper. The essence of the semantics is that the sentences contribute to
the overall simulation according to the quantities of species, the satisfaction of condi-
tions, and rates of activity. The execution engine (described below) is founded on Gille-
spie’s algorithm, which is well-known in the field of chemical simulations (Gillespie,
1977). The effect of running Gillespie’s algorithm on the PIM model is that stochastic
behavior arises, with characteristics that are reminiscent of what is seen in laboratory
experiments.

The procedure for performing PIM simulations is as follows. The model is read
into a PIM translator (Kahramanogullari and Cardelli, 2009; Kahramanogullari, 2010).
Presuming the model adheres to the correctness conditions, it is then translated into an
equivalent model written in the stochastic pi-calculus. This is then interpreted using
SPIM – a stochastic pi-calculus interpreter (Phillips and Cardelli, 2004; Phillips, 2007).
SPIM execution results in a set of time-series plots (Figure 4). The number of plots
depends on the number of active sites in the model. A species S with k sites will result
in 2k plots. Each plot represents a combination of the sites defined on S (in other words,
the powerset of the sites). For example, if S has 3 sites a, b, and c, then the possible
combinations are {ε, a, b, c, ab, ac, bc, abc}. The plot denotes a time-course measurement
of the quantity of instances of a combination of sites being simultaneously in a bound
state. The biological interpretation of this plot is that it represents the quantity changes
over time of the number of molecules having that particular physical state during a
reaction.

4 A grammatical definition of PIM for genetic programming

DCTG-GP is a grammar-guided genetic programming system (Ross, 2001). The key
advantage of grammar-guided GP is the ease in which new languages can be defined
for genetic programming. Appropriate grammatical constraints to inhibit search are
also readily imposed. The system uses a definite clause translation grammar (DCTG)
to define target languages. A DCTG is a logic-based attribute grammar, which permits
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1 model ::= sentences

2a sentences ::= sentence
2b sentences ::= sentence, sentences

3a (assoc, dissoc) sentence ::= site, species, site, species, rate, conditions, detach
3b (phos, dephos) sentence ::= site, species, rate, conditions, detach

3c (trans) sentence ::= species, species, rate
3d (decay) sentence ::= species, rate

4a detach ::= null
4b detach ::= rate, conditions

5a rate ::= null
5b rate ::= float

6a conditions ::= null
6b conditions ::= site, species, condtype

7 condtype ::= bound | unbound

Table 2: Context-free grammar definition of PIM.

syntactic and semantic definitions for a language to be defined together. DCTG-GP is
implemented in Prolog (Clocksin and Mellish, 1994).

The context free grammar definition (CFG) of PIM used in the DCTG-GP system is
in Table 2. This grammar is used during random GP tree generation and reproduction
operations, and ensures the grammatical integrity of all GP expressions evolved during
a run. The grammar shown is a simplification of the actual definition file used, with
implementation details omitted. The rules for site, species and float are not shown,
as they simply return legal values from user-supplied lists or ranges. Note that the
DCTG-GP definition does not require the literal syntactic definition of PIM from Table
1. Rather, the CFG represents the argument structures of sentences, which will be rep-
resented as branches in the grammatical GP tree. For example, in rule 3c, the relevant
information for a transformation sentence is the two species types in the transform, and
the optional rate value. In the semantic portion of the DCTG (not included), the actual
values for labels and operator types are determined and stored in the GP tree. When
a PIM model is to be interpreted for fitness evaluation, internal data structures used in
the rules are rewritten when required in the actual PIM syntax, as used by an external
PIM translator application.

A few aspects of the grammar in Table 2 should be clarified. Firstly, one result of
the correctness conditions in Section 3 is that a dissociation sentence is only possible if
its association sentence counterpart has been defined. Therefore, the detach reference
at the end of rule 3a simplifies the construction of sensible models. When detach is
invoked in the grammar during tree generation, either detachment (dissociation) will
not occur (4a) or will occur (4b). In the latter case, a new PIM sentence will be con-
structed, with the same site and species pairs in the original rule 3a, but with possibly
new conditions. Similar reasoning occurs with dephosphoration in rule 3b. Secondly,
the implementation of rules 3a and 3b ensure that conditions use species referred to in
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the body of the sentences (see discussion below). Similarly, rule 3c ensures that a trans-
formation is constructive, by using two different species in its arguments. Lastly, there
is a maximum of one positive and negative condition in a sentence. Although multiple
conditions are easy to define, the experiments in Section 6 use single conditions only.
Multiple conditions also increase the time for correctness testing, which is discussed
next.

The grammar defines grammatically correct PIM models. Nevertheless, these
models might not respect the correctness conditions in Section 3. A few grammar rules
(3a and 3b) ensure correct species references in conditions, which addresses condition
1. However, other errors can arise, and incorrect models will be uninterpretable. There
are a number of possible strategies for dealing with this:

1. Evolution: The fitness function can penalize erroneous models.

2. Grammar: Incorporate the correctness conditions into the grammar.

3. Expression correction: Correct errors before evaluating models.

Using evolution is the simplest approach, as it requires little effort to implement. Of
course, this may be hugely detrimental to evolutionary effectiveness, since a majority
of models may be erroneous. Almost the entire population would have equally terrible
fitness scores, and effective search would be impossible. Defining a more sophisti-
cated grammar seems appealing, especially since the correctness conditions are syntac-
tically detectable. Unfortunately, this is very difficult to implement with the context-
free grammar used in DCTG-GP. It would require a large number of state values to be
passed between grammar rules, and the resulting complexity of the grammar would
be prohibitive.

Expression correction is the most practical solution to the correctness issue. Ex-
pression correction is applied to the initial PIM model generated from a GP tree, to
correct violations of the correctness conditions. This is done immediately before model
interpretation during fitness evaluation. The corrections are not saved back into the
tree, nor retained by the GP system. Because the correction procedures are determin-
istic, however, an erroneous expression will always have the identical corrections ap-
plied to it. Deterministic correction is important for evolution, because it provides
stable chromosomes for search. The correction procedures also apply some expression
editing that is outside the scope of the correctness conditions, in order to improve the
likelihood of suitable models being generated by GP.

A number of parameters are defined by the user, to help specify the desired size
and complexity of the evolved PIM model. The user supplies a list of species labels
(S), and a list of site labels (L). The assumption is that any desired model evolved by
GP should contain all the species in S and sites in L. Thus these lists should be the
minimum-sized sets of labels required, assuming this is known. An optional minimum
connectivity list (C) can be supplied. It indicates the minimum number of distinct sites
that should ideally be used by each species. If C is not given, correction steps using
it will be skipped. Note that the connectivity in generated models may not adhere to
those in C, and may use fewer species and sites than in S and L. However, models will
never use more species and sites than are given in these lists.

The following expression corrections are applied to a model, in the order given:

1. Correct missing sites: Each species is inspected. If its minimum connectivity spec-
ified in C has not been met, then duplicate site references within it are replaced
with missing sites.
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2. Correct bad conditions: For each condition in a sentence, its site should be one that
is paired with the species in another sentence. If not, it is corrected to be so. If
the correction cannot be done, that condition is removed. (Note that the grammar
ensures the correctness of species in conditions.)

3. Reduce overlapping conditions: If one sentence S1 has conditions that are a subset of
those from another sentence S2, then remove sentence S1. Should the deleted S1

have a rate specified, and S2 not have a rate, then S2 inherits the rate from S1.

After application of these steps, conditions 1 through 6 in Section 3 are respected by
the model. Condition 7, however, is only partially addressed by the overlapping con-
dition reduction (item 3). Overlap reduction removes the majority of overlaps seen in
the experiments, especially since single terms in conditions are used. Although a com-
plete overlap reduction algorithm is possible, it would be expensive to implement for
the little gain obtained. Therefore, when a model with overlapping conditions is not
corrected by the overlap reduction step, fitness evaluation will penalize it.

5 Model evaluation

5.1 Statistical feature evaluation

PIM models exhibit stochastic behaviours, and a model may generate different time se-
ries behaviors during each simulation. In fact, some models can produce very chaotic,
noisy behaviors. Consequently, standard techniques such as measuring the sum of er-
rors between target and candidate time series are unlikely to be effective.

A more effective strategy is to use statistical features to characterize time series
behaviors (Imada, 2009; Imada and Ross, 2010). A suite of different statistical feature
tests taken from the literature were implemented (Nanopoulos et al., 2001; Wang et al.,
2006). However, the use of too many feature tests is not advisable. Extraneous features
will result in an intractably large search space. Some features impart little germane in-
formation about a desired behavior, and their inclusion will act as distractive decoys to
the search. Note that feature selection for time series is a non-trivial and open research
problem in data mining and time series analysis (Liu and Motoda, 2007). A solution to
the problem would be of significant interest to stock market investors.

After studying the feature characteristics for the target models used in this pa-
per, the model of interest were adequately characterized by a small set of basic feature
tests: average, standard deviation, and skew. Average and standard deviation are well-
known. Skew is the measure of asymmetry of a distribution of data values. A negative
skew means the left tail is longer; a zero skew means the distribution is symmetric.
Examining the target plots in Figure 2, these three features were determined to be ade-
quate for describing the shapes of the curves. Although other feature tests may perhaps
be more appropriate, it is not a goal here to determine the optimal set of features to use.

The next issue to consider is the determination of which time-series plots from a
PIM model simulation are actually necessary for fitness evaluation. As discussed in
Section 3, a species having k sites results in 2k separate time-series curves. Considering
that each curve is also denoted by multiple feature tests, a combinatorial increase in
evaluation criteria can result. The selection of particular time-series curves to use for
an experiment is subjective and problem-specific, and depends on the complexity of
the model being considered, and the behavior of the curve in question. As a rule of
thumb, it is important to evaluate curves that map to the complexity of the model, so
that GP will evolve a model with adequate numbers of species and sites. For example,
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if 3 sites are required in the model, then selecting a few curves that denote combinations
of these three sites is sensible. Fewer curves are preferable as well, to keep the search
space tractable.

Some PIM models may be erroneous (overlapping conditions), and therefore un-
interpretable. Since they have no time-series plots to evaluate, they are assigned a high
penalty value. However, other PIM models may be correct and interpretable, but do
not have the correct number of species, or level of site connectivity. Models that are too
small will generate fewer time plots than the target model, and some specific plots to
be evaluated might not exist. In such cases, a penalty will be assigned for each missing
plot. On the other hand, when models happen to be larger than the target model, penal-
ties will not be assigned, and we will rely on feature matching by GP to hone towards
the desired solutions.

The method by which scores and penalties are assigned during fitness evaluation
is the topic of the next section.

5.2 Fitness score assignment

A multi-objective approach to fitness evaluation is used here (Coello et al., 2007). The
interpretation of a PIM model results in a number of time series curves, and each curve
is then assigned some feature values that characterize it. The goal is to construct a PIM
model whose set of feature values closely matches those of a target behavior. However,
statistical features can vary widely in range and sensitivity. Time series curves can also
differ substantially between each other. A multi-objective evaluation strategy prevents
the need to manually reconcile the set of feature values with one another.

An approach to multi-objective scoring called sum of weighted ranks is used.
It was originally proposed by Bentley and Wakefield (1997) for handling high-
dimensional multi-objective problems. Consider a population of size N having mem-
bers M1, ...,MN . Each M j has a computed feature vector < F j

1 , ..., F j
K >, where

there are K features of interest. A target behavior is characterized by a feature vector
<T1, ..., TK >. The absolute errors are first calculated for the population:

Ej = < |F j
1 − T1 |, ..., |F j

K − TK | > 1 ≤ j ≤ N

If any feature value is missing due to a missing time series plot, then a penalty value
is inserted for that absolute error. Then the ranks of the error are determined for the
population. A rank is a relative integer ordering of values within one objective, where
the smallest magnitude value is assigned rank 1, the second is assigned rank 2, and
so on. Tied magnitudes receive the same rank. This results in rank scores for each
individual:

Rj = < r1, ..., rK >

where 1 ≤ ri ≤ N . The sum of ranks score Sj for each individual in the population is
then:

Sj =
K∑

i=1

wiri

where wi is a user-supplied weight value. If the weights are omitted, then the default
weight wi = 1 is used. These Sj scores are then used as fitness values by evolution,
where smaller values are preferred. The sum of ranks is equivalent to an average of
ranks, except that a final scaling by the number of ranks is not performed. When a
tournament selection is performed, as done here, both approaches are equivalent in
their effect.
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Pareto Sum ranks Normalized
Fitness vector Rank vector Rank Sum Rank Sum Rank

(1, 9, 5, 4) (1, 1, 2, 2) 1 6 1 0.63125 1
(2, 100, 4, 8) (2, 2, 1, 3) 1 8 2 0.875 2

(10, 9, 9, 10) (3, 1, 4, 4) 2 12 4 2.05 4
(16, 100, 8, 4) (4, 2, 3, 2) 2 11 3 1.5 3
(16, 9, 500, 0) (4, 1, 5, 1) 2 11 3 0.875 2

max rank: (4, 2, 5, 4)

Table 3: Examples of rank scoring. No weights are used.

A possible option is to normalize the ranks before the summation step:

SN j =
K∑

i=1

wiri

maxi

where maxi is the maximum rank found for each objective. This can make contribu-
tions to the final score more uniform amongst the individual ranks.

An example of score calculations using sum of ranks is shown in Table 3. For com-
parison, the commonly used Pareto ranking is included (Goldberg, 1989). The “Rank”
columns show the relative fitness ordering arising with each scoring scheme. In all
cases, the final scores are not influenced directly by the raw scores in the fitness vector.
Rather, the ranks are calculated from the relative ordering of scores between different
fitness vectors. Using tournament selection, the actual final score values do not matter,
and only their relative ordering (rank) is pertinent. Note that there are only two Pareto
ranks for the set of fitness vectors. When more objectives are defined, most vectors
will be undominated with Pareto ranking. This adversely affects selective pressure for
evolution. In comparison, the plain and normalized sum of ranks create a more di-
verse range of scores. The normalized ranks also differ from the plain version in terms
of overall relative ordering. More dramatic differences between them can arise with
larger populations.

6 Experiments

6.1 Target models

The five PIM models used as targets are in Table 4. Models 2 and 4 are taken from
(Kahramanogullari and Cardelli, 2009), which model Fcγ receptor phosphorylation
during phagocytosis. Models 1 and 3 are modifications of 2, and model 5 is a modi-
fication of 4. The intention is for model 1 to be the simplest base model, with models 2
through 5 showing graduated increases in complexity. The modifications of models 2
and 4 are not intended to be biologically motivated.

A very simplified explanation of the biochemical reaction being modeled is as fol-
lows. Phagocytosis is a cellular process by which particles are engulfed by a cell mem-
brane to form a phagosome, or internal cellular compartment (Wikipedia, 2010). There
are 3 basic steps in the reaction (Figure 1), in which (i) an unbound particle (ii) connects
or binds to a phagocyte surface, which results in a (iii) triggering of the phagocytosis.
It is these binding events that are described in the PIM models. In model 2 in Table 4,
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Model 1: site f on FcR associates site i on IgG
site y on FcR gets phosphorylated if site f on FcR is bound
site z on FcR gets phosphorylated if site f on FcR is bound

2, 3: site f on FcR associates site i on IgG with rate 2.0
site y on FcR gets phosphorylated {with rate 4.0} if site f on FcR is bound
site z on FcR gets phosphorylated if site f on FcR is bound

4, 5: site f on FcR associates site i on IgG with rate 2.0
site y on FcR gets phosphorylated {with rate 4.0} if site f on FcR is bound
site z on FcR gets phosphorylated if site f on FcR is bound
site s on FcR associates site sr on Src if site f on FcR is bound
site s on FcR dissociates site sr on Src

Table 4: Target PIM models. Models 3 and 5 include the boldface rate term.

Figure 1: Phagocytosis in three steps. (i) Unbound phagocyte surface receptors. (ii)
Binding of receptors. (iii) Phagocytosis is triggered and the particle is surrounded.
(Illustration by GrahamColm at en.wikipedia.org, redistributed under Creative Com-
mons license).

the first sentence describes step (ii) in Figure 1, while sentences 2 and 3 describe step
(iii). A key point in the PIM model is the identification of particular sites in the species,
and whether they are in bound or unbound states. The reaction is further refined in
model 4, by showing an intermediate binding step that occurs with phosphates before
the actual phagocytosis. Again, the state of the sites on the species participating in the
reaction is critical.

Examining Table 4, model 1 is the simplest example, and involves species FcR, IgG,
and Phosph. (Phosph arises with phosphorylation statements). A maximum of 3 sites
are used. An example plot is given in Figure 2, and shows the 5 curves to be measured
during fitness evaluation. Although there are a maximum of 14 curves possible for
model 1, three of them were null, and two were duplicates. As discussed in Section
3, the generated curves map to combinations of simultaneously bound sites. The FcR7
curve represents the binding of sites f, y, and z. Therefore, selecting this curve for
evaluation helps establish the complexity of species FcR – it requires 3 bound sites in
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Model 1

Model 2

Model 4

Figure 2: Plots for models 1, 2, and 4. Plots are from single simulations.
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order for the FcR7 curve to be defined. FcR4 denotes the binding of sites f and y, and
FcR1 is the lone binding of f. IgG1 and Phosph1 represent those species with their single
sites bound. Since no rates are included, the default rate of 1.0 is used throughout.
Models 2 and 3 are identical in structure to model 1, except that they include additional
rate terms. An example plot for model 2 is also in Figure 2. The inclusion of the single
rate term causes a noticeable change to most of the curves, when compared to those of
model 1.

Model 4 is a more expressive and complex model. With the addition of Src, it uses
a total of 4 species. FcR now has 4 sites, which means that a maximum of 16 curves are
possible for FcR alone. As before, the FcR curves are selected to establish its inherent
complexity. For example, FcR15 denotes the simultaneous binding of all 4 of its sites,
while FcR11 represents the binding combination of f, s, and y. The other curves are
similar to those in the simpler models above. Model 5 is like model 4, except for its
second rate term (in boldface).

To run the models in a SPIM simulator, models 1, 2, and 3 are run with 400 copies
of FcR, IgG, and Phosph, while models 4 and 5 use 200 copies of these and the Src
species.

Prior to using GP, each target model was simulated 1000 times, and mean statisti-
cal features were calculated (Table 5). Standard deviations for these values were also
computed (not shown), to be used during z-score analyses.

6.2 Genetic programming parameters

Table 6 lists the genetic programming parameters used in the experiments. Only the pa-
rameters differing from experiment 1 are shown for experiments 2 through 5. Although
most parameters are well known in the GP literature (eg. (Koza, 1992)), a few require
explanation. The initial random population is overpopulated. A total of 4000 random
trees are generated, and the elite 1500 are culled from it. Koza’s ramped tree genera-
tion is used to create the initial population. Full trees are generated at a rate of 0.95,
and grow at a rate of 0.05. Grow trees tend to produce unfeasibly small PIM models,
and so they are not generated often. A unique population option is used. This ensures
that all the GP trees in the population are unique throughout the run. This does not
guarantee that translated PIM models are unique, however. The elite 5 individuals in
every generation are migrated to the next generation, after which they are re-evaluated
and assigned new feature vectors. A large penalty value is used for missing time se-
quences, due to model size mismatches or PIM correctness issues. This ensures that
such sequences will cause their respective ranks to have high enumerations (lower fit-
ness in the rank). The PIM-specific parameters are discussed in Section 4. Note that
although the IgG connectivity of 2 in model 1 is overestimated, it has neglible effects
on performance.

7 Results

The evaluation of stochastic models from multi-objective evolutionary algorithms is a
tricky task. Unless criteria is established to evaluate quality, it is difficult and time-
consuming to evaluate the multitudes of solutions generated. The problem is com-
pounded with stochastic systems such as PIM models: stochastic models generate vary-
ing behaviors during different interpretations. Even a perfect solution expression may
occasionally exhibit behavior deviating outside the norm.

Given these challenges, experimental results were evaluated as follows. From each
GP trial, 25 of the top scoring solutions are saved. (These expressions have low normal-
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Model Curve Avg Std Dev Skew
FcR1 74.9 13.1 -2.76
FcR4 47.6 17.8 -1.37

1 FcR7 68.6 40.7 -0.38
IgG1 238.7 78.6 -1.19

Phosph1 232.4 114.2 -0.66
FcR1 96.6 16.5 -1.73
FcR4 60.3 20.2 -1.66

2 FcR7 72.6 38.7 -0.61
IgG1 290.0 76.3 -1.72

Phosph1 265.8 114.9 -0.94
FcR1 64.4 9.45 -2.19
FcR4 126.3 36.6 -2.0

3 FcR7 84.2 36.4 -1.09
IgG1 289.3 76.5 -1.71

Phosph1 309.2 110.3 -1.41
FcR1 50.5 17.2 0.26

FcR11 19.6 8.39 -1.12
4 FcR15 38.6 23.4 -0.42

IgG1 157.2 35.9 -2.00
Phosph1 117.0 62.5 -0.60

Src1 106.2 44.7 -0.93
FcR1 50.4 17.2 0.27

FcR11 39.4 15.3 -1.29
5 FcR15 45.3 23.7 -0.74

IgG1 157.2 35.8 -2.10
Phosph1 134.5 63.7 -0.86

Src1 106.2 44.6 -0.94

Table 5: Feature values for models. All values are the averages from 1000 interpreta-
tions of each model.

ized sum of ranks scores.) This yields a total of 750 individuals from the 30 trials for a
single experiment. All the solution trees are converted, with correctness editing, into
PIM expressions. Duplicate PIM models are removed. (Note that renaming of site
labels within expressions can cause them to avoid deletion, even though they are be-
haviorally identical.) The remaining “unique” PIM models are then evaluated. Each
model is interpreted 100 times, and its mean feature scores are calculated. These scores
are then compared to the target features, using a statistical significance analysis. The
z-scores between the solution and target feature scores are computed. When a feature
score between the solution and target match at a 95% level of significance, a “match”
is recorded. The result is a vector of match indicators, one per objective, which tell
whether each feature value matches the target at a 95% significance level.

The above z-score analysis should be considered a heuristic aid for identifying
potential high-quality solutions, rather than a fool-proof, absolute means for automat-
ically ascertaining solution quality. Firstly, the z-score calculation requires an adequate
number of iterations to be undertaken for calculation of average feature scores, both for
solutions and the target models. The number of iterations required depends upon the
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Model
Parameter 1 2, 3 4, 5

Trials 30
Solns per trial 25

Generations 25 40 60
Init. pop. size 4000

Population size 1500
Rate full, grow 0.95, 0.05
Rate cross, mut 0.75, 0.25

Rate term. mutation 0.75
Ramped tree depth range 4-6

Reprod. tree depth 6 7 8
Tournament size 3

Unique population yes
Elitism 5

Float range 1.0 ≤ f < 5.0
Fitness sum ranks (norm.)

Penalty 107

Sites 3 3 4
Species/Connectivity FcR/3, IgG/2 FcR/3, IgG/1 FcR/4, IgG/1,

Src/1

Table 6: GP Parameters

expression being evaluated, and this is not easy to establish for arbitrary PIM models
generated by the GP system. In addition, the use of z-scores implicitly assumes that the
feature scores being analyzed exhibit a normal distribution. When either of the above
assumptions do not hold, errors such as false negatives may arise. Therefore, we also
perform a visual examination of solution expressions, to verify whether a solution is a
syntactic match with the target model.

Tables 7 and 8 summarizes the z-score analysis of the quality of solutions for all
the experiments. “Unique solutions” denotes the number of models remaining after
duplicate PIM expressions are deleted. “Objective hits” are the numbers of expres-
sions having k separate feature hits (similarity with corresponding target feature at
95% significance level). The percentages are included in parentheses. Since duplicate
expressions between runs are eliminated, the objective hits values do not account for
the number of times in which separate trials produce the identical solutions. Therefore,
the “Runs with hits” column is included, to show the number of times separate trials
evolved the target model expression. This was determined by visually inspecting the
25 solutions generated in each of the 30 trials per experiment. This task was aided by
only considering solutions that have the same number of sentences as the target model
in question. Although this aids manual inspection significantly by reducing the num-
ber of expressions to view, it does mean that potentially viable solutions with “intron”
(non-functional) sentences will not be considered.

The experiments for models 1, 2 and 3 show that good solutions are plentiful, and
exact hits with the target model are common. Model 1 was fairly trivial for GP to find,
and was often seen in early generations. The solutions for model 2 do not perform
as well as for model 1, as the inclusion of its rate term complicates the search space.
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Unique solutions Objective hits (%) Trials with
Model (max 750) 0 1-5 6-10 11-14 15 hits (max 30)

1 248 8 23 47 122 49 30
(3.2) (9.3) (19.0) (49.2) (19.8)

2 714 1 101 373 219 20 25
(0.1) (14.1) (52.2) (30.7) (2.8)

3 730 5 363 314 46 2 20
(0.7) (49.7) (43.0) (6.3) (0.3)

Table 7: Solution quality for models 1, 2 and 3. Hits refer to number of objectives
matching target objective at 95% significance level, after interpreting solution 100 times
and target 1000 times. Total of 15 objectives.

Unique solutions Objective hits (%) Runs with
Model (max 750) 0 1-6 7-12 13-17 18 hits (max 30)

4 714 4 204 402 104 0 7
(0.6) (28.6) (56.3) (14.6) (0.0)

5 734 4 357 343 30 0 4
(0.5) (48.6) (46.7) (4.1) (0.0)

Table 8: Solution quality for models 4 and 5. Total of 18 objectives.

Model 3’s additional rate term again results in a more challenging search. Exact feature
score hits were not as common. An inspection of the solution expressions, however,
showed that many solutions were virtually identical to the target expression, except for
expected variations in rate values. For example, in the 30 trials for model 3, there were
57 solution expressions that matched the target model, except that the second rate term
used a value f in the range 3.5 ≤ f ≤ 4.1. The sensitivity of the stochastic interpreter
means that a rate of 3.6 (rather than the target rate of 4.0) may result in feature values
that are not considered hits with the target model at a 95% significance level, using our
hit analysis scheme.

The results for models 4 and 5 dramatically reflect their complexity. Furthermore,
the z-score analysis met some difficulty when analyzing one of the behavior curves.
False negatives arose from the z-scores when analyzing the IgG1 skew feature. In fact,
even the target model did not show a match with itself with respect to this feature.
It is likely that this feature is either not normally distributed, or requires many more
iterations. Therefore, the number of hits under the 18 column is zero, even though the
exact expressions for models 4 and 5 were found multiple times.

Figure 3 shows the average population performance of the runs for models 4 and
5. The curves denote the average error in the population per generation, for each of
the 18 objectives, averaged over all 30 trials. The errors have largely converged in
the population by the 50th generation. One exception is the curve for “Src average”,

16



Evolution of Biochemical Models

Model 4

Model 5

Figure 3: Performance plots for models 4 and 5. Average error per generation, for each
objective (18 total), averaged over 30 trials.
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FcR7 FcR4 FcR1 IgG1 Phosph1
avg sd sk avg sd sk avg sd sk avg sd sk avg sd sk

1 65 66 77 69 65 68 75 77 87 88 88 86 71 72 75
2 83 75 70 70 83 80 35 70 76 20 54 30 35 80 41
3 67 38 41 21 36 59 11 47 68 14 48 32 26 42 32

Table 9: Models 1, 2 and 3 hit rates for features (%)

FcR15 FcR11 FcR1 IgG1 Phosph1
avg sd sk avg sd sk avg sd sk avg sd sk avg sd sk

4 58 55 60 65 73 76 44 41 62 13 30 13 39 67 44
5 39 30 27 12 20 55 52 49 71 19 38 28 16 57 22

Table 10: Models 4 and 5 hit rates for features (%)

which still shows a steady improvement during the last 10 generations in both plots.
Note that it is not useful to plot the errors of the population’s best performer, as there
usually exists an individual that shows superlative performance in a feature. Such
models, however, are rarely superlative in multiple features simultaneously – at least,
until later generations.

Different statistical features exhibit varying degrees of difficulty with respect to
evolvability. Consider the individual feature hit rates for the models in Tables 9 and
10. These rates are the hits (95% significance) found for all solutions for each experi-
ment. The tables show a general reduction in hit rates as models increase in complexity.
Model 1 is fairly successful in all features, while lower success can be seen in models
2 and 3. The IgG1 features become especially challenging to realize in models 2 and 3.
Similar trends can be seen with models 4 and 5.

It is interesting to consider evolved solutions that might be viable alternatives to
the target models in Table 4. Two alternative models for model 5 are shown in Table
11. The syntactic differences (besides rate variations) are shown in boldface. Although
the biological feasibility of these models will not be considered here, it is clear that
they have many expression similarities with the target model. In model A1, an extra
dephosphorylation sentence is included. This sentence may be an instance of “genetic
programming bloat”. Upon examining the rest of A1, site f on FcR is unbound during
the early stage of the simulation. After that time, site f in FcR will remain bound to IgG,
as there is no mechanism to unbind it. Therefore, this particular sentence may have no
impact on behavior after the initial portion of the simulation. This is seen in the z-score
hit vector for A1, in which only one feature (skew of FcR1) does not match the target.

The alternative model A2 in Table 11 also has a few minor expression differences
with the target model. It showed feature hits on all but 3 features. One expression
difference is that a dephosphorylation replaces model 5’s dissociation. This was com-
monly seen throughout the experiments, and shows the similarity of dissociation and
dephosphorylation expressions.

Trials took anywhere from wall-clock times of 2.5 hours (model 1) to 5 hours (mod-
els 4, 5) per trial. GP runs were done under Linux, on time-shared 3.2 GHz AMD Phe-
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A1: site f on FcR associates site i on IgG with rate 2.01
site y on FcR gets phosphorylated with rate 3.79 if site s on FcR is bound
site z on FcR gets phosphorylated if site s on FcR is bound
site z on FcR gets dephosphorylated with rate 4.93 if site f on FcR is unbound
site s on FcR associates site sr on Src if site f on FcR is bound
site s on FcR dissociates site sr on Src if site y on FcR is bound

A2: site f on FcR associates site i on IgG with rate 1.99 if site s on FcR is unbound
site y on FcR gets phosphorylated with rate 3.78 if site s on FcR is bound
site z on FcR gets phosphorylated if site s on FcR is bound
site s on FcR associates site sr on Src if site f on FcR is bound
site y on FcR gets dephosphorylated with rate 2.18 if site z on FcR is bound

Table 11: Two alternate solutions for model 5 having high performance.

nom II quad cores with 4GB RAM, and 2.66 GHz Intel i7 quad cores with 6 GB RAM.
This is respectable performance, given that most of the system software is running in in-
terpreted environments (DCTG-GP is running in Sicstus Prolog (SICS, 2010), and PIM
and SPiM are running in OCAML (INRIA, 2010)). The interpretation of PIM models
and subsequent analysis of time series can be computationally intensive.

8 Discussion

The results are encouraging. All target models were reconstructed, and high-
performing alternative models arose. The solution hit counts (final column) in Tables 7
and 8 are conservative, in that we did not account for generated target models with in-
tron code, nor determine specific alternative models that were behaviorally equivalent
to the targets.

Although results were positive, there are many aspects of the experimental design
that could be improved. The feature hit rates in Tables 7 and 8 suggest that a prob-
lem scale ceiling is quickly being reached. Scalability can definitely be improved with
feature space reduction, and a more strategic selection of statistical features and target
curves. It is not our goal to determine the most optimal and effective behavioral fea-
tures of a target model. The initial random population contained many non-productive
models, even after model correction. If the population were to be of a higher quality,
better overall performance would arise during evolution. More sophisticated gram-
mar definitions and correction steps could help, for example, by enforcing minimum
species counts in models. When multiple rates are required in a solution, one aspect of
search becomes that of numerical parameter optimization. Although GP theoretically
performs this during evolutionary, the optimization of numeric values benefits with
specialized numeric reproduction operators, for example, mutation with Gaussian per-
turbation. A separate local search phase, perhaps at the end of a run, can also fine-tune
numeric values.

This research is the latest in a series of investigations in stochastic model synthe-
sis with GP. GP has been used to evolve models in the stochastic pi-calculus (Ross,
2007; Ross and Imada, 2009a,b; Ross, 2010), which is the underlying language on which
PIM is built. A fundamental issue using a low-level process algebra like the stochastic
pi-calculus is that it is inherently GP-unfriendly. Although compositionality is touted
as being a primary strength of process algebras, they are only compositional with re-
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spect to higher-level process definitions, and are decidedly not compositional at the
level of algebraic sub-expressions in which processes are constructed. When used in
genetic programming, models are highly brittle and are easily destroyed by reproduc-
tion operations such as crossover. This results in an extremely difficult search space to
navigate, and poses a natural handicap to problem scalability. An algebraic modeling
language akin to the pi-calculus was explored with GP by Leier et al. (2006). It is likely
that similar scalability limitations will arise with their approach.

This research shows that GP is effective when higher-level modeling languages are
considered. Similarly, GP was found to be very capable when used with a logic gate
gene regulatory language (Imada, 2009; Imada and Ross, 2010). Like PIM, the under-
lying semantics of the logic gate language is rooted in the stochastic pi-calculus, and
so stochastic simulations are possible. The logic gate language is also very composi-
tional, which makes it amenable to refinement by GP, to an even greater degree than
with PIM. It is difficult to construct arbitrary logic gate networks that are not produc-
tive and analyzable, while unproductive models are more frequent with PIM in early
generations. As done here, Imada’s work with logic gates characterizes time series
with statistical features. A difference is that she combines multi-objective scores into a
single-objective weighted sum using statistical weighting, based on the target model’s
statistical characteristics. This was shown to be effective in problems of up to 17 fea-
tures – the same general problem size as in this paper. Although a comparative study
of statistical weighting and summed rank scoring is required, it was found by Ross
(2010) that pi-calculus networks were more successfully constructed with the sum of
ranks approach.

Koza et al.’s use of GP to evolve metabolic networks shares similarities with this
research (Koza et al., 2000, 2003). They construct metabolic networks by obtaining time
series data from the simulator, and matching the data with target time series. One
major difference is that their models are deterministic: simulations started in the same
conditions will always produce the same deterministic output. This is a great benefit
for fitness evaluation, as the time series plots can be directly compared to each other
using error fitting. This is not feasible with the noisy, stochastic behaviors considered
here.

A popular means for representing gene regulatory network models is with sets of
differential equations. Many papers can be found that evolve such models with genetic
programming (Sakamoto and Iba, 2001; Ando et al., 2002; Streichert et al., 2004; Cho
et al., 2006; Floares, 2008; Qian et al., 2008). It is beyond the goals of this paper to make
a qualitative comparison between differential equations and algebraic PIM models. It
can be argued that PIM models are human-oriented, and hence may be more instructive
to biologists attempting to understand the mechanics of a biological network model.
However, more detailed comparisons of these styles of biological models is necessary.

9 Conclusion

The use of GP as a tool for constructing high-level network models of biological phe-
nomena is promising. As more sophisticated bio-network simulation languages are de-
veloped, their use as target languages for GP should be considered. We posit that the
evolution of complex bio-network phenomena will depend upon the use of higher-level
biological simulation languages, such as PIM. Low-level process algebra will unlikely
permit a great deal of scalability beyond the modest sized systems currently handled
in (Ross and Imada, 2009b). PIM models are translated by the PIM compiler into lower-
level stochastic pi-calculus expressions, which are in turn interpreted by the SPIM in-
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terpreter. It is important to realize that these intermediate pi-calculus translations are
usually very complex and large, and definitely exceed the size and complexity of pi-
calculus systems previously generated with GP. This was also seen in Imada and Ross
(2010) with the logic-gate language.

Work is continuing on using GP with other bio-simulation languages (Danos et al.,
2007; Guerriero et al., 2007; Dematte et al., 2008).

Means for simplifying the search space using feature reduction strategies and im-
proved statistical features are also being considered. Simpler and more well-behaved
feature spaces will allow more complex biological models to be handled.

Acknowledgements: Thanks to Ozan Kahramanoğullari for generously sharing his
PIM software, and for his helpful advice; to Cale Fairchild, for help with system issues;
and to Janine Imada, for the use of her well-written statistical feature analysis code.
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