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Abstract. In this paper we show how the classical duality results ex-
tended to a Duality via Truth contribute to development of a relational
semantics for various modal-like logics. In particular, we present a Du-
ality via Truth for some classes of information algebras and frames. We
also show that the full categorical formulation of classical duality extends
to a full Duality via Truth.

1 Introduction

In this paper we show how Stone-like or Priestley-like dualities can be split into
two parts: one referring to the algebraic aspects and the other to the logical
aspects. In this way a relationship between algebraic structures and relational
structures (or frames, as they are called in non-classical logics) can be rooted in
their common origin as semantic structures of formal languages. We will follow
a method called Duality via Truth [OrR05]. This aims to exhibit a relationship
between a class of algebras and a class of frames based on their corresponding
notions of truth for a formal language. We show that the appropriate elements of
Stone-like or Priestley-like dualities can easily be extended to Duality via Truth.
Usually, on an algebraic side, we are interested in representation theorems for
a class of algebras which involves representing elements of those algebras as
subsets of some universal set. On the logical side, we consider a class of frames
and prove a completeness of the logic with respect to a class of models determined
by those frames. We show that these two approaches can be put together and
can be extended to a Duality via Truth which exhibits a principle according to
which the two classes of structures are dual.

Given a formal language Lan, a class of frames Frm which determines a frame
semantics for Lan, and a class Alg of algebras which determines its algebraic
semantics, a Duality via Truth theorem says that these two kinds of semantics
are equivalent in the following sense:

DvT A formula φ ∈ Lan is true in every algebra of Alg iff is true in every frame
of Frm.

In order to prove such a theorem we proceed as follows. From each algebra L ∈
Alg we form a canonical frame X (L), and from each frame X ∈ Frm we form a
complex algebra C(X). Then we prove that X (L) ∈ Frm and C(X) ∈ Alg.

Furthermore, we prove what is called a complex algebra theorem:



CA For every frame X ∈ Frm, a formula φ ∈ Lan is true in X iff φ is true in
C(X).

Finally, we prove a representation theorem:

R Every algebra L ∈ Alg is isomorphic to a subalgebra of the complex algebra
of its canonical frame C(X (L)).

With a complex algebra theorem and a representation theorem we can prove a
Duality via Truth theorem. The right-to-left implication of DvT follows from the
left-to-right implication of CA and the left-to-right implication of DvT follows
from right-to-left implication of CA and R.

In Sections 2 and 4 we present Duality via Truth results for modal algebras
and modal frames, and for sufficiency algebras and sufficiency frames. In Sec-
tions 3 and 5 we consider a duality between some classes of information algebras
and information frames. These frames have an indexed family of binary rela-
tions satisfying certain properties and were introduced (in [DeO02]) to capture
intuitions about relations arising from information systems.

2 Modal algebras and frames

In this section we review Jónsson/Tarski duality for Boolean algebras with op-
erators. This is then used as a case study for illustrating how the Duality via
Truth approach extends this duality with dual notions of truth of formulae of a
propositional language.

The class of algebras will consist of modal algebras (B, f) where B is a
Boolean algebra (B,∨,∧,−, 0, 1) and f is an unary operator over B that is
additive (i.e. f(a ∨ b) = f(a) ∨ f(b)) and normal (i.e. f(0) = 0). The class of
frames will consist of frames (X, R) where X is a set endowed with a binary
relation R over X. Let AlgM denote the class of modal algebras, and Frm denote
the class of frames.

First we show that any frame gives rise to a modal algebra. Let (X, R) be
a frame. The binary relation R over X, induces monotone unary operators over
2X , including, fR : 2X → 2X defined by

fR(A) = {x ∈ X | R(x) ∩ A 6= ∅} for A ⊆ X,

and its dual, namely, fd
R : 2X → 2X defined by

fd
R(A) = {x ∈ X | R(x) ⊆ A} = −fR(−A) for A ⊆ X.

It is a trivial exercise to show that the operator fR is normal and (completely)
additive, and its dual fd

R is full (i.e. fd(1) = 1) and (completely) multiplicative
(i.e. fd(a∧b) = fd(a)∧fd(b)). (See [BrR01] for further details.) So the powerset
Boolean algebra 2X endowed with the operator fR is a modal algebra.



Next we show that any modal algebra in turn gives rise to a frame. In the
case of a normal and completely additive operator f over a powerset Boolean
algebra 2X , a relation rf over X may be defined, as in [BrR01,DuO01], by

xrfy iff x ∈ f({y}), for x, y ∈ X.

For the general case we invoke Stone’s representation theorem — i.e., we repre-
sent the elements of the Boolean algebra as subsets of some universal set (namely
the set of all prime filters), and then define a binary relation over this universe.
Let (B, f) be a modal algebra, and let X (B) be the set of all prime filters in the
Boolean algebra B. From the operator f define a binary relation Rf over X (B)
by

FRfG iff ∀y ∈ B, y ∈ G ⇒ f(y) ∈ F iff G ⊆ f−1(F ), for F, G ∈ X (B).

Note f−1 is the inverse image map given by f−1(F ) = {x | f(x) ∈ F}. An
exercise in [BrR01] explains that the definition of rf corresponds to the definition
of Rf in the general case.

Lemma 1. For any frame (X, R) and F, G ∈ X (B),

G ⊆ f−1(F ) iff (f−1)d(F ) ⊆ G.

We now show how a modal algebra can be recovered from the frame it gave rise
to. That is, if we start with a modal algebra (B, f), form its canonical frame
(X (B), Rf ) and form the complex algebra (2X (B), fRf

) of that, then this last
modal algebra contains an isomorphic copy of the original modal algebra. For
this it suffices to show that the Stone mapping h : B → 2X (B), which is an
embedding of the Boolean algebra B into the Boolean algebra 2X (B), preserves
operators over B. That is,

Theorem 2. For any modal algebra (B, f) and a ∈ B, h(f(a)) = fRf
(h(a)).

Proof: For any a ∈ B,

fRf
(h(a)) = {F ∈ X (B) | (∃G ∈ h(a))[FRfG]}

= {F ∈ X (B) | (∃G ∈ X (B))[a ∈ G and G ⊆ f−1(F )]}.

To show that this is equal to h(f(a)) = {F ∈ X (B) | f(a) ∈ F} we have to show
that f(a) ∈ F iff (∃G ∈ X (B))[a ∈ G and G ⊆ f−1(F )].
The right-to-left direction is easy, because if a ∈ G and G ⊆ f−1(F ) then
G ⊆ {x | f(x) ∈ F}, and hence f(a) ∈ F . For the left-to-right direction consider
the set Zf = {b ∈ B | fd(b) ∈ F}. Let F ′ be the filter generated by Zf∪{a}, that
is, F ′ = {b ∈ B | ∃a1, . . . , an ∈ Zf , a1 ∧ . . . ∧ an ∧ a ≤ b}. Then F ′ is proper.
Suppose otherwise. Then for some a1, . . . , an ∈ Zf , a1 ∧ . . . ∧ an ∧ a = 0, i.e.,
a1 ∧ . . . ∧ an ≤ −a. Since fd is monotone, fd(a1 ∧ . . . ∧ an) ≤ fd(−a), that is,
fd(a1)∧ . . .∧fd(an) ≤ fd(−a). By definition of Zf we have fd(a1), . . . , fd(an) ∈
F so, since F is a filter, fd(a1) ∧ . . . ∧ fd(an) ∈ F and hence fd(−a) ∈ F . Thus



−a ∈ Zf which is a contradiction. So, by ([DaP90], p188), there is a prime filter
G containing F ′. Since a ∈ F ′, a ∈ G and hence g ∈ h(a). Also G ⊆ f−1(F )
since if y 6∈ f−1(F ) then f(y) 6∈ F , i.e., fd(−y) ∈ F , so −y ∈ F ′ ⊆ G and hence
y 6∈ G. ut

With this result we can prove a representation theorem (see Theorem 4(a)) for
modal algebras. For a representation theorem for frames we show how a frame
can be recovered from the modal algebra it gave rise to. That is, if we start
with a frame (X, R), form its complex algebra (2X , fR) and form the canonical
frame (X (2X), RfR) of that, then this last frame contains an isomorphic copy of
the original frame. For this we invoke the one-one correspondence between the
elements of X and certain prime filters of 2X , namely the principal ones given
by the mapping k : X → X (2X) where k(x) = {A ∈ 2X | x ∈ A}. It is an easy
exercise to show that k(x) is a prime filter. We have to show that this mapping
preserves structure. That is,

Theorem 3. For any frame (X,R) and x, y ∈ X, xRy iff k(x)RfRk(y).

Proof: Note, for any x, y ∈ X,

k(x)RfR
k(y) iff k(y) ⊆ (fR)−1(k(x))

iff {Y ⊆ X | y ∈ Y } ⊆ {Z ⊆ X | x ∈ fR(Z)}.

We now prove the desired double implication. For the left-to-right direction,
suppose xRy. Take any Y ⊆ X with y ∈ Y . Then R(x) ∩ Y 6= ∅ and hence
Y ∈ {Z | x ∈ fR(Z)}. Thus k(x)RfR

k(y). For the right-to-left direction, suppose
k(x)RfRk(y). Since y ∈ {y}, by the above, x ∈ fR({y}), that is, xRy. ut

A consequence of the above theorems is a Jónsson/Tarski duality between
modal algebras and frames.

Theorem 4.

(a) Every modal algebra (B, F ) is isomorphic to a subalgebra of the complex
algebra of its canonical frame (2X (B), fRf

).
(b) Every frame (X,R) is isomorphic to a substructure of the canonical frame

of its complex algebra (X (2X), RfR
).

The final part of the duality consists of establishing a bijective correspon-
dence between maps between modal algebras and maps between frames. In the
case of modal algebras (B1, f1) and (B2, f2) the map is a Boolean algebra ho-
momorphism l : B1 → B2 and in the case of frames (X1, R1) and (X2, R2) the
map is a bounded morphism n : X1 → X2 (with the properties xR1y implies
n(x)R2n(y), and if n(x)R2y2 then for some y1 ∈ X1, xR1y1 and f(y1) = y2).

Theorem 5. Let (B1, f1) and (B2, f2) be modal algebras and let l : B1 → B2

be a homomorphism between them. Let (X1, R1) and (X2, R2) be frames and let
n : X1 → X2 be a bounded morphism between them. Then l−1 : X (B2) → X (B1)
is a bounded morphism, and n−1 : 2X2 → 2X1 , is a homomorphism.



It is not difficult to extend Theorem 5 to show that injective/surjective ho-
momorphisms correspond to surjective/injective bounded morphisms and vice
versa. Let us use the category-theoretical device of denoting the function m−1 by
X (m) (thus invoking a functorial notation), then the duality is finally completed
by proving the following results.

Theorem 6. Let l and n be as in Theorem 5. Suppose that the maps hB1 : B1 →
2X (B1) and hB2 : B2 → 2X (B2), and kX1 : X1 → X (2X) and kX2 : X2 → X (2Y )
are the isomorphisms used in Theorem 4. Then

(X (l))−1 ◦ hB1 = hB2 ◦ l and X (n−1) ◦ kX1 = kX2 ◦ n.

That is, the following diagrams commute:

B1

?

l

B2
-hB2

-hB1
2X (B1)

?

(X (l))−1

2X (B2)

X1

?

n

X2
-kX2

-kX1 X (2X1)

?

X (n−1)

X (2X2)

Theorem 7. Let l, hB1 , hB2 be as in Theorem 6. Then, for any a ∈ B1,

(X (l))−1(fRf1
(hB1(a))) = fRf2

(X (l))−1hB1(a)

Proof: For any a ∈ B1,

(X (l))−1(fRf1
(hB1(a)))

= (X (l))−1(hB1(f1(a))) by Theorem 6
= hB2(l(f1(a))) by Theorem 2
= hB2(f2(l(a))) since l is a homomorphism
= fRf2

(hB2(l(a))) by Theorem 2
= fRf2

(X (l))−1hB1(a) by Theorem 6.

ut

Theorem 8. Let n, kX1 , kX2 be as in Theorem 6. Then, for any x, y ∈ X1,

(a) kX1(x)RfR1
kX1(y) ⇒ X (n−1)kX1(x)RfR2

X (n−1)kX1(y)
(b) If X (n−1)kX1(x)RfR2

kX2(y2) then for some y1 ∈ X1, kX1(x)RfR1
kX1(y)

and X (n−1)(kX1(y1)) = kX2(y2).

Proof: For any x, y ∈ X1,

kX1(x)RfR1
kX1(y)

⇔ xR1y by Theorem 3
⇒ n(x)R2n(y) since n is a bounded morphism
⇔ kX2(n(x))RfR2

kX2(n(y)) by Theorem 3
⇔ X (n−1)kX1(x)RfR2

X (n−1)kX1(y) by Theorem 6



X (n−1)kX1(x)RfR2
kX2(y2)

⇔ kX2(n(x))RfR2
kX2(y2) by Theorem 6

⇔ n(x)R2y2 by Theorem 3
⇒ ∃y1, xR1y1 ∧ n(y1) = y2 since n is a bounded morphism
⇔ ∃y1, kX1(x)RfR1

kX1(y) ∧
X (n−1)(kX1(y1)) = kX2(y2) by Theorems 3 and 6

ut
All of the preceding results can be cast into a categorical framework as an

equivalence between the categories of modal algebras and frames. For example,
Theorem 6 is then simply a statement of the definition of the natural transfor-
mations involved in an equivalence (or more generally, adjunction).

In order to extend this to a Duality via Truth, we need a logical language. Let
LanM be a modal language whose formulas are built from propositional variables
taken from an infinite denumerable set V ar, with the classical propositional
operations of negation (¬), disjunction (∨), conjunction (∧), and with a modal
operator (♦). We slightly abuse the language by denoting the operations in
modal algebras and the classical propositional operations of LanM with the same
symbols.

The class AlgM of modal algebras provides an algebraic semantics for LanM .
Let (B, f) be a modal algebra. A valuation on B is a function v : V ar → B which
assigns elements of B to propositional variables and extends homomorphically
to all the formulas of LanM , that is

v(¬α) = −α, v(α ∨ β) = v(α) ∨ v(β), v(♦α) = f(v(α)).

The notion of truth determined by this semantics is as follows. A formula α in
LanM is true in an algebra (B, f) whenever v(α) = 1 for every v in B. A formula
α ∈ LanM is true in the class AlgM iff it is true in every algebra B ∈ AlgM .

The class Frm of frames provides a well known frame semantics for LanM . A
model based on a frame (X, R) is a system M = (X,R, m), where m : V ar → 2X

is a meaning function. The satisfaction relation |= is defined as usual. We say that
in a model M state x ∈ X satisfies a formula whenever the following conditions
are satisfied:

M, x |= p iff x ∈ m(p), for every p ∈ V ar

M, x |= α ∨ β iff M,x |= α or M,x |= β,

M, x |= ¬α iff not M, x |= α,

M, x |= ♦α iff ∃y such that M, y |= α and xRy.

A notion of truth of formulas based on this semantics is defined as usual. A
formula α ∈ LanM is true in a model M whenever for every x ∈ X we have
M,x |= α. A formula α ∈ LanM is true in a frame (X, R) iff α is true in every
model based on this frame. And finally a formula α ∈ LanM is true in the class
Frm of frames iff it is true in every frame X ∈ Frm.

It is easy to see that the complex algebra theorem holds:



Theorem 9. A formula α ∈ LanM is true in every model based on a frame
(X, R) iff α is true in the modal complex algebra (2X , fR) of that frame.

Proof: Let (X, R) be any frame. The result is established by taking the mean-
ing function m on any model (X,R, m) based on (X, R) to coincide with the
valuation function on the modal complex algebra (2X , fR) of (X,R). ut

Finally, we prove the Duality via Truth theorem between modal algebras and
frames.

Theorem 10. A formula α ∈ LanM is true in every algebra of AlgM iff α is
true in every frame of Frm.

Proof: Let (B, f) be any modal algebra. Then any valuation v on B can be
extended to a valuation h ◦ v on 2X (B) and thus

α is true in (B, f) iff α is true in (2X (B), fRf
)

iff α is true in every model based on (X (B), Rf )
iff α is true in (X (B), Rf ).

By the duality, every frame in Frm is of the form (X (B), Rf ) for some modal
algebra (B, f) in AlgM . On the other hand, let (X, R) be any frame. Then

α is true in (X, R) iff α is true in every model based on (X,R)
iff α is true in (2X , Rf ).

By the duality, every modal algebra in AlgM is of the form (2X , fR) for some
frame (X,R) in Frm. ut

The final part of the Duality via Truth involves establishing a correspondence
between preservation of truth with respect to AlgM and with respect to FrmM .
As a consequence of Theorem 6, we have

(X (l))−1 ◦ hB1 ◦ v1 = hB2 ◦ v2 and X (n−1) ◦ X (m1) = X (m2).

That is, the following diagrams commute.

B1

?

l

B2

Var
¡
¡µv1

v2
@

@R -hB2

-hB1
2X (B1)

?

(X (l))−1

2X (B2)

2X1

?

n−1

2X2

Var
¡
¡µm1

m2
@

@R -X

-X
X (2X1)

?

X (n−1)

X (2X2)

Hence, we have the following equivalence of preservation of truth.

Theorem 11. Any homomorphism between algebras in AlgM preserves truth
with respect to AlgM iff any bounded morphism between frames in Frm preserves
truth with respect to Frm.

Proof: Let l : B1 → B2 be a homomorphism between modal algebras (B1, f1)
and (B2, f2). Then X (l) : X (B2) → X (B1) is a bounded morphism between the



frames (X (B1), Rf1) and (X (B2), Rf2). Suppose l preserves truth in AlgM , that
is, for any formula α and any valuation v1 on B1,

v1(α) = 1 iff l ◦ v1(α) = 1.

The valuation v1 can be extended to a meaning function hB1◦v1 on (X (B1), Rf1),
and the valuation l ◦ v1 can be extended to a meaning function hB2 ◦ l ◦ v1

on (X (B2), Rf2). By Theorem 6, it follows that for any formula α and any
F ∈ X (B1),

F ∈ hB2 ◦ l◦v1(α) iff F ∈ (X (l))−1 ◦hB1 ◦v1(α) iff X (l)(F ) ∈ hB1 ◦v1(α).

That is, the bounded morphism X (l) preserves truth with respect to Frm.
On the other hand, let n : X1 → X2 be a bounded morphism between frames

(X1, R1) and (X2, R2). Then n−1 : 2X2 → 2X1 is a homomorphism between
the modal algebras (2X1 , fR1) and (2X2 , fR2). Suppose n preserves truth with
respect to Frm, that is, for any formula α and any meaning function m1 on X1,

x ∈ m1(α) iff n(x) ∈ n ◦m1(α).

As a valuation function on 2X1 take meaning function m1 and as a valuation
function on 2X2 take the meaning function n ◦m1. Then,

n ◦m1(α) = X2 iff n−1(n ◦m1)(α) = n−1(X2) iff m1(α) = X1

That is, the homomorphism n−1 preserves truth with respect to AlgM .
ut

Another representation of a modal algebra (B, f) is provided in [JoT51] by a
canonical extension Bσ of B algebra. The canonical extension of the operator f
is a map fσ : Bσ → Bσ defined by fσ({y}) =

⋂{h(f(a)) | a ∈ y}, for y ∈ X (B).
It follows that

x ∈ fσ({y}) iff ∀a, a ∈ y ⇒ f(a) ∈ x iff y ⊆ f−1(x).

Observe that here in fact we have a definition of a relation on a set of prime filters
of B. This is precisely a relation of the canonical frame of the modal algebra.
Next, for Z ∈ X (B) we define fσ(Z) =

⋃{fσ({y}) : y ∈ Z}. It follows that

x ∈ fσ(h(a)) iff ∃y, a ∈ y ∧ x ∈ fσ({y}) iff ∃y, a ∈ y ∧ y ⊆ f−1(x).

That is, fσ(h(a)) provides a definition of the modal operator in the complex
algebra of the canonical frame of (B, f). The canonical extension of the modal
algebra (B, f) is then the algebra (Bσ, fσ). It is known that fσ is a complete
modal operator on Bσ.

3 Information algebras and information frames for
reasoning about similarity

In this section we extend the results of Section 2 to a class of information algebras
which are extensions of modal algebras with an indexed family of unary operators
satisfying certain properties inspired by information systems.



Typically, in an information system objects are described in terms of some
attributes and their values. The queries to an information system often have the
form of a request for finding a set of objects whose sets of attribute values satisfy
some conditions. This leads to the notion of information relation determined by
a set of attributes. Let a(x) and a(y) be sets of values of an attribute a of the
objects x and y. We may want to know a set of those objects from an information
system whose sets of values of all (or some) of the attributes from a subset A of
attributes are equal (or disjoint, or overlap etc.). To represent such queries we
define, first, information relations on the set of objects and, second, information
operators determined by those relations. For example, a relation of similarity of
objects is defined as:

(x, y) ∈ sim(a) iff a(x) ∩ a(y) 6= ∅.

Next, we can extend this relation to any subset A of attributes so that a quan-
tification over A is added:

(x, y) ∈ sim(A) iff a(x) ∩ a(y) 6= ∅ for all (some) a ∈ A.

Relations defined with the universal (existential) quantifier are referred to as
strong (weak) relations.

In an abstract setting as an index set we take a set of sets 2Par, where each set
P ⊆ Par is intuitively viewed as a set of attributes of objects in an information
system. Then strong or weak relations are defined axiomatically.

An information frame of weak similarity (denoted FW-SIM in [DeO02]) is
a binary relational structure (X, {RP | P ⊆ Par}) where the binary relations
RP ⊆ X ×X (for each P ⊆ Par) satisfy the following properties:

MF1 RP∪Q = RP ∪RQ

MF2 R∅ = ∅
MF3 RP is weakly reflexive (i.e., ∀x, ∀y, xRy ⇒ xRx)
MF4 RP is symmetric (i.e., ∀x, ∀y, xRy ⇒ yRx)

Properties MF1 and MF2 reflect the intuition of weak relations; properties MF3
and MF4 are the abstract characterisation of similarity relations derived from an
information system. By FrmWSIM we denote the class of weak similarity frames.

An information algebra of weak similarity (denoted AW-SIM in [DeO02]) is
a Boolean algebra B with a family {fP | P ⊆ Par} of additive normal unary
operators satisfying the following additional properties:

MA1 fP∪Q(x) = fP (x) ∨ fQ(x)
MA2 f∅(x) = 0
MA3 x ∧ fP (1) ≤ fP (x)
MA4 x ≤ fd

P fP (x)

Properties MA1-MA4 will be shown below to be the algebraic counterparts of
the properties MF1-MF4 on information relations.



Lemma 12. Let (B, {fP | P ⊆ Par}) be an information algebra of weak simi-
larity. For each operator fP (P ⊆ Par), the corresponding binary relation RfP

over X (B) satisfies properties MF1 - MF4.

Proof: We prove MF1-MF3; MF4 is well known from modal correspondence
theory [vaB84].

MF1 For any F,G ∈ X (B), FRfP∪QG iff G ⊆ f−1
P∪Q(F ) iff (fd

P∪Q)−1(F ) ⊆ G. But
(fd

P∪Q)−1(F ) = (fd
P )−1(F ) ∩ (fd

Q)−1(F ). The propositional logic formulae
α ∧ β → γ and α → γ ∨ β → γ are equivalent. Thus, (fd

P )−1(F ) ⊆
G or (fd

Q)−1(F ) ⊆ G, that is, G ⊆ (fP )−1(F ) or G ⊆ (fQ)−1(F ). Thus
FRfP

G or FRfQ
G.

MF2 FRf∅G iff G ⊆ f−1
∅ (F ) iff F ⊆ ∅. The latter is always false since F is a

prime filter. Thus Rf∅ = ∅.
MF3 Take any F, G ∈ X (B) with FRfP

G and G − RfP
G. Then G ⊆ f−1

P (F )
and G 6⊆ fP (G). So, since fP (F ) and G are non-empty, gP (G) = ∅ and
gP (G) 6= ∅, which provides the required contradiction.

ut
Lemma 13. Let (X, {RP | P ⊆ Par}) be an information frame. For each binary
relation RP (P ⊆ Par), the corresponding unary operator fRP

over 2X satisfies
properties MA1 - MA4.

Proof: We prove MA1-MA3; MA4 is well known from modal correspondence
theory [vaB84].

MA1 For A ⊆ X, x ∈ fRP∪Q(A) iff RP∪Q(x) ∩ A 6= ∅ iff RP∪Q(x) 6⊆ −A. But
RP∪Q(x) = RP (x) ∪ RQ(x), so RP (x) 6⊆ −A or RQ(x) 6⊆ −A, that is,
RP (x) ∩A 6= ∅ or RQ(x) ∩A 6= ∅. Thus x ∈ fRP

(A) or x ∈ fRQ
(A).

MA2 x ∈ fR∅(A) iff A ⊆ R∅(x) iff A ⊆ X. The latter is always true so fR∅(A) = X.
MA3 Take any x ∈ X such that x ∈ A∩fRP (A) and x 6∈ fRP (X). Then x ∈ A and

A ⊆ RP (x) and X 6⊆ RP (x). So xRP x and for some y ∈ X not xRP y. Thus,
xRP x and, by property MF3 of RP , not xRx, which provides the required
contradiction.

ut
A representation theorem analogous to Theorem 4 holds for weak similarity

algebras and weak similarity frames. Also Theorems 6, 7, 8 are applicable to
weak similarity algebras and weak similarity frames, these being special modal
algebras and special frames, respectively.

The language LanWSIM relevant for algebras and frames of weak similarity is
an extension of the modal language LanM with a family of {〈RP 〉 | P ⊆ Par} of
modal operators. Algebraic semantics of the language is provided by the class
AlgWSIM and the frame semantics by the class FrmWSIM. The notion of a model
based on a frame of FrmWSIM, satisfaction relation, and the notions of truth in a
model, in a frame and in a class of frames are analogous to the respective notions
in Section 2. In view of Lemma 13 the complex algebra theorem (CA) holds for
FrmWSIM. From the representation theorem and (CA) we obtain a Duality via
Truth theorem, and also the equivalence of preservation of truth in Theorem 11.



4 Sufficiency algebras and frames

As second case study for the Duality via Truth approach we consider, in this
section, a duality between sufficiency algebras and frames. These algebras were
introduced in [DuO01] for reasoning about incomplete information and express-
ing algebraically certain properties of binary relations, such as irreflexivity or
co-reflexivity, defined in terms of the complement of the relation.

A sufficiency algebra (B, g) is a Boolean algebra B endowed with an unary
operator g over B that is co-additive (i.e. g(a ∨ b) = g(a) ∧ g(b)) and co-normal
(i.e. g(0) = 1). Let AlgS denote the class of sufficiency algebras. The class Frm
of frames adequate for providing Duality via Truth for sufficiency algebras is the
same as in the case of modal algebras.

Given any frame (X, R), the binary relation R over X induces antitone op-
erators, including gR : 2X → 2X defined by

gR(A) = {x ∈ X | R(x) ∪A 6= X} for A ⊆ X,

and its dual, namely, gd
R : 2X → 2X defined by

gd
R(A) = {x ∈ X | A ⊆ R(x)} for A ⊆ X.

Observing that these operators may be defined in terms of the monotone op-
erators in Section 2 by gR(A) = f−R(−A) and gd

R(A) = −f−R(A) it follows
that gR is co-normal and co-additive, and gd

R is co-full (i.e. gd(1) = 0) and co-
multiplicative (i.e. gd(a ∧ b) = gd(a) ∨ gd(b)). Hence, from a frame (X, R) we
may define a sufficiency algebra (2X , gR).

Next we show that any sufficiency algebra in turn gives rise to a frame. In
the case of a co-normal and completely co-additive operator g over a powerset
Boolean algebra 2X , a relation rg over X may be defined, as in [DuO01], by

xrgy iff x ∈ g({y}), for x, y ∈ X.

In general, as in Section 2 we invoke Stone’s representation theorem and then
define a binary relation over X (B). Let (B, g) be a sufficiency algebra. From the
operator g define a binary relation Rg over X (B) by

FRgG iff g(G) ∩ F 6= ∅, for F, G ∈ X (B).

It is an easy exercise to show that the definition of rg corresponds to that of Rg

in the general case.
We now show how a sufficiency algebra can be recovered from the frame

it gave rise to. That is, if we start with a sufficiency algebra (B, g), form its
canonical frame (X (B), Rg) and form the complex algebra (2X (B), gRg ) of that,
then this last sufficiency algebra contains an isomorphic copy of the original
sufficiency algebra. For this it suffices to show that the Stone mapping h : B →
2X (B) preserves operators g over B. That is,

Theorem 14. For any sufficiency algebra (B, g) and a ∈ B, h(g(a)) = gRg (h(a)).



Proof: For any a ∈ B,

gRg
(h(a)) = {F ∈ X (B) | h(a) ⊆ Rg(F )]}

= {F ∈ X (B) | (∀G ∈ X (B))[a ∈ G and g(G) ∩ F 6= ∅]}.

To show that this is equal to h(g(a)) = {F ∈ X (B) | g(a) ∈ F} we have to show
that g(a) 6∈ F iff (∃G ∈ X (B))[a ∈ G and g(G) ∩ F = ∅].
The right-to-left direction is easy, because if a ∈ G and g(G)∩F = ∅ then g(a) ∈
g(G) so g(a) 6∈ F . For the left-to-right direction, assume g(a) ∈ F . Consider the
set Zg = {b ∈ B | gd(b) 6∈ F}. Let F ′ be the filter generated by Zg ∪ {a}, that
is, F ′ = {b ∈ B | ∃a1, . . . , an ∈ Zg, a1 ∧ . . . ∧ an ∧ a ≤ b}. Then F ′ is proper.
Suppose otherwise. Then for some a1, . . . , an ∈ Zg, a1∧. . .∧an∧a = 0, i.e., a ≤
−(a1∧ . . .∧an) = −a1∨ . . .∨−an. Since g is antitone, g(−a1∨ . . .∨−an) ≤ g(a).
Thus g(−a1) ∧ . . . ∧ g(−an) ≤ g(a), that is, −gd(a1) ∧ . . . ∧−gd(an) ≤ g(a). By
definition of Zg we have gd(a1), . . . , gd(an) 6∈ F so −gd(a1), . . . ,−gd(an) ∈ F .
Since F is a filter, −gd(a1) ∧ . . . ∧ −gd(an) ∈ F and hence g(a) ∈ F which
contradicts the original assumption. So, by ([DaP90], p188), there is a prime
filter G containing F ′. Since a ∈ F ′, a ∈ G and hence g ∈ h(a). Also g(G)∩F = ∅
since if there is some b ∈ B with b ∈ g(G) and b ∈ F , then b = g(c) for some
c ∈ G and thus g(c) ∈ F , so gd(−c) 6∈ F hence −c ∈ Zg ⊆ F ′ ⊆ G and thus
c 6∈ G, which is a contradiction. ut

On the other hand a frame can be recovered from the sufficiency algebra it
gave rise to. That is, if we start with a frame (X,R), form its complex algebra
(2X , gR) and form the canonical frame (X (2X), RgR

) of that, then this last frame
contains an isomorphic copy of the original frame. For this we show the mapping
k : X → X (2X) preserves structure. That is,

Theorem 15. For any frame (X,R) and any x, y ∈ X, xRy iff k(x)RgR
k(y).

Proof: Note, for any x, y ∈ X,

k(x)RgR
k(y) iff gR(k(y))∩k(x) 6= ∅ iff {gR(Y ) | y ∈ Y }∩{Z | x ∈ Z} 6= ∅.

We now prove the desired double implication. For the left-to-right direction,
suppose xRy. Then {y} ⊆ R(x), so x ∈ gR({y}). Hence gR({y}) ∈ gR(k(y)) ∩
k(x). Thus k(x)RgRk(y). For the right-to-left direction, suppose k(x)RgRk(y).
Since y ∈ {y}, by the above, gR({y}) ∈ {Z | x ∈ Z}. Thus x ∈ gR({y}), that is,
{y} ⊆ R(x), that is, xRy. ut

Therefore, we have a Jónsson/Tarski duality between sufficiency algebras and
frames.

Theorem 16.

(a) Any sufficiency algebra (B, g) is isomorphic to a subalgebra of the complex
algebra of its canonical frame (2X (B), gRg ).

(b) Any frame (X, R) is isomorphic to a substructure of the canonical frame of
its complex algebra (X (2X), RgR).



Analogous results to Theorems 6, 7, 8 can be proved for sufficiency algebras and
frames by invoking Theorems 14 and 15.

The language adequate for discussing a duality between sufficiency algebras
AlgS and frames of Frm is a propositional language LanS whose formulas are
built with classical propositional connectives and the sufficiency operator [[ ]].
The frame semantics for LanS is defined as for the modal language. Let (X,R) be
a frame and let M = (X,R, m) be a model based on that frame. The satisfaction
relation extends to the formulas with the sufficiency operator as follows:

M, x |= [[R]]α iff ∀y if M, y |= α then xRy.

The notions of truth of a formula in a model, in a frame, and in a class of
frames are defined as in the case of the modal logic. Using analogous reasoning
to that for modal logic, we can prove the complex algebra theorem and Duality
via Truth theorem, and also the equivalence of preservation of truth.

Theorem 17. A formula α ∈ LanS is true in every model based on a frame
(X, R) iff α is true in the sufficiency complex algebra (2X , gR) of that frame.

Theorem 18. A formula α ∈ LanS is true in every algebra of AlgS iff α is true
in every frame of Frm.

Theorem 19. Any homomorphism between algebras in AlgS preserves truth
with respect to AlgS iff any bounded morphism between frames in Frm preserves
truth with respect to Frm.

The canonical extension of a sufficiency algebra (B, g) is defined as follows.
Let Bσ be the canonical extension of the Boolean algebra B and let h be the
Stone embedding. Then the canonical extension of the operator g is a map
gσ : Bσ → Bσ defined by gσ({y}) =

⋃{h(g(a)) | a ∈ y}, for y ∈ X (B). We have
that

x ∈ gσ({y}) iff ∃a, a ∈ y ∧ g(a) ∈ x iff y ∩ g(x) 6= ∅.
As in the case of modal algebras, this provides a definition of a relation on X (B).
Next, for Z ∈ X (B) we define gσ(Z) =

⋂{gσ({y}) : y ∈ Z}. It follows that

x ∈ gσ(h(a)) iff ∀y, a ∈ y ⇒ x ∈ gσ({y}) iff ∀y, a ∈ y ⇒ y ∩ g(x) 6= ∅.
That is, gσ(h(a)) provides a definition of the sufficiency operator in the com-
plex algebra of the canonical frame of (B, g). The canonical extension of the
sufficiency algebra (B, g) is then the algebra (Bσ, gσ). It is known that gσ is a
completely co-additive sufficiency operator on Bσ.

5 Information algebras and information frames of strong
right orthogonality

As before the representation results of Theorem 16 can be extended to some
information algebras based on sufficiency algebras. Here the relations derived



from an information systems are strong relations of right orthogonality defined
as follows. For objects x and y of an information system and an attribute a,

(x, y) ∈ rort(a) iff a(x) ⊆ −a(y).

For a subset A of attributes we may define strong (weak) relations by

(x, y) ∈ rort(A) iff a(x) ⊆ −a(y) for all (some) a ∈ A.

An abstract characterisation of strong relations of right orthogonality derived
from an information system may be defined as follows. An information frame of
strong right orthogonality (denoted FS-RORT in [DeO02]) is a binary relational
structure (X, {RP | P ⊆ Par}) where the binary relations RP ⊆ X×X (for each
P ⊆ Par) satisfy the following properties:

SF1 RP∪Q = RP ∩RQ

SF2 R∅ = X ×X
SF3 RP is co-weakly reflexive (i.e., ∀x, ∀y, x(−R)y ⇒ x(−R)x)
SF4 RP is symmetric (i.e., ∀x, ∀y, xRy ⇒ yRx)

Let FrmAS−RORT denote the class of all information frames of strong right or-
thogonality. On the other hand an information algebra of strong right orthog-
onality (denoted AS-RORT in [DeO02]) is a Boolean algebra B with a family
{gP | P ⊆ Par} of sufficiency operators satisfying the following additional prop-
erties:

SA1 gP∪Q(x) = gP (x) ∧ gQ(x)
SA2 g∅(x) = 1
SA3 x ∧ gP (x) ≤ gP (1)
SA4 x ≤ gP gP (x)

Let AlgAS−RORT denote the class of all information algebras of strong right or-
thogonality.

Lemma 20. Let (B, {gP | P ⊆ Par}) be an information algebra of strong right
orthogonality. For each gP (P ⊆ Par), the corresponding binary relation RgP

over X (B) satisfies properties SF1 - SF4.

Proof: We prove SF1-SF3; SF4 is shown in [DeO02].

SF1 FRgP∪Q
G iff gP∪Q(G) ∩ F 6= ∅ iff gP (G) ∩ gQ(G) ∩ F 6= ∅ iff gP (G) ∩ F 6= ∅

and gQ(G) ∩ F 6= ∅ iff FRgP
G and FgQ

G.
SF2 FRg∅G iff g∅(G) ∩ F 6= ∅ iff 2X ∩ F 6= ∅ iff F 6= ∅. The latter is always true

since F is a prime filter. Thus Rg∅ = X (B)×X (B).
SF3 Take any F,G ∈ X (B) with F (−RgP

)G and GRgP
G. Then gP (G) ∩ F = ∅

and gP (G) ∩ G 6= ∅. So, since F and G are non-empty, gP (G) = ∅ and
gP (G) 6= ∅, which provides the required contradiction.

ut



Lemma 21. Let (X, {RP | P ⊆ Par}) be an information frame of strong right
orthogonality. For each binary relation RP (P ⊆ Par), the corresponding suffi-
ciency operator gRP

over 2X satisfies properties SA1 - SA4.

Proof: We prove SA1-SA3; SA4 is shown in [DeO02].

SA1 x ∈ gRP∪Q
(A) iff A ⊆ RP∪Q(x) iff A ⊆ RP (x) ∩ RQ(x) iff A ⊆ RP (x) and

A ⊆ RQ(x) iff x ∈ gRP (A) ∩ gRQ(A), where the third double implication
holds by definition of intersection and greatest lower bound.

SA2 x ∈ gR∅(A) iff A ⊆ R∅(x) iff A ⊆ X. The latter is always true so gR∅(A) = X.
SA3 Take any x ∈ X such that x ∈ A∩gRP

(A) and x 6∈ gRP
(X). Then x ∈ A and

A ⊆ RP (x) and X 6⊆ RP (x). So xRP x and for some y ∈ X x(−R)P y. Thus,
xRP x and, by property SF3 of RP , x(−R)x, which provides the required
contradiction.

ut
A representation theorem analogous to Theorem 16 holds for algebras and

frames of strong right orthogonality. Also Theorems 6, 7, 8 are applicable to
algebras and frames of strong right orthogonality, these being special sufficiency
algebras and special frames, respectively.

The language LanAS−RORT relevant for algebras and frames of strong right
orthogonality is an extension of the modal language LanM with a family of
{[[RP ]] | P ⊆ Par} of sufficiency operators. Algebraic semantics of the lan-
guage is provided by the class AlgAS−RORT and the frame semantics by the class
FrmAS−RORT. The notion of a model based on a frame of FrmAS−RORT, satisfac-
tion relation, and the notions of truth in a model, in a frame and in a class of
frames are analogous to the respective notions in Section 2. In view of Lemma 21
the complex algebra theorem (CA) holds for FrmAS−RORT. From the represen-
tation theorem and (CA) we obtain a Duality via Truth theorem, and also the
equivalence of preservation of truth.

6 Conclusion

We presented a Duality via Truth results for modal algebras, sufficiency algebras
and for two classes of information algebras based on modal or sufficiency alge-
bras, respectively. The main idea of Duality via Truth is to ‘lift’ the concepts of
complex algebra and canonical frame so that they are assigned to an abstract
frame and a general algebra, not only to a canonical frame and complex algebra.
Once a Duality via Truth is established for a formal language with algebraic
and frame semantics, a natural question arises regarding a suitable deduction
mechanism for the language. Duality via Truth theorem guarantees that once
we prove a completeness theorem with respect to one of the semantics, then we
get it with respect to the other semantics too. Often, once the algebraic seman-
tics of the language is given, a Hilbert-style axiomatisation can be derived from
it. However, in the paper we do not consider any deduction methods for the
presented languages.



Other Duality via Truth results can be found in [OrV03] (for lattice based
languages with modal, sufficiency, necessity and dual sufficiency operators). The
complete proof systems for these languages are also presented there. Duality via
Truth results for a language of lattice-based relation algebras and for languages of
substructural logics can be easily developed based on the representation results
presented in [OrR05,DOR03,Rew03,DORV05]
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