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Abstract

A dynamic Bayesian network (DBN) is a probabilistic network that models inter-
dependent entities that change over time. Given example sequences of multivariate
data, we use a genetic algorithm to synthesize a network structure that models the
causal relationships that explain the sequence. We use a multi-objective evalua-
tion strategy with a genetic algorithm. The multi-objective criteria are a network’s
probabilistic score and structural complexity score. Our use of Pareto ranking is
ideal for this application, because it naturally balances the effect of the likelihood
and structural simplicity terms used in the BIC network evaluation heuristic. We
use a simple structural scoring formula, which tries to keep the number of links in
the network approximately equivalent to the number of variables. We also use a
simple representation that favours sparsely connected networks similar in structure
to those modeling biological phenomenon. Our experiments show promising results
when evolving networks ranging from 10 to 30 variables, using a maximal connec-
tivity of between 3 and 4 parents per node. The results from the multi-objective
GA were superior to those obtained with a single objective GA.

Key words: dynamic Bayesian networks, multi-objective optimization, genetic
algorithms
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1 Introduction

A Bayesian network (probabilistic network, belief network, probabilistic graph-
ical model) is a compact probabilistic representations of entities exhibiting
complex interdependencies [5] [32] [36]. A Bayesian network (BN) takes the
form of a directed acyclic graph, in which nodes represent observable and pos-
sibly hidden variables, and links denote causal relationships between variables.
Once a BN is constructed to model some phenomenon of interest, it can be
used for backward inference and approximate reasoning. For example, given
some observed values of variables, the BN can be used to infer likely causes
of these values, according to the relationships described in the network. Since
exact inference with BNs is NP-hard, approximation algorithms are often nec-
essary to obtain results. BNs have been applied to a variety of applications,
for example, expert systems [4], bioinformatics [27], speech recognition [31],
data compression [11], and evolutionary search optimization [33].

Whereas a BN represents the static relationships of a set of entities, a dynamic
Bayesian network (DBN) models the relationship of entities that change state
over time [14] [29] [36]. For example, genetic networks in biology are con-
veniently modeled by DBNs, since the influences of various genes upon one
another are determined by sequences of phases that progress over time [22]
[24] [34] [46] [47]. A DBN takes the form of 2 directed acyclic graphs. A prior
graph denotes the static relationship of variables before the commencement of
time. A transition network denotes the dynamic relationships that occur syn-
chronously over time. To perform inference over time, the transition network
is unwrapped or unfolded at each time step. In this way, a DBN can be used
to infer over arbitrarily long time sequences.

Besides the use of BNs and DBNs for inference, another application is the
study of the actual structural topology of a network. By examining the links
connecting nodes, it is possible to ascertain explanatory rules regarding the
relationships between variables. This is a form of data mining, in which a
network can be used as a means of obtaining rule-based knowledge about
a domain. The study of network structures is perhaps more important with
DBNs, because probabilistic inference itself becomes less meaningful when
considering phenomena that involve hundreds or thousands of changes over
long time sequences. The probabilistic nature of the network is still of use,
however, as it can be exploited by machine learning algorithms for obtaining
accurate network structures from examples of the phenomenon of interest.

Machine learning algorithms for both BNs and DBNs have been extensively
studied [3] [19] [7] [39] [17] [27]. The determination of an optimal BN to model
given behaviour is an NP-complete problem [9] [6]. Learning algorithms are
confounded by the fact that there are two interacting characteristics of net-
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works that can work against each other – the inferred probability values from
a network, which indicates how well the network fits the data, and the struc-
tural complexity of the network. A highly connected network is more likely
to capture causal relationships, and hence will produce inferences with higher
probabilities. For example, a maximally connected network denotes all pos-
sible causal relationships between the variables. Such a network, however, is
not a likely model of the phenomenon of interest. Therefore, one would like a
network to be accurate and structurally simple.

Consequently, the degree of connectivity of networks must be controlled in
BN/DBN learning environments. Learning algorithms are naturally biased by
the means that they evaluate candidate networks in terms of accuracy and
simplicity. Many algorithms use a variation of the minimal description length
(MDL) heuristic, which evaluates a network in terms of both probabilistic
likelihood and structural simplicity [2]. However, because the MDL essentially
uses a weighted sum to combine these factors, it can require user “tweaking”
of weights to indicate the degree to which structural simplicity should balance
with probabilistic likelihood. Since these factors are dependent upon the na-
ture (size, complexity) of the training data, it is extremely difficult to predict
the form of resulting networks for some new problem and data. An untweaked
MDL score will likely produce overly connected networks for many problems,
and especially for many real-world applications that are most naturally mod-
eled by sparse networks. For example, biological phenomenon typically require
low-connectivity networks with a maximum parent count of 4. Hence it is a
reasonable goal to design a learning methodology that permits intuitive user
definition of the structure of the solution networks.

This papers main contribution is to evolve DBNs using a multi-objective ge-
netic algorithm. We use the basic BIC scoring scheme to evaluate candidate
networks. Pareto rankings are ideal for separating the BIC heuristic’s like-
lihood and structure terms during fitness evaluation. This circumvents the
significant problem of finding a suitable weighting scheme for combining these
factors, as is necessary with MDL evaluation. We introduce a very simple
structural scoring heuristic in place of the more complex structural evalua-
tion used in BIC evaluation. We use a straight-forward and intuitive means
for controlling network structural connectivity, by adapting a chromosomal
representation used in other GA work with genetic coding that is biased to-
wards sparse, low-connectivity networks, which are common when modeling
biological phenomenon. To test our approach, we performed experiments us-
ing multi-objective Pareto ranking with chromosomes having between 3 and 4
inward links per node, for target networks having between 10 and 30 variables.
The results are promising, and are superior to those from single objective GAs
using a weighted sum for likelihood and structural scores.

The paper is organized as follows. Some background on DBNs, evolutionary
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computation, and multi-objective search is given in Section 2. The experimen-
tal setup is described in Section 3. The results are presented in Section 4. A
discussion of the experiments is given in Section 5. Directions for future work
conclude the paper in Section 6.

2 Background

2.1 Dynamic Bayesian Networks

We are interested in modeling the behavior of a set of discrete random variables
X1, ..., XN during a sequence of time slices t = 0, 1, 2, ...T . The value of variable
Xi at time t is denoted Xi[t].

The BN describes a probability distribution over variables of interest. A Bayesian
network (BN) consists of a directed acyclic graph G whose nodes correspond
to the variables X1, ..., XN , and a set of parameters P that encode the condi-
tional probablity table associated with each node. These tables encode, for all
variables, the probability that variable Xi takes value ki given that a parent
node takes the value ji:

Pr(Xi = ki|Parent(Xi) = ji).

A dynamic bayesian network (DBN) extends the notion of a BN by incorpo-
rating a time element. A complete DBN consists of two components: (i) a prior
network DBN0 that specifies a probability distribution over the initial states
(t=0); (ii) a transition network DBNT that specifies the transition probabili-
ties Pr(X[t + 1]|X[t]) for all variables X. When a prior network is supplied,
it is used to denote the initial relationships between variables before the clock
proceeds. The transition network is used during the time sequence, by “un-
wrapping” the network for each time slice. Hence it can denote a possibly
infinite time sequence of events. The joint distribution over all the variables
for time t = 0, ..., T is:

DBN0(X[0]) ·
T−1∏
t=0

DBNT (X[t+ 1]|X[t])

for all variables X. As will be discussed later, our training data is generated
so that the prior network has no influence on the probabilistic analysis of the
transition network.

It is possible to discard the use of an explicit prior network, and use the transi-
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tion network by itself. Doing so results in a more compact representation, but
at the loss of probabilistic accuracy in denoting initial probabilistic influences
of variables, which may not correspond to what is denoted in the transition
network. In the case of this paper, the transition network alone is of interest,
and the prior network is not used. Hence the joint distribution becomes:

T−1∏
t=0

DBNT (X[t+ 1]|X[T ])

for all variables X.

2.2 Evolutionary Computation and DBNs

Evolutionary computation has been widely used to synthesize BNs [25] [38]
[12] [30] [10] [21] [18] [45] [43]. Two representative examples are the following.
Larrañaga et al. use GAs to evolve BN structures [26]. Their representation is
an adjacency matrix, and they transcribe the matrix using variable ordering
rules to assure acyclicity. Their evaluation heuristic is a variation of the K2
algorithm [9], specialized to limit the number of parent nodes in considered
graphs. Later work by Lam et al. uses the MDL principle with a GA to evolve
BNs [25]. They introduce specialized structure-guided and knowledge-guided
reproduction operators, to help make informed decisions about the application
of mutation to generate offspring. They found improved performance over
the earlier Larrañaga et al. paper in the ALARM problem (a standardized
problem), showing the value of specialized reproduction operators that adapt
to particular problem sets. Both research papers found that the quality of
solutions is dependent upon the size of the example set used: more examples
usually permit better quality solutions.

Many ideas from work applying evolutionary computation to static BNs ex-
tend easily to DBNs. Tucker et al. use GAs to evolve DBNs with time lags.
These networks permit variables to influence others over more than one time
slice or unwinding of the network. Their best results used initial populations
that were seeded with link values that were predetermined (via evolutionary
programming) to have high correlations, and hence a high chance of being use-
ful in the overall model. In another paper, Tucker al. evolve DBNs specialized
to model spatial data as denoted by variable influences on a Cartesian coor-
dinate system [41]. This work uses reproduction operators specialized for the
spatial nature of the application. Tucker and Liu also look at the evolution
of DBNs with changing dependencies [40]. These DBNs are more general-
purpose than standard ones, in which variable interdependencies are taken as
static over time.
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Yu et al. infer DBN models of gene expression networks [47]. They incorprate
both BDe (Bayesian Dirichlet equivalence) and BIC (Bayesian information
criterion) scoring metrics, which are commonly used in BN and DBN learning.
They also use a new influence score to help improve the relevance of links from
recovered networks, and thus reduce false positive (extraneous) links. [46] also
use GAs to find DBN structures for analyzing miroarray data, although the
details of their method are not given.

2.3 Multi-objective problems and Pareto ranking

A multi-objective optimization problem (MOP) is characterized by a set of
multiple objectives or parameters, often of which are related to one another in
conflicting, nonlinear ways. Evolutionary computation has been widely ap-
plied to MOP’s [8][13][44]. Their success in MOP resides in their natural
adaptability to the MOP characterization of problems in terms of representa-
tion (chromosomes) and performance evaluation (fitness functions), and the
correspondence of the multidimensional MOP search space with the schema
characterization of evolutionary search [20].

2.4 Pareto Ranking

A popular approach to solving MOP with genetic algorithms is Goldberg’s
Pareto ranking scheme [15]. The basic idea of a Pareto ranking is to preserve
the independence of objectives. This is done by retaining a set of possible
solutions, all of which are legitimate solutions with respect to the population
at large. This contrasts with a pure genetic algorithm’s attempt to ascribe one
optimal solution for a MOP, which necessitates a reconciliation of different
objective strengths in order to obtain a single optimal solution. The weighted
sum used in a single-objective genetic algorithm will also add bias to the kind
of result obtained. For many MOP’s, relating different objective dimensions
with one another can be difficult and arbitrary, and the results are often
unsatisfactory.

The following is based on a discussion in [44]. We assume that the MOP is a
maximization problem (higher scores are preferred).

Given a problem defined by a vector of objectives ~f = (f1, ..., fk) subject to
appropriate problem constraints. Consider the optimization problem in which
we wish to maximize the fi. Then vector ~u dominates ~v, or ~u � ~v, iff

∀i ∈ (1, ..., k) : ui ≥ vi ∧ ∃i ∈ (1, ..., k) : ui > vi.
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Curr Rank := 1

N := (population size)

m := N

While N 6= 0 { /* process entire population */

For i := 1 to m { /* find members in current rank */

If ~vi is nondominated {
rank(~vi) := Curr Rank

}
}

For i := 1 to m { /* remove ranked members from population */

if rank(~vi) = Curr Rank {
Remove ~vi from population

N := N-1

}
}
Curr Rank := Curr Rank + 1

m := N

}

Fig. 1. Pareto Ranking Algorithm

This implies that a vector is dominated if another vector exists which is better
in at least 1 objective, and at least as good in the remaining objectives.

A solution ~v is Pareto optimal if there is no other vector ~u in the search space
that dominates ~v. For a given MOP, the Pareto optimal set is the set of vectors
~vi such that ∀vi : ¬∃~u : ~u � ~vi. For a given MOP, the Pareto front is a subset
of the Pareto optimal set. A typical MOP will have a multitude of conceivable
solutions in its Pareto optimal set. Therefore, in a successful run of a genetic
algorithm, the Pareto front will be the set of solutions obtained.

To implement Pareto scoring in a genetic algorithm, chromosome fitness scores
take the form of Pareto ranks. Figure 1 shows how a Pareto ranking can be
computed for a set of vectors. To compute Pareto ranks, the set of nondomi-
nated vectors in the population are assigned rank 1. These vectors are removed,
and the remaining set of nondominated vectors are assigned rank 2. This is re-
peated until the entire population is ranked. Genetic evolution then proceeds
as usual, using the rank values as reconstituted fitness scores (lower ranks are
fitter). Note that Pareto ranks are always relative to the current population.
This implies that every generation in a run will have at least a rank 1 set.
This has repercussions on performance measurements, as there is no concept
of “best solution” amongst all the rank 1 members.
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3 Experiment

3.1 Overview

We use GA’s to evolve DBN’s of varying complexity. Our main interest is in
evolving the transition network of a DBN. We therefore do not consider the use
of the prior network, and simply use the transition network solely during the
evaluation of a DBN. This simplification is sensible for a number of reasons.
Firstly, the representation is greatly simplified, as the prior network does not
need to be denoted nor considered. This in turn simplifies the search space, and
hopefully benefits the search for the transition network. When generating test
data for target networks, we use a uniform or non-informative prior network,
which does not have an influence on the structure of the dynamic network.
Therefore, discarding the prior network can be done with no loss in generality
of our approach, and permits a more effective analysis of transition network
synthesis, which is the more challenging DBN construct to synthesis.

3.2 Representation

The representation scheme used is selected for the intuitive way in which it
biases network topology towards sparse structures. Each variable being ob-
served is represented by P sequential genes. For example, if P=4, then a gene
would have the form abcd, and the entire chromosome for N variables is:

a1b1c1d1 · · · aibicidi · · · aNbNcNdN

Therefore, an N=10 variable network requires a chromosome of 40 genes. A
gene represents an inward link from the specified variable, and so there is a
maximum of P inward links per variable. Each gene is an integer between 0
and 100. Approximately 100/(N + 1) integers in this range are interpreted as
“skip” codes, and cause that gene to be ignored. Otherwise, considering code
ai above, which denotes a parent link to variable i, a value ai is converted
to a variable index k between 1 and N (via modulo N), and represents a
parent link from variable k to variable i. Duplicate link values in the link
fields for a variable are ignored. Hence the skip codes and duplicate codes
introduce a natural bias towards sparsely connected networks. In fact, should
all P fields for a variable be composed of skip codes, then that variable will
not be referenced by the rest of the network.
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3.3 BIC score

The nature of probabilistic belief networks is that any arbitrary network struc-
ture has the potential to be a correct model for some behavior of interest. How-
ever, network structures that denote unnatural relationships of variables will
affect the overall complexity of the network, in terms of both the sizes of the
conditional probability tables associated with each node, and the structural
complexity of the network, for example, the number of links between nodes.
Conversely, a network that reflects the actual relationship between variables
will have simpler conditional probability tables, as well as a structure more
faithful to the phenomenon of interest.

These characteristics of network are accounted for by the the Bayesian In-
formation Criterion (BIC) score [37], which is related to the Minimal De-
scription Length (MDL) scoring [35]. The BIC score measures the conditional
probability that some data was generated by a given network model. It is an
information-theoretic approximation, however, and it does not take into ac-
count the prior network influence. This is convenient for us, since we are not
considering prior networks in our DBN synthesis. We use a slight variation
of the BIC score given in [14] to evaluate the quality of a candidate network
in terms of the network’s probabilistic likelihood and structural simplicity. As
discussed in Section 2.3, the BIC scoring scheme will be applied in a few dif-
ferent ways. The following uses notation based on that in [14], but simplified
due to the consideration of the transition network only.

The BIC score uses a heuristic, Likelihood, which accounts for the parsimony
of the conditional probability tables in each node with respect to the train-
ing data. It also incorporates a structural Complexity, which evaluates the
simplicity of the network in terms of number of links connections:

BIC = Likelihood− Complexity

Since the Likelihood term is larger for more probable networks, it is balanced
by subtracting the Complexity value from it, since the latter is larger for less-
desirable large-sized networks. The definition of both these calculations will
now be given.

A training set S has |S| complete observation sequences, which we will use to
evolve a DBN that models S. One sequence ni of length T from S has values
for the variables:

Xi[0], Xi[1], ..., Xi[T ]
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The following notation counts event occurences within sequences:

Ni,ji,ki =
∑
`

∑
t

I(Xi[t] = ki, Parent(Xi[t]) = ji;x
`)

where I(φ;x`) is 1 if the event φ occurs in sequence x`, and 0 otherwise. The
likelihood is then defined as:

Likelihood =
∑
i

∑
ji

∑
ki

Ni,ji,ki · log(
Ni,ji,ki∑
ki Ni,ji,ki

)

This expression sums for all training sequences (i), and possible variable values
for nodes (ki) and their parents (ji). This corresponds to the BIC likelihood
used in [14].

We use a simple calculation for structural complexity, based on the total link
count in the DBN before unwinding. First, the size of the graph G is calculated
by finding the number of links in the entire unexpanded network. This is done
by summing all the inward links of all nodes (ie. the number of parent nodes):

G =
∑
i

|Parent(Xi)|

Then the (structural) complexity is:

Complexity = G−N + 1

where there are N variables being observed.

3.3.1 Single- and multi-objective fitness evaluation

The above BIC score is used to evaluate network suitability in both single-
objective and multi-objective frameworks. We used the BIC formula as given
for the single objective fitness function. In such experiments, the goal is to
maximixe the BIC score. This is a challenging task, since the natural tendency
is to maximize the Likelihood term by making a large, maximally connected
network. Of course, doing so creates a large Complexity term, which is detri-
mental to an overall good BIC score. Preliminary experiments incorporated a
weight ω into the BIC formula:

BIC = Likelihood− ω · Complexity

The weight lets one control the relative balance between likelihood and com-
plexity in the BIC value. However, we found that using a weight is not intuitive,

10



Parameter Value (N=10,20,30)

Runs/experiment 10

Population size 500, 1000, 1000

Generations 60, 100, 100

Chromosome size N*P

Crossover rate 100%

Mutation rate per bit 1%

Tournament size 5
Table 1
Genetic Algorithm Parameters

as it is determined by a complex interaction between the complexity of the
target DBN, the number of variables used, and the size of the unwound net-
work (ie. the number of time slices). Hence our single-objective experiments
used the unweighted BIC formula.

A multi-objective characterization addresses the above difficulty in balancing
the effect of Likelihood and Complexity in the BIC score. Rather than com-
bine them together in an unnatural, ad hoc manner, we instead treat them
as separate dimensions of a multi-objective search space, with the intension
of maximizing likelihood, while minimizing complexity Using the notion of
domination from Section 2.3, we apply a Pareto ranking to the population
before evolving a new generation. Hence we do not attempt to numerically
balance likelihood and complexity, but instead permit a set of non-dominated
DBN solutions that exhibit a range of likelihood and complexity character-
istics. When a run terminates, this entire set can be produced as a solution,
and the user can determine which balance of likelihood and complexity from
the solution DBN’s derived is the most suitable.

3.4 Other parameters

Other parameters used by the GA runs are in Table 1. Single values in the
table are shared for all networks having total variables N, while multiple values
are those that differ for different N. Most of the parameters are standard in
the GA literature. Chromosome sizes are calculated by multiplying the total
number of variables N by the maximum parent count P, since there are P
inward links per variable. Two-point crossover is used. Mutation happens on
a gene-by-gene basis, at a probability of 1% per gene. Tournament selection is
used, in which 5 random individuals are selected from the population, and the
one with the highest fitness is retained as the selected individual for subsequent
reproduction.
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Network Variables Links Examples Time slices Parent Links (P)

(a) 10 20 10 1000 4

(b) 20 40 200 1000 4

(c) 20 19 200 1000 3

(d) 30 50 300 1000 4
Table 2
Training data

3.5 Target networks and training data

Table 2 summaries training set information about the networks studied. Net-
works of size 10, 20, and 30 variables were investigated, and the target networks
are shown in Figure 2. All variables are connected in the network. The net-
works are designed to be sparse, and show a variety of connection patterns.
The case (c) network is a sparse 20-variable network with topological similar-
ities to “power law” networks [1,23]. It was studied using the multi-objective
GA only.

The training data consist of synthetic data created with the “Bayes Net Tool-
box” for Matlab [28]. Sequence sizes are 1000 time slices, and variables take
one of 3 values in the sequences.

Since the target networks in Figure 2 are canonical solutions, there is no need
for testing data to cross-validate evolved solutions. Any DBN configuration
can be used to model the training data. Differences between configurations
are evident in their likelihood and structural simplicity, as encoded by the
BIC evaluation. Since we are primarily interested in the structural accuracy
between the evolved network and corresponding target network, simply re-
porting the structural accuracy of evolved results is sufficient for evaluating
the effectiveness of evolved solutions.

4 Results

Some description of how the result data was tabulated is necessary. Single-
objective GA runs are easily tabulated, since the single network with the best
fitness score is designated as the solution for the run. Multi-objective runs
using Pareto rankings are more difficult to evaluate. The end result of a run is
a set of solutions belonging to the rank 1 Pareto set for that run. Therefore,
a variety of solutions are given, which are all non-dominated within the final
population. These networks have a variety of likelihood and structural com-
plexity measurements. To evaluate the multi-objective experiments, the rank
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Single objective Multi-objective: Pareto set S from 10 runs

Network Avg Best Like. Median Struct. Best match

& N E E FP FN |S| E E E FP FN E FP FN

(a) 10 7 2 1 1 6 5 0 0 0 0 0 0 0

(b) 20 22 18 9 9 7 10 7 10 5 5 6 4 2

(c,3) 20 25 21 11 10 14 15 7 3 2 1 2 2 0

(c,4) 20 - - - - 14 24 16 12 11 1 11 11 0

(d) 30 32 24 12 12 14 23 20 18 9 9 18 9 9
Table 3
Results summary: All values are number of structural errors (E) compared to target
network.

1 set from each run was incorporated into one large solution population. Du-
plicates were removed. Then the networks were re-ranked with Pareto ranking,
to determine the overall rank 1 set for all 10 runs.

When analyzing the multi-objective runs, it is scientifically invalid to chose an
overall best solution from the rank 1 set by comparing the structure of these
networks with that of the target network. This is because there is no inherent
factor favouring any of these rank 1 solutions over any other in the set. Some
have stronger likelihood scores, while others are structurally simpler. Poten-
tially any may be the closest match to the target network, whose structure is
of course unknown to the genetic algorithm. Hence the performance of these
runs must be evaluated by considering the range of values obtained in the uni-
versal rank 1 set for the runs. Of course, this selection issue is irrelevant for
the single objective GA, since one single network is identified as the solution
at the end of each run.

Table 3 summarizes the performance of the experiments. The Network column
shows the target network from Figure 2, along with the associated number of
variables N . In the case of network (c), experiments using inward parent link
gene sizes (P) of 3 or 4 are given in (c,3) and (c,4) respectively. In the single
objective columns, the average error is computed by taking the single highest-
scoring solution per run, comparing its structural differences with the target
network, and finding the average errors for all such networks for the 10 runs.
Best specifies the network with the highest fitness score from all 10 runs. FP
and FN are the counts for extraneous links (false positive) or missing links
(false negative) respectively. The multi-objective portion is calculated from
the rank 1 set for all 10 runs, as described earlier. |S | is size of the rank 1 set.
Since this set denotes a variety of solutions, we show the number of structural
errors for the networks at the extreme ends of the multi-dimensional space –
the ones with the highest likelihood and structural complexity scores. We also
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show the performance of the median network falling between these extrema.
Since we are trying to create sparse networks, we also include the false positive
and false negative scores for the network with the best structural complexity
score. The best match columns show the network from the rank 1 set that
most closely matches the target network.

Some trends can be seen in the results. Naturally, the larger target networks
are more challenging than smaller ones. In the single-objective runs, the best
solution per experiment (the network with the highest fitness score) also had
the lowest structural error count of all solutions. The multi-objective results
are superior in all instances to the single-objective weighted scoring runs.
The network with the highest likelihood score in the multi-objective runs
tended to have worse performance with respect to structural errors. This is
because such networks use more links to increase their likelihood scores, at the
expense of structural complexity. On the other hand, the runs for networks
(b) and (c) show that the networks with the best structural scores (lower link
counts) are not always the best performers from the rank 1 set. In such cases,
those networks lack required links, as is seen by their higher FN values when
compared to the best match network. The best performing networks were
closer to the median networks in these cases.

Our structural complexity score (the total number of links in a network) tends
to result in networks that minimize the number of links used. For most exper-
iments (except network (c)), for every extra link used in the FP column, there
is a valid link missing in the FN. Note, however, that there are far fewer links
in the networks than are potentially possible, since the gene sizes ranged from
40 to 120 links for the different networks. Hence the structural complexity
score was effective in simplifying networks in both single and multi-objective
experiments.

The 20-variable power law network (c,3) using the 3-parent chromosome per-
formed much better in the multi-objective runs, than the corresponding single-
objective result – even moreso than the larger 20-variable network (b) in the
single-objective experiment. To test the effect of chromosome size, we ran a
new set of multi-objective runs on the power law (c) network using the 4-
parent chromosome of the other runs. The results are shown on line (c,4). The
performance was considerably worse, but still better than the single-objective
run with 3-genes in (c,3). This shows that the chromosome bias is an important
and effective influence on derived network structure.

Figure 3 shows the best DBN obtained for the 20-variable network (b) in
Figure 2, obtained with the multi-objective experiment. This network has 6
structural errors from the target network – 4 false positive links (bold arrows)
and 2 false negative (dashed arrows). Interestingly, both false negative links
are reflections of the false positive links. Thus a correlation was discovered
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between these two pairs of variables.

5 Discussion

A number of preliminary experiments were done to examine possible represen-
tations for the DBN. The first representation tried was an adjacency matrix.
Here, the boolean entries in a K by K matrix denote the existence of links be-
tween the K variables. Unfortunately, this representation naturally promotes
highly connected networks, and often maximally connected ones, since such
networks have high probability scores as determined by the BIC heuristic.
Even the introduction of harsh structural complexity penalties could not pre-
vent the tendency for evolving overly connected networks.

We also tried using a cellular encoding language with genetic programming to
construct network graphs [16]. Cellular encoding has been found effective for
evolving graph structures to be used as finite automata and artificial neural
networks. Cellular operators generate a complex graph using operations that
piecewise generate and manipulate components from simpler graph instances.
Unfortunately, our trials with cellular GP were unsuccessful. The sizes of cellu-
lar GP trees were linearly proportional to the size of target DBN graphs, since
GP expressions were virtually 1:1 mappable to links and nodes in the target
DBN graph. The reason for this failure was because our desired networks were
asymmetric, and lacked symmetries and patterns that are usually exploited by
cellular encodings. Should our DNB’s have had structural regularities, cellular
encoding might have been more successful.

Our adoption of multi-objective Pareto ranking was in reaction to experiences
with early experiments that used the weighted sum in the BIC scoring. Dif-
ferent networks required their own ad hoc tuning of weights to get acceptable
results. The use of Pareto ranking for likelihood-structural complexity space
was a considerable benefit in this regard, as it prevented our supplying weight
parameters, and also produced good results. It should be mentioned, how-
ever, that a fortuitous selection of weights can easily result in much better
performance, should those weights result in a search space more amenable to
navigation by the genetic algorithm. Our experience, however, is that the ef-
fort required to find helpful weight parameters overshadows any benefits that
might arise with them.

Tucker et al. use a GA to evolve DBNs [42]. They study DBNs with time lags,
in which variables can influence other variables up to a finite number of time
slices away. Such DBNs are more general than the DBN normally studied, in
which all links span single time steps. Their chromosomal representation for
DBNs uses one gene per parent-child link, with an additional value specifying
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the time lag spanned by that link. Additionally, they automatically include
self-referential links for each variable, spanning 1 time slice. The rationale for
this is that these links are common in some application, such as the chemical
process application that they were modeling. Their representation therefore
permits fairly sparse networks when the chromosome size is appropriately
fixed. The automatic creation of self-referential links does bias the form of
networks, and can be detrimental for modeling other phenomena. They in-
corporate a BIC scoring scheme (unweighted sum of likelihood and structural
penalty), and compare it with a log likelihood heuristic. They use evolutionary
programming to determine a set of initial chromosomes to use for seeding a
population given to a GA. The GA uses knowledge-guided reproduction op-
erators, to help make processing sensitive to the example data being used.
Since their problem data and type of DBN is different than ours, it is difficult
to compare our performance with theirs. Their EP-seeded-GA experiments
for N=10 and N=20 variables, with 2000 fitness evaluations (function calls),
report structural error rates of 9.2 and 20.6 respectively.

Our chromosome representation is similar to the one outlined in Yu et al.,
as their chromosome consists of a set of parent nodes per node [47]. It is
not clear whether these parent sets are of fixed length. They also use the
BIC scoring, presumably with the unweighted composition of likelihood and
structural complexity metrics, as we use with the single-objective GA. They
also introduce an influence score metric, which determines the strength of
causality for links in the network. Their intention is to simulate gene expression
networks, and so their test networks are very sparsely connected. Their test
networks have 20 nodes, but only 8-12 of the nodes are causally related. The
remaining nodes are distraction noise. They also use between 25 to 5000 time
slices, and 100 examples per network. The 25 time slice experiments report
FN and FP rates of about 60%, while the experiments using 2000 and 5000
slices have FN and FP rates of approximately 3%. Since they are primarily
motivated to simulate biological networks, they are strongly motivated to learn
DBN’s using smaller numbers of time slices typical with such applications (25
to 100). Hence the precision of resulting networks is adversely affected to a
significant degree when using these smaller time sequences.

6 Conclusion

There are a number of ways this research can be extended. The use of local
search to refine network structures is worth consideration. Yu et al. use an
influence heuristic to evaluate the strength of correlation for linkages [47].
They suggest that false positive links are often useful, as they may denote
relationships between a node and its grandparents or sibling, rather than from
its intended parent. Such effects were also seen in by Tucker et al. [42], who
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term them “spurious correlations”. Perhaps a simple local search strategy of
moving links from parents to nearby ancestors, or inverting the directions of
links, would correct many structural errors.

Instead of or in addition to local search, the initial population could be seeded
with links that are determined to be strong, as is done in [42]. They found
that GA populations seeded with strong links performed much better than
GA’s with non-seeded populations. The latter spent a lot of search trying to
find useful variable correlations, which was detrimental to the overall search
for a global DBN.
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Fig. 2. Target networks
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Fig. 3. Best network for network (b) from multi-objective runs. Bold links are erro-
neous (false positive) and dashed links are missing (false negative).
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