

Brock University

Department of Computer Science

Using Genetic Programming to Synthesize

Monotonic Stochastic Processes

Brian Ross
Technical Report # CS-07-03
April 2007

Brock University
Department of Computer Science
St. Catharines, Ontario
Canada L2S 3A1
www.cosc.brocku.ca

USING GENETIC PROGRAMMING TO SYNTHESIZE MONOTONIC
STOCHASTIC PROCESSES†

Brian J. Ross
Department of Computer Science

Brock University
500 Glenridge Avenue

St. Catharines, Ontario, Canada L2S 3A1
email: bross@brocku.ca

ABSTRACT
The automatic synthesis of stochastic concurrent processes
is investigated. We use genetic programming to automati-
cally evolve a set of stochastic π-calculus expressions that
generate execution behaviour conforming to some supplied
target behaviour. We model the stochastic π-calculus in
a grammatically-guided genetic programming system, and
we use an efficient interpreter based on the SPIM abstract
machine model by Phillips and Cardelli. The behaviours
of target systems are modelled as streams of numerical
time series for different variables of interest. We were
able to successfully evolve stochastic π-calculus systems
that exhibited the target behaviors. Successful experiments
considered target processes with continuous monotonic be-
haviours.

KEY WORDS
Genetic programming, process algebra, dynamic systems.

† To be presented at Computational Intelligence 2007,
Banff, AB, Canada, July 2-4, 2007.

1 Introduction

Process algebra are formal systems used to study the be-
haviour of concurrent systems [1][2]. One such process
algebra is the stochastic π-calculus [3]. It has simple and
elegant syntax and semantics, and like other process alge-
bras, it is useful as a specification language for concurrent
systems. Lately, researchers have applied the stochastic π-
calculus towards the modeling of various chemical and bi-
ological networks [4] [5] [6]. A modeled system can be in-
terpreted, which means simulations can be performed. The
behaviour of these simulations is characterized by time-
course data, in which symbolic quantities of elements of
the system change over time. Hence, a system is character-
izable by sets of time-series plots of variable quantities.

Given one or more instances of such time-series data,
however, it is difficult to derive a stochastic π-calculus ex-
pression which might express such behaviour. Although
the semantics of the stochastic π-calculus language is
straightforward, it is a nondeterministic, probabilistic alge-
bra, and processes created from it belong to the family of

dynamic systems [7]. The behaviours of dynamic systems
are notoriously difficult to predict, as long-term behaviour
is a result of complex and intricate nondeterministic inter-
actions of system components over the course of time. It
is a challenging task for someone to write a stochastic π-
calculus system that could generate a given sample of time-
course data for variables.

We use genetic programming (GP) [8][9] to evolve
stochastic π-calculus processes. The target behaviour for
the evolved systems take the form of time-course data, in
which different variable quantities change over time. The
process algebra is denoted by a context-free grammar. One
major purpose for using a grammar within the GP system is
to help constrain the forms of expressions derivable within
it, by pre-specifying more pragmatic general forms of ex-
pressions. Without such grammatical constraints, evolution
can be burdened by nonsensical and inefficient candidate
expressions.

Section 2 reviews the stochastic π-calculus, machine
learning and dynamic systems, and genetic programming.
Details about two experiments for synthesizing a stochastic
concurrent processes are given in Section 3. Results of the
experiments are reported in Section 4. Conclusions and
future work are discussed in Section 5.

2 Background

2.1 The stochastic π-calculus

Process algebra are formal systems used to study concur-
rency [1][2]. The stochastic π-calculus is a process alge-
bra used to model stochastic processes that have dynamic
structural behaviour [3]. A number of implementations of
the calculus are available [10] [11] [12]. For a complete
discussion of the semantics of the stochastic π-calculus see
[3] [12].

The syntax for the subset of the stochastic π-calculus
used in this paper is:

P ::= 0 | P#P | !proc : P | Σ
Σ ::= π : P | Σ + Σ
π ::= c | c | proc

A process P is either a null process 0, two processes run-
ning in parallel via #, a process definition defined with a
replication operator !, or a choice expression Σ. A choice
expression is either one or more terms that can be stochas-
tically selected. A term is either an input (x) or output (x)
action, or process call. Process calls are output actions with
process names.

The essential idea of process execution in the (non-
stochastic) π-calculus is the following transition:

(x : P1 + Σ1)#(x : P2 + Σ2)#P3
rate(x)
→ P1#P2#P3

Here, a synchronous handshaking communication has
arisen along channel x, and the entire expression has trans-
formed. The other choices of actions in the Σi terms have
been pre-empted by this communication.

The stochastic π-calculus enhances this execution
model by considering communication rates of channels
and the quantities of channels available for communica-
tion. When a number of synchronous communications like
x above are available, the semantics will select a particu-
lar action based upon its probabilistic likelihood relative to
other actions available. An action that has a higher rate of
execution or more instances available in the overall expres-
sion, will be more likely to be selected for a transition. This
stochastic selection mechanism is called the Gillespie algo-
rithm, and was invented for use in chemical reaction sim-
ulations [13]. It first computes the overall probabilities of
the active channels (those with both output and input terms
connected via parallel composition), and selects one via an
exponential distribution. A result of the selection will be a
transformation of the overall expression as above, as well
as an update to a global time variable. The time is updated
by an amount inversely proportional to the action probabil-
ity, which reflects the higher frequency of more probable
actions.

Using the above ideas, a stochastic π-calculus simu-
lation will involve the dynamic alteration of an expression,
whose instances (quantities) of various channels within
terms change over time. Hence the behaviour of the pro-
cess can be described by time-course plots of the channels.
Furthermore, the nondeterministic nature of the simulation
means that repeated simulations will usually result in dif-
ferent time-course plots, reflecting the stochastic nature of
the process.

2.2 Dynamic systems and their inference

Dynamic systems are systems that change state over time
[7]. Many natural phenomena are modeled by dynamic sys-
tems. For example, a swing in motion can be modeled by
its position in space over time. The metabolic chemical re-
actions within a cell can be modeled by the quantities of
interacting proteins and substrates over time. The regula-
tion of networks of interacting genes can be modeled by
the expression and inhibition rates of the genes over time.
The execution of stochastic processes as modeled by the

stochastic π-calculus is another another instance of a dy-
namic system.

The complex and chaotic nature of many dynamic
systems has attracted the attention of the machine learning
community. Dynamic systems are difficult for human be-
ings to conceive and perceive. On the other hand, perhaps
they may be conducive for automatic analysis by comput-
ers. Examples of the use of neural networks and/or evo-
lutionary computation to infer dynamic systems and time
series include [14] [15] [16] [17] [18] [19] [20] [21].

2.3 Genetic programming

Genetic programming (GP) is a an evolutionary algorithm,
in which individuals in the population denote computer
programs [8] [9]. Chromosomes typically take the form of
parse trees, in which internal nodes are functions, branches
are argument expressions, and leafs are constants. Repro-
duction operators manipulate this tree structure, and must
ensure that resulting trees are syntactically correct. In ad-
dition, a closure property specifies that all operators in the
language must execute correctly on any argument value.
This is necessary because randomly constructed and ma-
nipulated trees may result in many unforeseen language
structures.

In the original implementiation of GP, the tree en-
coded a Lisp S-expression, which could therefore be di-
rectly executed by the Lisp interpreter. Subsequent imple-
mentations have experimented with a variety of represen-
tations and target languages. Grammatically-guided GP
is used in this paper [22][23]. Here, the tree denotes a
parse tree as represented by a context-free grammar, and
tree creation and reproduction must respect grammatical
correctness as defined by this grammar. An advantage of
grammatically-guided GP is that the search space of pro-
gram structures can be constrained by the grammars. This
permits more sensible program structures to be constructed,
which may result in higher-quality and more optimal so-
lutions. Another advantage is that the closure property is
easier to implement.

3 Experiments
3.1 An interpreter for the stochastic π-calculus

It is important that the execution of stochastic π-calculus
expressions is as efficient as possible. The genetic pro-
gramming system will need to evaluate thousands of candi-
date expressions during the course of a run. Furthermore,
due to the stochastic nature of the processes, each expres-
sion will need to be interpreted multiple times, in order to
determine an average behaviour to evaluate.

A stochastic π-calculus interpreter has been imple-
mented in Sicstus Prolog [24]. This interpreter is based
on a stochastic π-calculus abstract machine (SPIM) [12].
The SPIM specification is the basis for an interpreter they
wrote in OCAML, a symbolic object-oriented functional

Start ::= ChRates, P roc#Proc#Topexpr

ChRates ::= F loat, F loat, ...

P roc ::= !proci : Expr

Topexpr ::= Int@(PiCall : Guardseq)
| Topexpr#Topexpr

Expr ::= Choice | Expr#Expr

Choice ::= Pi : Guardseq | Choice + Choice

Guardseq ::= 0 | PiCall : Guardseq | Expr

P iCall ::= Pi | proc Int

P i ::= NormCh | NormCh

NormCh ::= c ∈ channels
F loat ::= minf ≤ f ≤ maxf

Int ::= mini ≤ i ≤ maxi

Figure 1. A grammar for the stochastic π-calculus

language. Converting SPIM into a logic program based in-
terpreter is similarly straightforward.

The stochastic π-calculus semantics are simple
enough that the semantic rules can be converted virtually
directly into statements of a symbolic language such as
OCAML or Prolog. Unfortunately, the resulting execution
will not be efficient. This is due to the fact that sound prob-
abilistic evaluation of expressions requires that the entire
set of π-calculus terms be reduced into a canonical form
consisting of basic summation terms. These summations
are then enumerated to determine the probabilities used by
the Gillespie algorithm. The resulting probabilities deter-
mine which action pair is chosen for execution. This reduc-
tion and enumeration process is done each time a communi-
cation reduction occurs. The net result is that the reductions
will be repeatedly performed during each state transition of
the system, and most often are wastefully duplicated during
each transition.

The essential idea of the abstract machine description
is to convert high-level π-calculus terms into an intermedi-
ate representation that is more efficient to process, because
it does not require repeated reduction during every tran-
sition of the system. The abstract machine representation
saves earlier reductions and enumerations of expressions,
and hence prevents their re-reduction during every transi-
tion. Only the terms that were directly involved in a tran-
sition are further reduced, and any changes due to these
reductions are efficiently applied to the overall probabil-
ities for the entire system. The net effect is a stochastic
π-calculus interpreter that is much more efficient than one
that works directly from raw expressions.

Although our interpreter handles the complete
stochastic π-calculus, channel passing and restriction are
not treated here, and process definitions are implemented
without parameter passing [3].

3.2 A grammar for the stochastic π-calculus

We use grammatically guided genetic programming to
evolve process algebra expressions. Our main intention for
using grammatical GP is to constrain the possible forms of
stochastic π-calculus expressions evolved. Without sensi-
ble grammatical constraints, it is too easy for the GP system
to evolve large, complex, and inefficient expressions. The
DCTG-GP system is used in our experiments [23]. This is
a Prolog-based system, and it uses a definite-clause trans-
lation grammar (DCTG) to specify the target language to
be evolved by genetic programming. A DCTG is a logical
implementation of a context-free attribute grammar, and it
permits the syntax and semantics of the GP language to be
defined together.

A Backus-Naur Form (BNF) grammar for the
stochastic π-calculus is in Figure 1. In the figure, capi-
talized labels are nonterminals, and lower case or bold-face
are terminals. This grammar permits the channel rates to
be evolved with an expression, as denoted by the chRates
field. This will contain one floating point value per chan-
nel (unless overridden by the user). The Start rule defines
expressions for each labelled process for the target expres-
sions. Two references to Proc here will mean that two pro-
cess expressions will be required. The Topexpr rule per-
mits replicated expressions; for example, 5@E means that
5 parallel instances of expression E are created. Further-
more, each such expression is guarded by either a basic
communication (Pi) or process call. The Expr, Choice, and
Guardseq rules define the composition of π-calculus ex-
pressions. One constraint introduced in these rules is the
use of Pi term guards in choice expressions, which ensures
that each choice term introduces a communication, rather
than a process call. Process calls are determined by an in-
teger field, which when evaluated modulo K will specify a
call to one of K processes.

3.3 Evaluation of stochastic trajectories

The stochastic processes being studied are dynamic sys-
tems with behaviours that change nondeterministically over
time. This is in contrast to deterministic systems, whose
behaviour is uniquely characterized by the conditions set
during the starting state. Stochastic processes are challeng-
ing to analyze in a machine learning environment. Typi-
cally, systems to be learnt are not precisely characterizable
by single time series of values. Rather, a target behaviour
might be described by an average time series, possibly sup-
plemented with statistical descriptions such as standard de-
viation. Likewise, candidate processes being evaluated dur-
ing a GP run are nondeterministic, and a system can vary
substantially during different interpretations.

The target system is described by a single set of time
series, where each component series is the numerical state
change of some variable of interest. Let A be a variable of
a probabilistic process. Then trajectory j for this variable

Score← 0
S ← interpret(E, max time, max transitions)
For each variable A with averaged target series A:

Let A′ be the observed behaviour of A in S.
For each (ti, ai) ∈ A:

If (ti > max time in A′) and (ai > 0)
Score← Score+Penalty

else
ã← linear interpolate(A′, ti)
Score← Score + | ai − ã |

Figure 2. Evaluation of time series fit for process E

is denoted by the sequence,

Aj = (tji , a
j
i) i = 1, ..., kj

where a
j
i ≥ 0 is the value of variable A at time t

j
i at tran-

sition step i, and the maximum transition step for this tra-
jectory is kj . In the case of probabilistic target systems, an
average time series A is computed from a set of trajectories
Aj .

Stochastic processes are evaluated as follows. An ex-
pression E is interpreted, resulting in a set S of time se-
ries composed of individual series for different variables
within E. The interpreter is supplied with maximum time
and transition count limits, which will pre-empt the inter-
preter when necessary. There is a set of target variables of
interest, whose behaviour is represented by the (average)
time series described above. Should a variable of interest
be missing from E, its time series will be empty. The sum
of absolute errors is then computed for each variable series
(Figure 2). If the interpreted series ends prematurely or is
empty, then a penalty is administered when a non-zero tar-
get value is expected. Otherwise, the absolute error is com-
puted. Because the target times do not necessarily match
those of the interpreted series, the latter must have values
linearly interpolated at the given target times. The absolute
difference between the target and interpolated value at time
ti is then tallied for the entire target series. Performing the
above for the entire interpreted series will result in an over-
all error (Score). The goal is to minimize this score.

The above evaluates one set of variable trajectories
for a process expression E. This scoring is then done on a
given number of separate interpretations and resulting tra-
jectories, and the mean of all these scores is used as the
overall fitness value for the process.

3.4 Special reproduction operators

Standard crossover and mutation operators for grammatical
GP are used [23]. To help in the evolution of processes
with active communication behaviours, some specialized
reproduction operators are introduced.

Single rebalance mutation: All the input channels,
output channels, and process calls in an expression are tal-
lied. The least referenced channel or process is determined,

and a term is constructed for it. For example, if there are no
output calls to channel a, then one is created, and it replaces
a random term in the expression.

Complete rebalance mutation: Every channel call
missing an input or output reference has a term created for
it, and it is placed in the expression. Missing processes
calls are also placed in the expression.

Note that the random placement of these constructed
terms may create new channel and process imbalances. For
expediency’s sake, these are not remedied.

3.5 GP parameters

Parameter Value
Pre-culled population 2000
Population 1500
Generations 70
Runs 20
Initialization ramped half&half
Initial max tree depth 8
Max tree depth 12
Int. crossover 0.77
Ext. crossover 0.13
Terminal mutation 0.05
Internal mutation 0.02
Single rebal. mut. 0.02
Complete rebal. mut. 0.01
Tournament size 4
Elite migration 5
Penalty value 600
Lamarckian evol. 33% of init popn,

5% of popn, every 7 gen.

Table 1. Common GP parameters

Parameters common to both experiments are given in
Table 1. Many parameters are standard in the literature [9],
and are not discussed further. A few unique details are as
follows. The initial population of 2000 is culled to 1500,
by removing the weakest expressions. This culled popu-
lation is then given a “Lamarckian boost” by performing
local search on the weakest 33% of the individuals. Repro-
duction operations are applied to each of these individuals,
until either an improvement of fitness is obtained, or a max-
imum of 5 operations are attempted. The improved expres-
sion, if any, then replaces the original one in the population.
Lamarckian evolution is also applied to the population pe-
riodically during the run, using the approach in [25]. Here,
5% of the population is selected with tournament selection,
and 6 reproduction operations are performed on each indi-
vidual. The best performing altered individual replaces the
original.

4 Results
4.1 Experiment 1: Two-variable system

Parameter Value
Targets poly dec↔ proc0,

ramp inc↔ proc1

Channels a, b
Channel rates evolved
Processes proc0, proc1
Time limit 10.0
Transition limit 2000
Float range 0.75 ≤ f ≤ 12.0
Integer range 2 ≤ i ≤ 110
Target series size 101
interpretations/eval 3

Table 2. Experiment 1 parameters

Train Test
Average score 634 912
Std dev 113 200
Best score 494 676
Worst score 890 1315
Confidence range,

low:high (95%) 581:687 818:1006
Mean error per example 3.14 4.51
Correlation train & test 0.82

Table 3. Summary of results: solution evaluation

This experiment uses two target sequences with sim-
ple monotonic shapes – a polynomially decreasing se-
quence, and a ramped increasing sequence (see Figures 3
and 4). Other parameters are given in Table 2. All channel
rates (a, b, both processes) are evolved.

Table 3 summarizes the results for the 2-variable runs.
The mean solution score is within the 95% confidence
range. By dividing the scores by the number of variables
(2) and sample points (101), the overall error per sample
point is about 3. There was a high correlation between the
fitness scores and testing scores, which shows that the av-
eraging of fitness scores is good for obtaining predictable
processes.

The plots in Figures 3 and 4 show the target plot, the
(averaged) output of all the solutions from the 20 runs, and
the output from the solution with the best fitness score.
Note that a run’s best solution is the expression which ob-
tained the best fitness (lowest accumulative error), based
on the average of 3 separate interpretations and their cor-
responding fitness evaluations. Since these are probabilis-
tic processes, however, subsequent interpretations are not
guaranteed to exhibit excellent performance. The plots

Figure 3. Polynomial decreasing: target, run avg, and best

Figure 4. Ramped increasing: target, run avg, and best

show that all the solutions as plotted by the average exhibit
a reasonable fit to the target behaviour. The expression for
the single solution plotted in the above figures is:

!proc0 : (b : 0) #

!proc1 : ((b : b : 0)#(b : proc1 : 0)) #
103@(proc0 : proc0 : proc1 : proc0 : 0) #

34@(b : 0) #
37@(a : 0)
rates : a = 0.88 proc0 = 0.86

b = 1.00 proc1 = 0.89

4.2 Experiment 2: Ethylene

Here, we evolve a process which generates behaviour that
matches that of a simulation for ethylene given in [26]. The
SPIM expression was translated into the following:

!proc0 : (ay : proc1 : 0 + ar : proc1 : 0) #
!proc1 : (ar : ep : 0 + pr : 0 + pr : 0) #
4@(ay : 0) #
200@(proc0 : 0)

Ten interpretations were performed, and an average be-
haviour was computed for use as the target behaviour.

Parameter Value
Targets 4 variables from Ethylene simulation
Channels ay, ep, pr, ar
Channel rates fixed: ay=1.0, pr=1.0,ar=10.0,

default=100000000.0
Processes proc0, proc1

Time limit 0.20
Transition limit 2000
Float range 0.75 ≤ f ≤ 12.0
Integer range 1 ≤ i ≤ 200
Target series size 145
interpretations/eval 3

Table 4. Experiment 2 parameters

Figure 5. Ethylene: target (solid) and avg solution (dash)

Parameters for this experiment are in Table 4. Al-
though the target system uses 4 channels and 2 sub-
processes, we only match the 4 channels during fitness
evaluation. We also supply all channel rates, to match those
of the target system. Note that this increases the problem
difficulty for evolution, since predetermined channel rates
are an additional problem constraint.

Table 5 summarizes the results for the 20 runs. The
first column shows how the above solution expression mea-
sures against itself, by evaluating its output from 20 sepa-
rate simulations against the average plot used as training
data. Looking at the evolved solutions, there is a substan-
tial gap between the scores of the best and worst solutions
from the 20 runs. Statistically, 95% of solutions obtained
will generate scores within the confidence range specified.
The test scores are single interpretations of the designated
solution from each run. Test scores tend to be weaker than
the fitness scores. There is a very positive correlation (0.97)
between the fitness and test scores.

Plots of the average solution behaviour from 20 runs
against the target behaviour are in Figure 5. This plot
shows 3 channels, since the ar and ay plots are almost
identical. The curves for this solution and others tend to
be more accurate during the early portion of the execution,

Target Train Test
Avg score 4925 8808 9724
Std dev 1728 2441 2459
Best score 2436 3639 4149
Worst score 8636 11898 12712
Confidence range, 4117: 7666: 8573:

low:high (95%) 5733 9950 10875
Mean error per example 8.5 15.1 16.8
Correlation train & test 0.97

Table 5. Summary of results: solution evaluation

Figure 6. Variable EP range from 10 interpretations: target
(red) and best (black)

due to a bias introduced in our time-series evaluation strat-
egy. The source expression’s interpretation produces more
frequent but smaller-duration time changes early in the ex-
ecution: the time up to 0.04 seconds contained 117 of the
data points, while the remaining time span up to 0.10 sec-
onds used 28 points. Hence solutions tended to be more
divergent after 0.04 seconds, since scoring was not as pre-
cise.

One solution expression is:

!proc0 : (ay : ep : proc0 : pr : proc0 : 0 + ar : ep : 0) #
!proc1 : (ar : ep : ar : proc0 : 0 + ay : proc0 : 0) #
39@(proc1 : proc0 : 0) #
5@(pr : 0) #
72@(proc1 : 0) #
27@(proc1 : proc1 : 0)

Note that this expression is not similar to the source ex-
pression. This is because the target behaviour of the source
expression is underspecified. Without the introduction of
more constraints to help refine the characteristics of the
target system, many evolved expressions can be reason-
able candidate solutions. For example, for more accurate
process inference, the behaviours of the source expression
processes should also be included in the fitness evaluation.

Figure 7. Performance graph: avg of 20 runs

Figure 6 shows the variation of one variable (EP) that
occurs between separate interpretations of the same expres-
sion. The red portion shows the range seen from 10 in-
terpretations of the target expression, and the black is the
range from the above evolved solution. This particular so-
lution underestimates the final EP value.

Figure 7 shows the average population fitness and best
of generation fitness, averaged over the 20 runs. Due to the
fitness evaluation’s use of penalty scores, the population
average is considerably higher than the best individual, and
hence a logarithmic scale is used on the Y-axis. The curves
to the left of the vertical line at generation 0 shows the ef-
fect of the culling and Lamarckian boost of the initial pop-
ulation.

5 Conclusion

This paper described two example experiments in which
genetic programming is used to automatically synthesize
stochastic processes from example time series of their de-
sired behaviours. Many other experiments were performed
in the course of this research. We were successful in evolv-
ing processes for monotonic, continuous time series. Fur-
thermore, we used up to 4 variables during the evaluation.
Naturally, systems with more variables to infer are more
difficult to evolve.

There are a number of new directions under investi-
gation for this research. Experiments that used cyclic tar-
get behaviours were unsuccessful. When trying to evolve a
process that matches a sine curve output, GP would evolve
processes with flat output midway through the sine curve.
The difficulty with cyclic and nonmonotonic behaviour is
due to a number of factors. Firstly, cyclic behaviours are
particularly difficult to evaluate using the simple evalua-
tion strategy used in this paper. Cyclic stochastic processes
tend to exhibit a much higher deviation of behaviour than
monotonic processes, and this does not bode well with sum
of absolute errors fitness evaluations. Secondly, sophis-
ticated stochastic π-calculus expression structures are re-
quired for creating cyclic, non-monotonic behaviours, and

channel passing is usually necessary for such systems. Al-
though our implementation supports channel passing, we
found that such expressions are too brittle for the reproduc-
tion and grammatical definition used in this paper. Evolu-
tion in our experiments spent much time removing dead-
lock from expressions, and so the additional intricacies of
channel passing are too difficult to handle. Cellular encod-
ing could be a more fruitful representation for such struc-
tures (see below).

There are other examples of research that use evolu-
tionary computation to evolve network with time-series be-
haviour characteristics. Genetic algorithms have been used
to evolve stochastic Petri systems for modelling metabolic
networks [27]. They successfully evolve a Petri net that
models a phospholipid pathway, from time-course data for
the variables (substrates) of the target system. Although
their evaluation strategy is similar to ours, their encoded
representation within the GA is considerably different. The
linear decoding of genes automatically results in a con-
nected, non-deadlocked network. Our GP system, on the
other hand, can often produce deadlocked, disconnected π-
calculus expressions. This does inhibit the performance of
evolution.

Koza et al. use GP to evolve metabolic networks
[28]. Their target network structures are similar in flavour
to ours, in that the network execution is characterizable by
time-course data for the variables of interest. However,
like [27], their networks are deterministic, and network be-
haviour depends solely upon starting conditions (values)
of the network. Furthermore, their GP representation uses
cellular encoding, in which execution of a GP tree will re-
fine an initial embryo network into a more complex one.
This strategy is an ideal one for network-like structures,
and would circumvent many of the deadlock issues we en-
countered.

This research is another step in an ongoing plan for
using GP to evolve more complex and generalized pro-
cesses. Earlier research by the author investigated the use
of GP to evolve deterministic processes [29] and cyclic pro-
cesses [30]. A goal is to automatically evolve processes
that model chemical and biological networks [4] [5] [6].

Acknowledgment: Thanks to Janine Imada for help-
ful comments. Supported by NSERC Operating Grant
138467.

References

[1] R. Milner, Communication and concurrency (New
York: Prentice Hall, 1989).

[2] R. Milner, Communicating and mobile systems: the
pi-calculus (Cambridge, UK: Cambridge University
Press, 1999).

[3] C. Priami, Stochastic pi-calculus, The Computer
Journal, 38(7), 1995, 579–589.

[4] R. Blossey, L. Cardelli, & A. Phillips, A composi-
tional approach to the stochastic dynamics of gene
networks, Trans. in Comp. Sys. Bio (TCSB), 3939,
2006, 99–122.

[5] A. Phillips, L. Cardelli, & G. Castagna, A graphical
representation for biological processes in the stochas-
tic pi-calculus, Trans. in Comp. Sys. Bio (TCSB),
4230, 2006, 123–152.

[6] C. Priami, A. Regev, E. Shapiro, & W. Silverman,
Application of a stochastic name-passing calculus to
representation and simulation of molecular processes,
Information Processing Letters, 80, 2001, 25–31.

[7] S.H. Strogatz, Nonlinear dynamics and chaos (Cam-
bridge, MA: Westview Press, 1994).

[8] W. Banzhaf, P. Nordin, R.E. Keller, & F.D. Francone,
Genetic programming: An Introduction (San Fran-
cisco: Morgan Kaufmann, 1998).

[9] J.R. Koza, Genetic programming: On the program-
ming of computers by means of natural selection
(Cambridge, MA: MIT Press, 1992).

[10] BioSPI, The biospi project, http: //
www.wisdom.weizmann.ac.il /̃ biospi/, last ac-
cessed March 1, 2007.

[11] A. Bloch, B. Haagensen, M.K. Hoyer, & S.U Knud-
sen, The stopi-calculus and simulator, 2004, last ac-
cessed March 1, 2007.

[12] A. Phillips & L. Cardelli, A correct abstract machine
for the stochastic pi-calculus, in Proc. Bioconcur’04,
London, UK, 2004.

[13] D.T. Gillespie, Exact stochastic simulation of coupled
chemical reactions, J. Phys. Chem, 81, 1977, 2340–
2361.

[14] P.J. Angeline, Evolving predictors for chaotic time se-
ries, in Proc. SPIE: Application and Science of Com-
putational Intelligence, 3390, 1998, 170–180.

[15] R. Bakker, J.C. Schouten, C.L. Giles, F. Takens, &
C.M. van den Bleek, Learning chaotic attractors by
neural networks, Neural Computation, 12, 2000,
2355–2383.

[16] H. Cao, L. Kang, & Y. Chen, Evolutionary mod-
eling of ordinary differential equations for dynamic
systems, in Proc. GECCO 99, Orlando, FL, 1999,
959–965.

[17] B. Grosman & D.R. Lewin, Automated nonlin-
ear model predictive control using genetic program-
ming, Computers and Chemical Engineering, 26,
2002, 631–640.

[18] M.A. Kaboudan, Forecasting with computer-evolved
model specifications: a genetic programming applica-
tion, Computers and Operations Research, 30, 2003,
1661–1681.

[19] G.Y. Lee, Time series perturbation by genetic pro-
gramming, in Proc. CEC 2001, Seoul, Korea, 2001,
403–409.

[20] M. Witczak, A. Obuchowicz, & J. Korbicz, Genetic
programming based approaches to identification and
fault diagnosis of non-linear dynamic systems, Int. J.
Control, 75(13), 2002, 1012–1031.

[21] W. Zhang, G. Yang, & Z.Wu, Genetic programming-
based modeling on chaotic time series, in Proc.
3rd Intl Conf. on Machine Learning and Cybernetics,
Shanghai, China, 2004, 2347–2352.

[22] R.I. McKay, X.H. Nguyen, P.A. Whigham, &
Y. Shan, Grammars in genetic programming: A brief
review, in Proc. Intl. Symp. on Intelligence, Compu-
tation and Applications, Wuhan, China, 2005, 3–18.

[23] B.J. Ross, Logic-based genetic programming with
definite clause translation grammars, New Genera-
tion Computing, 19(4), 2001, 313–337.

[24] SICS, SICStus prolog user’s manual, May 2005,
http://www.sics.se/isl/sicstus.html.

[25] B.J. Ross, A Lamarckian evolution strategy for ge-
netic algorithms, in The Practical Handbook of Ge-
netic Algorithms, L. Chambers, Ed., 3, (Boca Raton:
CRC Press, 1997), 1–16..

[26] A. Phillips, The stochastic pi machine (spim),
http://research.microsoft.com/ aphillip/spim/. Last
accessed March 1, 2007.

[27] J. Kitagawa & H. Iba, Identifying metabolic pathways
and gene regulation networks with evolutionary algo-
rithms, in Evolutionary Computation in Bioinformat-
ics, G.F. Fogel and D.W. Corne, Eds., (San Francisco:
Morgan Kaufman, 2003), 255–278.

[28] J.R. Koza, M.A. Keane, M.J. Streeter, W. Mydlowec,
J. Yu, & G. Lanza, Genetic programming IV: routine
human-competitive machine intelligence, (Norwell,
MA: Kluwer Academic Publishers, 2003).

[29] B.J. Ross, The evolution of concurrent programs, Ap-
plied Intelligence, 8(1), January, 1998, 21–32.

[30] B.J. Ross, Pairwise sequence comparison and the ge-
netic programming of iterative concurrent programs,
in Proc. Genetic Programming 1998, Madison, WI,
1998, 338–343.

