
 

 

Brock University 
 

Department of Computer Science 
 
 
 
 
 
 
 

User-Guided Evolution of Granular Synthesis 
 
Corrado Coia and Brian J. Ross 
Technical Report # CS-09-09 
July 2009 
 
 
 
 
 
 
 
Brock University 
Department of Computer Science 
St. Catharines, Ontario 
Canada L2S 3A1 
www.cosc.brocku.ca 

 



User-Guided Evolution of Granular Synthesis

Corrado Coia
Brock University

Department of Computer Science
500 Glenridge Ave.

St. Catharines, Ontario
Canada L2S 3A1

corrado.coia@gmail.com

Brian J. Ross
Brock University

Department of Computer Science
500 Glenridge Ave.

St. Catharines, Ontario
Canada L2S 3A1

bross@brocku.com

ABSTRACT
Granular synthesis is a form of audio synthesis that consists
of breaking audio into tiny millisecond chucks. This paper
describes the EGDE system. EGDE (Evolutionary Granu-
lar Delay Environment) is a software plug-in that permits its
granular delay effects to be time synchronized with the host
application. Its interface features an interactive genetic al-
gorithm, to be used for user exploration of granular synthesis
parameters. Interactive evolution is ideal in this application,
as it permits a user to interactively explore a wide variety of
effects that arise with different combinations of the granular
delay parameters. A goal of EGDE is to provide a granu-
lar synthesis interface with an intuitive and efficient means
of auditioning and rating effect parameters, while minimiz-
ing user exhaustion. This is particularly important with a
granular synthesis, since many parameter settings will be
undesirable to most listeners. Typically, each parameter set
in the population can be auditioned in a matter of a few
seconds or less. A minimalist 3-value evaluation scheme lets
the user either clone, use, or delete candidate parameter
sets. Mutation and crossover rates can also be fine tuned as
desired. The interface lets the user directly tweak param-
eters, thus permitting direct user editing of chromosomes.
The evolutionary interface could be easily adapted to other
musical applications in the future, for example, generalized
synthesis engines.

General Terms
Human Factors

Keywords
Granular Synthesis, Computer Music, Interactive Genetic
Algorithm

1. INTRODUCTION
Recent years have seen a technological revolution in music

production. Digital audio technology has made it possible
for anyone with a desktop or laptop computer to run inex-
pensive music production systems with audio quality that
rivals that of professional recording studios of decades past.
Furthermore, contemporary music software is capable of au-
dio and musical processing that simply could not be con-
ceived of in the past. Digital audio systems have become
essential tools for all aspects of music production – compo-
sition, editing, recording, mixing, and final production.

One esoteric area of electronic music is granular synthesis
[17]. Granular synthesis treats audio as a collection of tiny
asynchronous audio clips or grains. Each grain is between
5 to 100 milliseconds in duration, and might be extracted
from a larger audio signal, for example, from an audio file
or live microphone input. There are a large number of pa-
rameters which define the nature of these grains and their
playback. Different combinations of parameters can gen-
erate drastically different results, ranging from controlled
pitch and time transpositions of the original sound signal, to
grotesquely mangled mutations that bear little resemblance
to the source. The flexibility of granular synthesis has made
it a favourite tool of experimental musicians. However, this
flexibility also means that it is complex to use. It can be
difficult to find parameter combinations that “sound right”,
especially when many combinations are musically unpleas-
ant.

This paper describes EGDE (Evolutionary Granular De-
lay Environment), which is a granular synthesis system that
features an interactive genetic algorithm interface. The high
number of parameter settings required with granular syn-
thesis suggests that interactive evolution is worth consid-
eration. Genetic algorithms and related technologies have
a track record for finding acceptable solutions in problems
with high dimensional parameter spaces. Furthermore, in-
teractive evolution is of particular importance in applica-
tions in which there is no known computable aesthetic eval-
uation function, and so the user remains the best judge of
fitness [2]. With the system in this paper, the user can ex-
plore different parameter sets interactively, in an attempt to
discover new and interesting effects from the wide variety
possible.

The kind of granular synthesis performed by EGDE is
granular delay. Delay is a well-known effect that simulates
an echo with possible feedback. Granular delay performs
a delay at a granular level, in which sampled grains of an
input signal are fed back into the output stream at some



temporal delay. Some of the parameters controlled by the
system include duration of grains, frequency of creation, de-
lay time, play-back pitch, forward or reverse direction, and
synchronization intervals. The interactive genetic algorithm
(IGA) interface permits all or some of these parameters to
be set and explored. The user is presented with a population
of 16 parameter sets. The IGA interface is constructed to
expedite the fast audition and evaluation of individuals. A
unique tri-state evaluation interface is used, in which param-
eter sets are evaluated as one of: delete, use, or hold. This
prevents the need for subjective quantitative scales for evalu-
ation, and also permits settings to be quickly deleted, which
is often the most desirable action. Because the system’s
sound engine continuously pipes a source signal through the
granular delay, individuals can be auditioned and rated very
quickly, and often in a matter of seconds. This makes au-
dio effect evolution nearly as efficient as IGA interfaces for
graphical applications, in which candidates can be evaluated
at a glance. The effect is written as a VST plug-in1, which
permits its use in a large number of commercial applications
[20].

Section 2 gives some background on granular synthesis,
and section 3 reviews related work in interactive genetic al-
gorithms and music. The implementation of the granular
delay engine is described in Section 4. A walk-through of
the EGDE system in use is given in Section 6. Conclusions
and directions for future work are discussed in Section 7.

2. GRANULAR SYNTHESIS
Granular synthesis is an esoteric audio synthesis technique

in which audio is comprised of minuscule grains [16] [17].
A single grain of sound is generally between 5 to 100 mil-
liseconds in duration, and when combined together, form
complex and dynamic soundscapes. The power of granular
synthesis stems from its ability to combine and manipulate
grains in countless creative ways. For example, the user can
specify the manner in which individual grains are created
(location from source audio, duration, pitch, direction of
playback, amplitude envelopes,...) and multiple grains are
generated (mixing, frequency of generation, order of genera-
tion with respect to different grains, repetition rate,...). The
control of all these parameters is often specified stochasti-
cally or algorithmically, and controlled via software. For
example, the CSound language’s granule operator has 22
parameters that specify the characteristics of granular syn-
thesis generation [21].

The composer Iannis Xenakis created and documented
the first granular synthesis principals and techniques in the
1950’s [15][16]. His analog approach involved slicing the au-
dio tape into small pieces and then taping them back to-
gether in a new order. The first computer-based granular
synthesis systems where introduced by Curtis Roads in 1991
and by Barry Truax in 1988 [16]. The digital approach al-
lows for accurate control over all aspects of creating, ma-
nipulation, and playback of grains. Hence, more complex
compositions are possible.

There are many variations of granular synthesis, for ex-
ample, granular wave synthesis, granular audio playback,
and real-time granulation or granular delay, which is the
form of granular synthesis used in this paper. Granular de-
lay is accomplished by having the granular synthesis engine

1http://www.cosc.brocku.ca/∼bross/EGDE/

accept a constant audio steam. The engine then creates
grains from the audio currently present within the a finite-
duration buffer, which presents a moving “window” of au-
dio from which to generate grains. Due to the fact that
the audio is streaming into the granular synthesis engine in
real-time, the engine is limited to only the audio currently
present in the finite-sized buffer and not the entire audio
sample. Hence, this method is considered a delay-effect, as
the audio input is stored and then processed and played in
unison with the live signal.

Many free and commercial software systems support gran-
ular synthesis, for example, CSound [21] [4], Native Instru-
ments Reaktor [8], Crusher XStudio [19], and Ableton Live
[12]. Ableton Live’s granular delay effect is in fact one of
the inspirations for this paper. Live’s granular delay imple-
ments the aforementioned granular delay effect in real-time.
A number of parameter controls are available, such as granu-
lar frequency, pitch, and feedback level, as well as stochastic
ranges for parameters. Furthermore, since Ableton is de-
signed towards rhythmic music and real-time playback, the
granular delay can be synchronized to generate grains within
timed windows of the source audio.

3. EVOLUTIONARY COMPUTATION AND
MUSIC

The application of genetic algorithms in music composi-
tion is widely known [5]. Most of this work involves evolving
music at the note level, for the purposes of generating com-
positions.

Of more relevance to this paper is the use of evolution-
ary computation towards the processing or synthesizing of
audio signals at the timbre level. One direction for this re-
search is to use evolution to produce a synthesizer or sound
source that generates output matching characteristics of an
example sound sample [7] [11] [13]. These techniques use
automatic fitness evaluation, to determine the closeness of
match between candidate and target sound data.

An alternative approach is to use interactive genetic algo-
rithms (IGA’s), in which the user uses the genetic algorithm
as a guide in which to interactively explore variations of
sounds. Here, the genetic algorithm acts as a tool for sound
discovery. Johnson uses a mutation-based IGA to explore
different granular synthesis settings [9]. It uses a minimalist
interface, in which evolutionary controls and parameter set-
tings are kept hidden from the user. Mandelis describes an
IGA for the exploration of synthesis parameters [10]. The
system makes use of various crossover operators, and a real-
time interface controlled by a data glove. Dahlstedt also
uses an IGA to explore synthesis parameters [6].

Other biologically-inspired techniques have been applied
to sound generation, and granular synthesis in particular.
For example, Blackwell uses particle swarms to generate
granular audio [3]. Miranda uses a cellular automata to de-
fine granular synthesis frequency and duration values [14].

4. GRANULAR DELAY ENGINE
Audio delay is a well-known audio effect, which could also

be called an “echo”. To create a delay, an audio signal is
mixed with a delayed version of itself. The original analog
delay units performed this by using a loop of recording tape,
in which the record and playback head worked on the same
audio tape in a repetitive, looping fashion. It is easily im-



Figure 1: Granular Delay Engine

plemented in digital audio, by mixing a digital signal with a
temporally delayed version of itself, saved in a buffer. There
can be a variable amount of feedback gain for the delayed
signal, which controls the strength of the old signal mixed
into the current one. The delay time of the old signal (ie.
how far back in the buffer to read the old signal) is also a
user-controllable parameter.

EGDE implements a granular delay effect, which is in-
spired by the granular delay included with the Ableton Live
music production system [12]. Rather than performing a
uniform delay on a uniform signal as done with a normal
delay, granular delay mixes in grains (segments) of the old
signal into the current audio. Then the feedback loop takes
this audio output, and remixes it back as a delay signal.
Hence the overall effect arises due to granular playback and
delay feedback, both of which are separately controllable.
Almost all of the parameters for controlling granular syn-
thesis are available when generating grains, such as grain
duration, grain start time, volume, direction of grain, play-
back pitch, and others. The difference between it and full
granular audio synthesis is that granular delay has a limited
window of audio available from which to generate grains,
while granular audio synthesis can select grains from any
point in a source audio file.

Figure 1 shows the architecture of the granular delay en-
gine. An audio stream from the host is fed into the engine,
into a circular buffer (finite queue). This buffer represents
the maximum delay time available for the delay effect, and
is currently set to 5 seconds. The grain creation mechanism
will use the current parameters to extract a grain from this
buffer, and generate a grain. A grain is essentially a small
clip of audio, with an envelope convolution applied to the
start and end to create smooth transitions to zero. This is
always performed on grains, or else noise will arise when a
grain makes a sudden transition on or off. The generated
grain is then mixed with the current signal, and the result
is again mixed into the delayed signal buffer, which results
in the granular delay effect.

In following the approach of Ableton’s granular delay, a
constraint of our granular engine is that grains are generated
linearly at some fixed frequency rate. Grain duration will
be inversely proportional to the frequency. This disallows

generated grains to layer directly over each other, which in
turn reduces peaking or overflow of audio signals that will
arise when grains are directly mixed together. Multi-grain
mixing will occur during delay mixing, which will be easily
controlled via a feedback level parameter.

The granular delay parameters are as follows:

1. Grain density and offset: Density controls how fre-
quently grains are created, and therefore the length of
duration of each grain. Grain density offset gives a
range of values from which to select a density. Hence
when a grain is to be generated, its frequency will be
the grain density value plus/minus the offset.

2. Pitch and offset: A zero pitch value means the grain
has the same pitch characteristics of the original audio.
Positive or negative pitch values will either increase or
decrease the pitch of the grain with respect to the orig-
inal audio. Offset is the degree to which pitch changes
can vary between generated grains.

3. Delay and offset: The delay is the amount of time it
takes for a grain to be played back. By mixing a new
grain with the input signal into the output buffer at
the specified delay time (plus/minus offset), the delay
effect is produced.

4. Feedback: This controls the amplitude of grains that
mix into the output buffer.

5. Granular spray: If set to zero, then grains are cre-
ated from the current input signal. When increased,
grains may be created from further back in time. A
high spray will create a more “scrambled” delay effect.

6. Reversal: This is the probability that a generated
grain is played in reverse direction.

7. Dry/Wet: This controls the mix balance of the origi-
nal signal with the granular delay effect, as written to
the output.

A new contribution of EGDE is its ability to synchro-
nize grain parameter changes with the tempo from the host,
which results in rhythmic changes of granular effects. This
provides a rich number of musically interesting effects. Pa-
rameter changes can occur at three levels of synchronization,
controlled by the following parameters:

1. Cloud (cloud length, offset): Clouds define time-determined
durations for multiple parameter changes. A cloud is a
duration of time in which all the parameters are locked
together. If cloud duration is activated (ie. non-zero),
then all parameter changes will occur together within
the cloud duration. It is akin to a window in which all
parameters are set and used. They will only change in
unison at the beginning of the next cloud.

2. Beat synchronization (grains density, pitch, delay
length): If the parameter is set to synchronize on beats,
it will do so with respect to k quarter-notes (k between
1 and 16). Different parameters can synchronize at dif-
ferent note rates, which can result in complex rhythmic
effects.

3. Unsynchronized: Here, a parameter change can oc-
cur asynchronously, irrespective of the host clock.



Activated cloud synchronization pre-empts beat synchro-
nization and unsynchronized changes. Likewise, if clouds
are not used, then beat synchronization pre-empts unsyn-
chronized changes.

EGDE is implemented as a VST plug-in [20]. VST is a
popular software specification developed by Steinberg Mu-
sic, which permits the implementation of music software
plug-ins hostable by various commercial music systems. Be-
cause the system is a plug-in, it relies on a host application
from which to read and write audio signals, clock tempo in-
formation, and other information. Similarly, the plug-in will
write the granular delay effect back to the host for playback.
The VST environment also provides a GUI environment.

5. INTERACTIVE GENETIC ALGORITHM
INTERFACE

Figure 2 shows EGDE’s user interface. The population is
on the left, the granular delay parameters on the top-right,
and evolution controls on the bottom-right.

The population consists of 16 individuals. Each individual
contains rating controls, an age indicator, and a “sample”
audition button. We forgo a numeric rating system common
in many interactive evolution applications, for the following
simple tri-state rating scheme (from highest to lowest fitness
preference):

1. Hold (blue): Clone this parameter set into the next
generation, and also use the set for reproduction (a
parent). This is a form of elitist reproduction. ;

2. Use (green): Use this set for reproduction, but do not
clone it.

3. Delete (red): Do not use this set for reproduction,
and do not clone it.

Note that if the user would rather use a smaller population,
say 9 individuals, then individuals 10 through 16 can be set
to delete, and ignored during subsequent generations. Click-
ing a sample button will activate that individual. Only one
individual is active at one time, as indicated by its activated
sample button. When sample is activated, that parameter
set is loaded into the host, as well as the top-right parameter
control section. It will then immediately process the audio,
which will be heard by the user.

Evolution controls are given on the bottom of the inter-
face. A chromosome is a list of floating-point values, one
value per granular delay parameter. The crossover/mutation
balance control determines the probability that crossover is
selected for reproduction, verses mutation. If the user would
rather use mutation exclusively, then this control should be
set to 100. Either one-point crossover or N-point crossover
may be chosen by the user. One-point crossover tends to pre-
serve recognizable groupings of parameters, while N-point
results in more varied permutations of parameter settings.
The Mutate % of the effects control determines the proba-
bility that each parameter will undergo a mutation, should
mutation have been chosen to perform reproduction. Muta-
tion occurs on a gene by perturbing its current value, by the
range specified by the % mutation variance control. Setting
the variance low will result in a small tweak of a value, while
a high value may result in a drastic alteration. Finally, Next
generation will create a new population of parameter sets,
using the current population ratings.

The parameter control section shows the parameter values
of the currently active population member. These parame-
ters are described in Section 4. They permit direct user edit-
ing of parameter values within the active chromosome, and
result in immediate audio feedback of edited changes. User
editing of chromosomes could be considered a form of inter-
active Lamarckian evolution [18]. Parameter editing can be
undone with the undo button, which replaces the parame-
ters with the values that existing before editing commenced.
In addition, parameters can be frozen (red fields). Frozen
parameters will no longer be subject to mutation. However,
these parameters can still have crossover applied to them.
Freezing parameters lets the user stop the introduction of
new values into the population.

6. USING THE SYSTEM
The primary motivation behind the design of the EGDE

interface described in Section 5 is to provide the user with
a means for quickly and effectively auditioning and evaluat-
ing granular effects, as formulated by the genetic algorithm.
Because many granular delay effects will create drastic dis-
tortions of the audio, many will likely be undesirable. It is
therefore useful to let the user quickly evaluate the popula-
tion, and move through the evaluation process as efficiently
as possible. The recommended way to use the interface is
to have the host play a looped audio clip, which is immedi-
ately processed through the granular delay. The currently
activated population member (parameter set) will be the
one that processes the audio signal. Therefore, the user
must merely click each sample button to immediately hear
the effect of that parameter set. Depending on the duration
of the loop being processed, an effect may be auditioned
within seconds (or less, if the effect is clearly undesirable),
and hence the entire population in perhaps 20 seconds.

Evaluating individuals is performed quickly. The user de-
cides if an individual should be held (cloned and used for
reproduction), used (removed but used for reproduction),
or deleted. We feel that this tri-state evaluation is a natural
and intuitive fitness scale for interactive applications such
as this, in which the user must make a series of reactive
aesthetic judgements. The alternative, more conventional
approach of evaluating each individual on a scale of (say) 1
through 10, is arguably of less utility, since numeric evalua-
tions have less intuitive meaning to the user, and even less
use for the genetic algorithm that is working with a very
limited population of individuals. To promote efficiency, in-
dividuals set to hold are kept on a hold state for subsequent
generations. Otherwise, the default rating for non-held in-
dividuals is delete. Therefore, users will often only hit the
sample button to hear an effect, and move on to the next
individual. When an effect is deemed worthy of further ex-
ploration, then its rating may be changed to use or hold.

The interface is flexible with regards to the flavours of
evolution to be used. Conventional strategies for using in-
teractive genetic algorithms are applicable. During initial
use of the system, the user would be recommended to use a
roughly equal combination of crossover and mutation. The
mutation perturbation rate should be set high as well. As
the user samples different individuals, many initial results
will be deemed unacceptable, and will be pruned from the
population. Interesting effects will be retained. As genera-
tions progress, a particular effect may be especially pleasing
to the user. This parameter set may be set on hold; the



Figure 2: Granular Delay Interface

crossover rate can be reduced, as can the mutation rate.
Then evolution will be used to tweak the effect, until a final
desired version is found. At any time, the user is free to di-
rectly edit parameters. This will directly alter chromosomes,
and user changes will be available for use during subsequent
evolution.

Alternatively, exclusively mutation-directed evolution is
common in interactive genetic algorithms. This may be done
by turning the crossover rate to zero. As usual, the mutation
perturbation rate can be fine tuned as generations progress.
Mutation-based evolution can be used on multiple individu-
als, or just one individual set to hold. Of course, in the case
of multiple individuals being mutated, the lack of crossover
prevent shared characteristics from appearing in offspring.

The VST interface permits the user to save a selected pa-
rameter set as a parameter file. This can be loaded and used
by the granular delay engine at any time. It can also be read
and used outside the interactive genetic algorithm interface,
since the granular delay engine can be used independently
of the genetic algorithm interface. The user will therefore
save favourite effects in a library, for future reference.

7. CONCLUSIONS
Our granular delay engine is inspired by the granular de-

lay effect bundled with the Ableton Live music system [1].
Along with many of the parameters used by Ableton’s effect,
our engine additionally permits complex beat-synchronized
parameter changes. However, like other granular synthesis
systems and digital synthesis systems in general, there are
a vast number of parameter settings possible. Parameters

interact in complex, nonlinear ways. This makes using gran-
ular effects difficult, especially when many parameters create
extreme results.

We implemented a interactive genetic algorithm which the
user can use to explore the vast space of granular possibili-
ties, and iteratively refine and tweak until a desirable effect
settings are found. User evaluation of individuals is usu-
ally a bottleneck in interactive evolution, due to user fa-
tigue when confronted by the task of manually evaluating
many populations of possibly unimpressive individuals. To
help overcome this problem, we designed an interface that
promotes fast and effective auditioning of candidate effects.
This is particularly important in music and audio, because
the user must invest time to hear an audio signal to com-
pletion. This contrasts to evolutionary art applications, in
which the time invested is the significantly shorter duration
it takes to glance at and evaluate a visual effect. Knowing
that many granular delay effects will not be useful to a user
during early generations, our interface lets users quickly hear
an effect, and just as quickly remove it from further consider-
ation. When effects are of more interest, rather than assign
a score (which takes a certain amount of effort to determine,
and is probably an arbitrary value anyway), the user merely
indicates that that parameter set is to be flagged for use
for reproduction. If the effect is of particular interest, it is
flagged for use and cloning. And finally, the best results can
be saved, and used in the main host application as desired.

Our use of an interactive genetic algorithm to explore
granular synthesis parameterizations differs from the ap-
proach of Johnson [9]. His system uses mutation exclu-
sively, utilizes numeric evaluation of individuals, and keeps



the granular synthesis parameters hidden from user inspec-
tion and editing. The use of IGA’s with general synthesis
systems in [6] and [10] is comparable to our approach, al-
though our IGA interface design is motivated for fast sam-
ple evaluation. Our interface should be readily adaptable
to other synthesis and effects technologies. Although work
using other techniques towards granular synthesis, such as
swarms [3] and cellular automata [14], is quite different than
ours in approach, all share the goal of helping the user nav-
igate the complex parameter space of granular synthesis.

Future revisions of EGDE are being considered. The gran-
ular synthesis engine could be enhanced with additional pa-
rameters, for example, parameter acceleration, inter-grain
spacing, envelope control, panning, amplitude, and others.
We are also considering the idea of having some sort of vi-
sualization for IGA population members, to give the user
a visual representation of a parameter set. This would al-
low the user to see how generated parameters relate to their
parents, which might be of use during auditioning and eval-
uation. Finally, more population editing controls for sharing
parameters amongst the population members, and perhaps
removing parameters from evolution entirely, are being con-
sidered.

8. REFERENCES

[1] Ableton. Ableton live 7. http://www.ableton.com.
Last accessed Sept 26, 2008.

[2] P.J. Bentley and D.W. Corne. An Introduction to
Creative Evolutionary Systems. In P. Bentley and
D. Corne, editors, Creative Evolutionary Systems,
pages 1–75. Morgan Kaufmann, 2002.

[3] T. Blackwell. Swarm Granulation. In J. Romero and
P. Machado, editors, The Art of Artificial Evolution,
pages 103–122. Springer, 2008.

[4] R. Boulanger. The CSound Book. MIT Press, 2000.

[5] A. Burton and T. Vladimirova. Generation of musical
sequences with genetic techniques. Computer Music
Journal, 23(4):59–73, Winter 1999.

[6] P. Dahlstedt. Creating and Exploring the Huge Space
Called Sound: Interactive Evolution as a Composition
Tool. In ICMC 2001, pages 235–242, 2001.

[7] A. Horner, J. Beauchamp, and L. Haken. Machine
tongues XVI: Genetic algorithms and their application
to FM matching synthesis. Computer Music Journal,
17(4):17–29, 1993.

[8] N. Instruments. Reaktor 5.
http://www.native-instruments.com. Last accessed
Sept 26, 2008.

[9] C. Johnson. Exploring Sound-Space with Interactive
Genetic Algorithms. Leonardo, 36(1):51–54, 2003.

[10] J. Mandelis. Genophone: An Evolutionary Approach
to Sound Synthesis and Performance. In
EvoWorkShops, pages 535–546, 2003.

[11] J. Manzolli, A. M. Jr., J. Fomari, and F. Damiani.
The Evolutionary Sound Synthesis Method. In
MM’01, pages 585–587, 2001.

[12] J. Margulies. Ableton Live 7 Power! Course
Technology PTR, 2008.

[13] J. McDermott, N. Griffith, and M. O’Neill.
Evolutionary Computation Applied to Sound
Synthesis. In J. Romero and P. Machado, editors, The

Art of Artificial Evolution, pages 81–101. Springer,
2008.

[14] E. Miranda. On the Origins and Evolution of Music in
Virtual Worlds. In P. Bentley and D. Corne, editors,
Creative Evolutionary Systems, pages 189–203.
Morgan Kaufmann, 2002.

[15] T. Opie. Granular synthesis resource site.
http://www.granularsynthesis.com/. Last accessed
Sept 26, 2008.

[16] C. Roads. The Computer Music Tutorial. MIT Press,
1996.

[17] C. Roads. Microsound. MIT Press, 2001.

[18] B. Ross. A Lamarckian Evolution Strategy for Genetic
Algorithms. In L. Chambers, editor, The Practical
Handbook of Genetic Algorithms, volume 3, pages
1–16. CRC Press, 1997.

[19] J. Stelkens. Crusherx-studio.
http://www.crusher-x.de. Last accessed Sept 26, 2008.

[20] S. M. Technologies. Cubase.
http://www.steinberg.net. Last accessed Oct 3, 2008.

[21] B. Vercoe. The Public Csound Reference Manual.
Media Lab MIT, 1992.


