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ABSTRACT
The Vehicle Routing Problem with Time windows (VRPTW) is an extension
of the capacity constrained Vehicle Routing Problem (VRP). The VRPTW is
NP-Complete and instances with 100 customers or more are very hard to solve
optimally. We represent the VRPTW as a multi-objective problem and present
a genetic algorithm solution using the Pareto ranking technique. We use a
direct interpretation of the VRPTW as a multi-objective problem, in which
the two objective dimensions are number of vehicles and total cost (distance).
An advantage of this approach is that it is unnecessary to derive weights for a
weighted sum scoring formula. This prevents the introduction of solution bias
towards either of the problem dimensions. We argue that the VRPTW is most
naturally viewed as a multi-modal problem, in which both vehicles and cost are
of equal value, depending on the needs of the user. A result of our research is
that the multi-objective optimization genetic algorithm returns a set of solutions
that fairly consider both of these dimensions. Our approach is quite effective,
as it provides solutions competitive with the best known in the literature, as
well as new solutions that are not biased toward the number of vehicles. A
set of well-known benchmark data are used to compare the effectiveness of the
proposed method for solving the VRPTW.

Keywords: Vehicle Routing Problem with Time Windows (VRPTW), genetic
algorithm, multi-objective optimization, Pareto ranking

1 Introduction

Scheduling and routing problems are a subject of active research in the optimiza-
tion community for a number of reasons. Firstly, they usually define challenging
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search problems, and are good for exercising new heuristic search techniques to
their limits. They are easily cast into formal specifications, and standardized
data sets of varying complexity are often made for them. This permits well-
defined problem instances to be shared amongst researchers, thus making for
effective comparisons of methodologies. Finally, they often have many practical
real-world applications: the results are of genuine use to industry and others.

Vehicle Routing Problems (VRPs) are well known combinatorial optimiza-
tion problems arising in transportation logistics that usually involve schedul-
ing in constrained environments. In transportation management, there is a
requirement to provide goods and/or services from a supply point to various
geographically dispersed points with significant economic implications. VRPs
have received much attention in recent years due to their wide applicability and
economic importance in determining efficient distribution strategies to reduce
operational costs in distribution systems. As a result, variants of VRP have
been studied extensively in the literature (for detailed reviews, see [1-4]).

A typical VRP can be stated as follows: design least-cost routes from a
central depot to a set of geographically dispersed points (customers, stores,
schools, cities, warehouses etc) with various demands. Each customer is to be
serviced exactly once by only one vehicle, and each vehicle has a limited capacity.
The Vehicle Routing Problem with Time Windows (VRPTW) is an extension
of the VRP; here a time window is associated with each customer. That is, in
addition to the vehicle capacity constraint, each customer provides a time frame
within which a particular service or task must be completed, such as loading or
unloading a vehicle. A vehicle may arrive early, but it must wait until start of
service time is possible. Some VRPTW models (soft time window models) allow
for early or late window service, but with some form of penalty. However, most
researchers have focused on the hard time window models, as does this paper.
The objective of the VRPTW is to minimize the number of vehicles and total
distance traveled to service the customers without violating the capacity and
time window constraints. Capacity constraint is violated if the total sum of the
customer demands in a given route exceeds the vehicle capacity. The VRPTW
has received much attention due to applicability of time window constraints
in real-world situations. Examples of practical applications of the VRPTW
include school-bus and and taxi scheduling, courier and mail delivery/pickup,
airline and railway fleet scheduling, and industrial refuse collection.

The VRPTW is a classic example of a NP-complete [5,6] multi-objective
optimization problem. The combinatorial explosion is obvious, and obtaining
exact optimal solutions for this type of NP-hard problems is computationally
intractable. Thus we can rarely accomplish optimal route schedules within
reasonable time for large problem instances [6]. No polynomial algorithms have
been developed for this type of problem, and their non-existence is generally
believed [5]. Various researchers have investigated the VRPTW using exact
and approximation techniques. Kohl’s work [7] is one of the most efficient
exact methods for the VRPTW; it succeeded in solving various 100 customer-
size instances. However, no algorithm has been developed to date that can
solve to optimality all VRPTW with 100 customers or more. It should be



Beatrice Ombuki, Brian J. Ross and Franklin Hanshar 3

noted that exact methods are more efficient in the situations where the solution
space is restricted by narrow time windows, since there are less combinations of
customers to define feasible routes [8].

Research on combinatorial optimization based on meta-heuristics has gained
popularity especially since the 90s. These approaches seek approximate solu-
tions in polynomial time instead of exact solutions which would be at intolerably
high cost. Meta-heuristics, such as genetic algorithms (GA) [9-15, 17,18], evolu-
tion strategies [16], simulated annealing [19], tabu search [21-25], and ant colony
optimization [8] have been proposed for the VRPTW. Meta-heuristics are well
suited to solving complex problems that may be too difficult or time-consuming
to solve by traditional techniques. Other heuristics that have been applied to
the VRPTW include constraint programming and local search [26,27].

One of the most efficient techniques for the VRPTW has been the develop-
ment of two-phased hybrid algorithms which divide the search into two stages:
the minimization of (i) the number of routes and (ii) travel costs. A two-phased
approach for the VRPTW is usually geared towards the design of algorithms
tailored towards each sub-optimization. The two-phased algorithm normally
uses two distinct local search procedures to exploit the minimization of routes
which is followed by the minimization of travel costs. Gehring and Homberger
[28] introduced a two-stage hybrid search which first minimizes the number of
vehicles using an evolution strategy and then the total distance is minimized
using a tabu search algorithm. In the two-phased tabu search, introduced by
Potvin et al [29], the first phase moved customers out of routes to reduce the
total number of vehicles, and in the second phase inter- and intra-customer ex-
changes are done to reduce travel costs. Chiang and Russell [30] introduced a
hybrid search based on simulated annealing and tabu search. A cluster-first,
route-second method using genetic algorithms and local search optimization
process was done by Thangiah [31]. Comparative studies of the performance of
GA, tabu search and simulated annealing for the VRPTW is given in [31,32].

Luca Maria Gambardella et al. [8] studied a type of multi-objective im-
plementation of the VRPTW by minimizing a hierarchical objective function,
where the first objective minimized the number of vehicles and the second min-
imized the total travel time. This was achieved by adapting the ant colony
system (ACS) [33] and defining two ant colonies, each dedicated to the opti-
mization each objective function.

In previous work (Ombuki et al. [11]) we applied a hybrid search based on
GA and tabu search to the soft VRPTW. While good results were obtained, the
approach was two-phased: a GA was first used to set the number of vehicles, and
then a local tabu search was employed to minimize the total cost of the distance
traveled. In essence, the multi-objective VRPTW problem was transformed into
a single-objective optimization.

It should be noted that all the above VRPTW work is biased towards the
number of vehicles. Whenever a weighted sum fitness measure is undertaken,
the vehicle and distance dimensions are essentially evaluated as a unified score,
thereby forcing a unimodal search space for the problem. The advantage of this
is that single solutions are obtained as a result. However, these solutions are
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biased by the unimodal transformation of the problem, and in all the previous
work, this bias always prioritizes the number of vehicles. This can be seen
by the fact that reported solutions tacitly assume that the vehicle count is first
minimized, and then the distance is minimized with respect to this vehicle value.

This paper studies the VRPTW as a multi-objective optimization problem
(MOP), as implemented within a GA. Specifically, the two dimensions of the
problem to be optimized – the number of vehicles and the total distance traveled
– are considered to be separate dimensions of a multi-objective search space. Al-
though MOP’s and genetic algorithms have been applied to the VRPTW before,
this interpretation of the VRPTW as a MOP using GAs is uncommon. As with
all MOP’s, one immediate advantage is that it is not necessary to numerically
reconcile these problem characteristics with each another. In other words, we
do not specify that either the number of vehicles or the total distance traveled
take priority. Rather, the MOP analysis treats both as mutually exclusive, even
though they ultimately do have a natural influence on each other with respect to
solutions obtained. Using the Pareto ranking procedure, each of these problem
characteristics is kept separate, and there is no attempt to unify them.

There are a number of advantages in using this literal MOP formulation of
the VRPTW. Firstly, by treating the number of vehicles and total distance as
separate entities, search bias is not introduced. Search methods that treat the
VRPTW as single-dimension optimization problems must necessarily combine
these factors together in some manner. Doing so creates an implicit bias or
preference for one factor over another, which in turn influences the performance
of the search, as well as the characteristics of the solutions. The ways in which
bias can arise are difficult to predict and control, as even the best attempts at
balancing them will be strongly influenced by specific problem instances. With
respect to scheduling and routing problems, a small change in a problem instance
can dramatically influence the search space. On the other hand, the MOP
approach taken here works with all instances of the VRPTW, with minimal
need for problem-specific refinements.

Secondly, there is a strong philosophical case to be made for treating the
VRPTW as a MOP. The VRPTW specification requires a minimization of both
the number of vehicles and total distance traveled. From a theoretical point of
view, this may be impossible to realize, because instances of the VRPTW may
have multi-modal solutions. Some solutions may minimize the number of vehi-
cles at the expense of distance, and others minimize distance while necessarily
increasing the vehicle count. If one scans the literature, however, most re-
searchers clearly place priority on minimizing the number of vehicles. Although
this might be reasonable in some instances, it is not inherently preferable over
minimizing distance. Minimizing the number of vehicles affects vehicle and
labour costs, while minimizing distance affects time and fuel resources. There-
fore, the VRPTW is intrinsically a MOP in nature, and our MOP formulation
recognizes these alternative solutions.

Finally, our MOP formulation of the VRPTW is computationally advanta-
geous. As will be shown, the performance and results obtained with the MOP
with Pareto ranking are competitive with those found elsewhere.
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Section 2 provides the VRPTW specification, and an overview of multi-
objective optimization search. Experimental details are presented in Section 3
while Section 4 reports our results and gives comparisons with related work. A
general discussion concludes the paper in Section 5.

2 Background

2.1 Description of VRPTW

The VRPTW is represented by a set of identical vehicles denoted by V , and a
directed graph G, which consist of a set of customers, C. The nodes 0 and n+1
represent the depot, i.e., exiting depot, and returning depot respectively. The
set of n vertices denoting customers is denoted N . The arc set A denotes all
possible connections between the nodes (including node denoting depot). No
arc terminates at node 0 and no arc originates at node n + 1 and all routes
start at 0 and end at n + 1. We associate a cost Cij and a time tij with each
arc (i, j) ∈ A of the routing network. The travel time ti,j may include service
time at customer i. Each vehicle has a capacity limit q and each customer i, a
demand di, i ∈ C. Each customer i has a time window, [ai, bi], where ai and
bi are the respective opening time and closing times of i. A vehicle may arrive
before the beginning of the time window (i.e., ai) meaning incur waiting time
until service is possible. However, no vehicle may arrive past the closure of a
given time interval, bi. Vehicles must also leave the depot within the depot time
window [a0, b0] and must return before or at time bn+1. Assuming waiting time
is permitted at no cost, we may assume that a0 = b0 = 0; that is, all routes
start at time 0.

The model has two types of decision variables x and s. For each arc (i, j),
where i 6= j, i 6= n + 1, j 6= 0, and each vehicle k, the decision variable xijk is
equal to 1 if vehicle k drives from vertex i to vertex j, and 0 otherwise. The
decision variable sik denotes the time vehicle k, k ∈ V starts to service customer
i, i ∈ C. If vehicle k does not service customer i, then sik has no meaning. We
may assume that a0 = 0 and therefore s0k, ∀k. The objective of the VRPTW
is to service all the C customers using the V vehicles such that the following
objectives are met and the following constraints are satisfied.
Objectives:

• Minimize the total number of vehicles used to service the customers.

• Minimize the distance traveled by the vehicles.

Constraints:

• Vehicle capacity constraint is observed.

• Time window constraint should be observed.

• Each customer is serviced exactly once.
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• Each vehicle route starts at vertex 0 and ends at vertex n+ 1.

Figure 1 shows a simple graphical model of the VRPTW and its solution.
In this example, there are two routes, Route 1 with 4 customers and route 2
with 5 customers.

Figure 1: Example of a routing Solution for VRPTW

The VRPTW model can be mathematically formulated as shown below:
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min
∑
k∈V

∑
i∈N

∑
j∈N

cijxijk (1) s.t.

∑
k∈V

∑
j∈N

xijk = 1 ∀i ∈ C (2)

∑
i∈C

di
∑
j∈N

xijk ≤ q ∀k ∈ V (3)

∑
j∈N

x0jk = 1 ∀k ∈ V (4)

∑
i∈N

xihk −
∑
j∈N

xhjk = 0 ∀h ∈ C,∀k ∈ V (5)

∑
i∈N

xi,n+1,k = 1 ∀k ∈ V (6)

sik + tij −K(1− xijk) ≤ sjk ∀i ∈ N,∀j ∈ N,∀k ∈ V (7)

oti ≤ sik ≤ cti ∀i ∈ N,∀k ∈ V ( 8)

xijk ∈ {0, 1} ∀i ∈ N,∀j ∈ N,∀k ∈ V (9)

V = {1, 2, · · ·, k} vehicles
C = {1, 2, · · ·, n} customer size

0, n+ 1 depot
N = {0, 1, · · ·, n, n+ 1} node size

di client i demand
ai client i open time
bi client i close time
qk vehicle k capacity
tij client i from j time
sik client i take k service time

The objective function (1) states that costs should be minimized. The con-
straint set (2) state that each customer must be visited exactly once by one
vehicle, and constraint set (3) states that the vehicle capacity should not be
exceeded. The next set of constraints (4), (5) and (6) give the flow constraints
that ensure that each vehicle leaves the depot 0, departs from a customer it
visited and finally returns to the depot, given by node n + 1. The nonlinear
inequality (7) (which can be easily linearized, see [1]) states that a a vehicle
K cannot arrive at j before sik + tij if it travels from from i to j. Constraint
(8) ensures that time windows are observed and (9) gives the set of integrality
constraints.
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2.2 Multi-objective optimization and Pareto ranking

A multi-objective optimization problem (MOP) is one in which two or more
objectives or parameters contribute to the overall result. These objectives often
affect one another in complex, nonlinear ways. The challenge is to find a set
of values for them which yields an optimization of the overall problem at hand.
Evolutionary computation has been widely applied to MOP’s [34,35,36]. Their
success resides in the general applicability of evolutionary algorithms in finding
good solutions to problems with appropriate structure, and the adaptability
of genetic representation and fitness evaluation towards problems in the MOP
field.

The Pareto ranking scheme has often been used in MOP applications of
genetic algorithms [9]. It is easily incorporated into the fitness evaluation pro-
cess within a genetic algorithm, by replacing the raw fitness scores with Pareto
ranks. These ranks, to be defined below, stratify the population into preference
categories. With it, lower ranks are preferable, and the individuals within rank
1 are the best in the current population.

The idea of Pareto ranking is to preserve the independence of individual
objectives. This is done by treating the current candidate solutions as stratified
sets or ranks of possible solutions. The individuals in each rank set represent
solutions that are in some sense incomparable with one another. Pareto ranking
will only differentiate individuals that are clearly superior to others in all dimen-
sions of the problem. This contrasts with a pure genetic algorithm’s attempt
to assign a single fitness score to a MOP, perhaps as a weighted sum. Doing so
essentially recasts the MOP as a single-objective problem. The difficulty with
this is that this weighted sum necessitates the introduction of bias into both
search performance and quality of solutions obtained. For many MOP’s, find-
ing an effective weighting for the multiple dimensions is difficult and ad hoc,
and often results in unsatisfactory performance and solutions.

The following is based on a discussion in [36]. We assume that the MOP is
a minimization problem, in which lower scores are preferred.

Definition: Given a problem defined by a vector of objectives ~f = (f1, ..., fk)
subject to appropriate problem constraints. Then vector ~u dominates ~v iff

∀i ∈ (1, ..., k) : ui ≤ vi ∧ ∃i ∈ (1, ..., k) : ui < vi

This is denoted as ~u � ~v.
The above definition says that a vector is dominated if and only if another

vector exists which is better in at least 1 objective, and at least as good in the
remaining objectives.

Definition: A solution ~v is Pareto optimal if there is no other vector ~u in
the search space that dominates ~v.

Definition: For a given MOP, the Pareto optimal set P∗ is the set of
vectors ~vi such that ∀vi : ¬∃~u : ~u � ~vi.
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Curr Rank := 1
N := (population size)
m := N
While N 6= 0 { /* process entire population */

For i := 1 to m { /* find members in current rank */
If ~vi is nondominated {

rank(~vi) := Curr Rank
}

}
For i := 1 to m { /* remove ranked members from population */

if rank(~vi) = Curr Rank {
Remove ~vi from population
N := N-1

}
}
Curr Rank := Curr Rank + 1
m := N

}

Figure 2: Pareto Ranking Algorithm

Definition: For a given MOP, the Pareto front is a subset of the Pareto
optimal set.

Many MOP’s will have a multitude of solutions in its Pareto optimal set.
Therefore, in a successful run of a genetic algorithm, the Pareto front will be
the set of solutions obtained.

As mentioned earlier, a Pareto ranking scheme is incorporated into a genetic
algorithm by replacing the chromosome fitnesses with Pareto ranks. These ranks
are sequential integers values that represent the layers of stratification in the
population obtained via dominance testing. Vectors assigned rank 1 are undom-
inated, and inductively, those of rank i+1 are dominated by all vectors of ranks
1 through i. Figure 2 shows how a Pareto ranking can be computed for a set of
vectors. First, the set of nondominated vectors in the population are assigned
rank 1. These vectors are removed, and the remaining set of nondominated vec-
tors are assigned rank 2. This is repeated until the entire population is ranked.
Evolution then proceeds as usual, using the rank values as fitness scores. Note
that Pareto ranks are relative measurements, and there is no concept of “best
solution” using a rank score. Therefore, every generation in a run will have a
rank 1 set. In order to determine whether an actual solution has been found,
and that the run should be terminated, the raw fitness measurements need to
be inspected.
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3 Multi-Objective Genetic Search for the
VRPTW

This section provides the details of the VRPTW representation, fitness evalu-
ation, Pareto strategy and other GA parameters used. In the GA, each chro-
mosome in the population pool is transformed into a cluster of routes. The
chromosomes are then subjected to an iterative evolutionary process until a
minimum possible number of route clusters is attained or the termination con-
dition is met. The transformation process is achieved by our routing scheme
described in sub-section 3.7. The evolutionary part is carried out as in ordinary
GAs using crossover and selection operations on chromosomes. Tournament se-
lection with elite retension is used to perform fitness-based selection of individu-
als for further evolutionary reproduction. A problem specific crossover operator
that ensures solutions generated through genetic evolution are all feasible is also
proposed. Hence, both checking of the constraints and repair mechanism can
be avoided, thus resulting in increased efficiency. Figure 2 outlines the genetic
routing system.

procedure Genetic routing system;
begin

Read instance data(customer size and locations, time windows,
capacity);

Set GA parameters;
Generate randomly an initial population, POP of size popSize;
for gen = 1 to maxGen do

Transform each chromosome into feasible network configuration
by apply- ing the routing scheme;

Evaluate fitness of the individuals of POP;
Rank the individuals of POP and select new population with

the elite retaining strategy;
Apply GA operators (crossover and mutation);

endfor;
end;

Figure 3: An outline of the genetic routing system

3.1 Chromosome Representation and Initial Population
creation

In order to apply the GA to a particular problem, we need to select an internal
string (chromosome) representation for the solution space. The choice of this
component is one of the critical aspects to the success/failure of the GA for
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a problem of interest. In our approach, a chromosome representing a network
configuration is given by an integer string of length N, where N is the number
of customers in a particular problem instance. A gene in a given chromosome
indicates the original node number assigned to a customer, whilst the sequence
of genes in the chromosome string dictates the order of visitation of customers.
An example of a chromosome representing a solution for the network given in
Figure 1 is as follows:

2 5 1 4 7 8 6 3 9

A chromosome string contains a sequence of routes, but no delimiter is used
to indicate the beginning or end of a respective route in a given chromosome.
However, the correspondence between a chromosome and the routes is further
explained in Section 3.6.
To generate the initial population, 90 percent of the population is created by
random permutations of N customers nodes. The remaining 10 percentage is
generate by a greedy procedure as follows:

1. Given a set of customers C of size N ;

2. Initialize an empty chromosome string l;

3. Randomly remove a customer ci ∈ C, else goto Step 8.

4. Add customer node ci to the chromosome string l;

5. Within an empirically decided Euclidean radius centered around centered
around ci, choose the nearest customer cj , where cj 6∈ l;

6. If cj D.N.E then goto 3.

7. Append cj to l, and remove Cj from C;

8. Let ci = cj and goto 5.

9. If chromosome length = N , terminate, else goto 5;

3.2 Pareto fitness evaluation and other evaluation strate-
gies

Once each chromosome has been transformed into a possible feasible network
topology using the route clustering scheme given in Section 3.6, the fitness of
each chromosome is determined. The chromosome fitness is evaluated according
to two approaches: 1) weighted sum fitness function and 2) rank based upon
Pareto ranking technique.

Weighted sum method
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Create initial population.
Repeat until max. generation reached {

For each chromosome i in population:
Evaluate route, determining number of vehicles and cost. ⇒ (ni, ci)
Determine Pareto rank.
⇒ ranki

Apply GA to population, using ranki as fitness value.
⇒ new population

}

Figure 4: GA with Pareto Ranking

This method requires adding the problem objective functions together using
weighted coefficients for each individual objective. That is, our multi-objective
VRPTW is transformed into a single-objective optimization problem where the
fitness of an individual F (x) is returned as:

Fitness = α· | V | +β ·
∑
k∈V

Dk (1)

Dk =
∑
i∈N

∑
j∈N

tijxijk (2)

α and β are weight parameters associated with the number of vehicles and
the total distance traveled by vehicles respectively. The weight values of the
parameters used in this function were established empirically and set at α = 100
and β = 0.001.

3.3 Pareto Ranking Procedure

A straight-forward MOP interpretation of the VRPTW is adopted. The two
objectives are the number of vehicles and the total cost. They define two in-
dependent dimensions in a multi-objective fitness space. Thus, using the char-
acterization of Section 2.1, each candidate VRPTW solution in the population
has associated with it a vector ~v = (n, c), where n is the number of vehicles for
that candidate solution, and c is the total cost. Unlike the weighted sum above,
these two dimensions are retained as independent values, to be eventually used
by the Pareto ranking procedure.

Figure 4 shows how the Pareto ranking scheme of Figure 1 is incorporated
with the genetic algorithm. Pareto ranking is applied to the (n, c) vectors of
the population, essentially creating for the population a set of integral ranks
≥ 1. These ranks are then used by the GA as fitnesses for generating the next
population. Note that the ranks themselves do not convey the quality of solu-
tions, nor whether an optimal solution has been discovered. Each population,
including the randomized initial population, is guaranteed to have a rank 1 set.
This is not a disadvantage for general instances of the VRPTW anyway, since
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there is no efficient means of knowing whether a candidate VRPTW solution is
truly optimal.

3.4 Fitness based Selection

At every generation stage, we need to select parents for mating and reproduc-
tion. The tournament selection strategy with elite retaining model [9] is used to
generate a new population. The tournament selection strategy is a fitness-based
selection scheme that works as follows. A set of K individuals are randomly se-
lected from the population. This is known as the tournament set. In this paper,
the set size is taken to be 4. We also select a random number r, between 0 and
1. If r is less than 0.8 (0.8 set empirically), the fittest individual in the tourna-
ment set is then chosen as the one to be used for reproduction. Otherwise, any
chromosome is chosen for reproduction from the tournament set.

An elite model is incorporated to ensure that the best individual is carried
on into the next generation. The advantage of the elitist method over tradi-
tional probabilistic reproduction is that it ensures that the current best solution
from the previous generation is copied unaltered to the next generation. This
means that the best solution produced by the overall best chromosome can
never deteriorate from one generation to the next. In our GA, although the
preceding fittest individual is passed unaltered to the next generation, it is
forced to compete with the new fittest individual.

3.5 Recombination Phase

One of the unique and important aspects of the techniques involving genetic
algorithms is the important role that recombination (traditionally, in the form of
crossover operator) plays. In [11] we carried experiments where we established
that two standard crossover operators: Uniform order crossover (UOX) [37]
and Partially mapped Crossover (PMX) [37] are not suitable for VRPTW. We
then introduced Route Crossover (RC) which is an improvement of the UOX.
Experimental details showed that the RC outperforms UOX and PMX (see
details of RC in [11]). Thus, in this work, we initially employed RC. While we
established that the RC is better suited for VRPTW than well-known crossover
operators, a weakness of the RC is that it is more suited for soft VRPTW where
some conditions are relaxed. For example, when applying the RC occasionally
results in some customers not being assigned to any vehicle. In this case, the
chromosome resulting to unserviced customer(s) was simply penalized during
the fitness evaluation stage. In this paper, we are dealing with hard VRPTW
where all the constraints should be satisfied, hence we need a crossover operator
that does not result in some customers being unserviced. This paper employs
a problem specific crossover (Best Cost Route Crossover, BCRC) which aims
at minimizing the number of vehicles and cost simultaneously while checking
feasibility constraints. The dynamics of the proposed Best Cost Route Crossover
are presented here.
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Figure 5: Example Best Cost Route Crossover (BCRC) operator
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Example 1 illustrates the creation of two offsprings, C1 and C2, from two
parents, P1 and P2, using an arbitrary problem instance of customer size 9 for
explanation purposes. RP1 and RP2 give corresponding set of routes associated
with P1 and P2 respectively at the current generation. For examples, P1 has
three routes (R1-R3) with respective customers, i.e., R1: 3 1 7, R2: 5 6 and
R3: 4 2 8 9. As shown in Example 1a, from each parent, a route is chosen
randomly. In this case, for P1, route R2 with customers 5 and 6 is chosen,
while for P2, route R3 with customers 7 and 3 is picked. Next, for a given
parent, the customers in the chosen route from the opposite parent are deleted.
For example in 1a, for parent P1, customers 7 and 3 (which belonged to the
randomly selected route in P2) is is deleted from P1 resulting in the upcoming
child C1. Likewise customers 5 and 6 which belonged to a route in P1 are
deleted from the routes in P2 resulting the upcoming C2.

Since each chromosome should contain all the customer numbers (for a given
VRPTW problem instance, the next step is to locate the best possible locations
for the deleted customers in the corresponding children. As shown in 1b, the
algorithm needs to re-insert customers 7 and 3 to child C1 and customers 5 and
6 should be inserted in child C2 respectively. Note that the choice of which
customer to insert first is done randomly, i.e., in creating C1 for example, the
order of insertion of 7 and 3 is done arbitrarily. In this case, customer 3 was
first inserted in the best location found in C1 (as shown in 1b) before 7 was
inserted as shown in 1c.

An insertion point is said to be infeasible if it results to the routes either not
meeting the vehicle capacity or time window constraints. The best insertion
location is one that results in total minimum cost routes. In this example,
customers 3 and 7 were both found to fit into route 3 of P1 as shown in 1c.
Occasionally no feasible insertion point is found and a new route is started. For
example, in creating C2, customer 6 could not be inserted in the current routes
for P2 hence a new route was created.

3.6 Constrained Route Inversion mutation

Mutation aids a genetic algorithm to break free from fixation at any given point
in the search space, and is used here in VRPTW for that very reason. Since
mutation can be highly destructive of good schemas, each chromosome has a
low probability of being mutated, in this research each chromosome has a 0.10
probability of being chosen for mutation. When utilizing mutation it may be
best to introduce the smallest change in the chromosome as possible, especially
in the VRPTW, where the time windows can easily be violated. We propose
an adaptation of a simple widely used mutation, usually referred to as inversion
[37]. In a simple use of inversion applied to the TSP, where the chromosome
representation is simply a permutation of the order in which to visit each locale,
two cut points are selected in the chromosome, and the genetic material between
these two cuts points is reversed, for example given the TSP chromosome:

9 5 1 7 8 2 4 3
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Two cut points are generated:

95|17824|3

And the genetic material is reversed between the cut points giving:

9 5 4 2 8 7 1 3

In this paper mutation is carried only in one randomly chosen route so as
to minimize total route disruption. Maintaining route time window puts major
constraints since the violation of individual customer time windows can segment
that route into multiple routes. Thus we employ a constrained inversion, which
is limited in length to 2-3 customers. Since an inversion of 2-customers is the
smallest change one can make in a route (since it changes only two edges of the
graph) we employ this type of mutation to aid search away from converging at
local optima.

3.7 Routing Scheme

It is quite common among research for the VRPTW to route exhaustively in
relation to vehicle capacity; that is, vehicles are filled with customers until capac-
ity constraints disallow the addition of another customer. A worthy exception
[32] attempts all feasible routing schemes, and chooses the routing scheme with
the best cost. Our work used a two-phase routing scheme that transforms each
of the chromosomes into a cluster of routes. In Phase 1, a vehicle must depart
from the depot and the first gene of a chromosome indicates the first customer
the vehicle is to service. A customer is appended to the current route in the
order that he/she appears on the chromosome. The routing procedure takes
into consideration that the vehicle capacity and time window constraints are
not violated before adding a customer to the current route. A new route is
initiated every time a customer is encountered that cannot be appended to the
current route due to constraints violation. This process is continued until each
customer has been assigned to exactly one route.

In Phase 2, the last customer of each route ri, is relocated to become the
first customer to route ri+1 . If this removal and insertion maintains feasibility
for route ri+1, and the sum of costs of r1 and ri+1 at Phase 2 is less than
sum of costs of ri + ri+1 at Phase 1, the routing configuration at Phase 2 is
accepted, otherwise the network topology before the Phase 2 (i.e., at Phase 1)
is maintained.

4 Experimental Results and Comparisons

This section describes computational experiments carried out to investigate the
performance of the proposed GA. In particular the experimental results shown
here aim at showing two types of simulations: (i) where the VRPTW simula-
tions consider only single objective where minimizing the number of vehicles is
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given more weight over minimizing travel costs (ii) VRPTW is considered as a
multi-objective problem (MOP) hence concurrently minimizing both number of
vehicles and travel costs without a bias. The algorithm was coded in Java and
run on an Intel Pentium IV 1.6 MHz PC with 512 MB memory. Our experimen-
tal results use the standard Solomon’s VRPTW benchmark problem instances
available at [38]. Solomon’s data is clustered into six classes; C1, C2, R1, R2,
RC1 and RC2. Problems in the C category means the problem is clustered, that
is, customers are clustered either geographically or according to time windows.
Problems in category R mean the customer locations are uniformly distributed
whereas those in category RC imply hybrid problems with mixed characteristics
from both C and R. Furthermore, for C1, R1 and RC1 problem sets, the time
window is narrow for the depot, hence only a few customers can be served by
one vehicle. Conversely, the remaining problem sets have wider time windows
hence many customers can be served by main vehicles. See [39] for further de-
scriptions of the Solomon’s problem sets. Unless otherwise stated, the results
presented below are based on the following set of GA parameters:

• population size = 300

• generation span = 350

• crossover rate = 0.80

• mutation rate = 0.10

4.1 Comparisons with best published results

In Figures 4-6, we illustrate some of the network topologies obtained after run-
ning the GA for 350 generations. Figure 4 represents a data set where customers
are clustered together and have a small time window. Figure 5 shows a data
set where customers are also clustered but have a wider time window hence
as expected, the network topology shows that one vehicle can serve more cus-
tomers as opposed to Figure 6. On the other hand, Figure 6 shows customers
that also have a small time window but the locations of customers is uniformly
distributed. It should be noted that nodes in R1 category are much harder to
solve than in C category. Due to space limitations we show only three network
topologies here, however, the general behavior is representative of the respective
data sets.

Tables 1 and 2 present a summary of our results and compare them with the
published solutions. Route costs are measured by average Euclidian distance.
The column labeled Best Known gives the best known published solutions, col-
umn wGA gives the best solution where the VRPTW was interpreted as a sin-
gle objective problem by using weighted sum fitness evaluation criterion. The
columns labeled pGA Vehicles and pGA cost show the best solutions obtained
when the VRPTW was interpreted as multi-objective optimization problem and
the Pareto procedure was incorporated into our GA for fitness evaluation. The
reported Pareto solutions in tables 1 and 2 are two examples from the Pareto
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Figure 6: Network topology for 100 geographically clustered customers with a
narrow time window. Test problem c101:[38]

Figure 7: Network topology for 100 geographically clustered customers with a
wide time window. Test problem c201:[38]
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Figure 8: Network topology for 100 uniformly distributed customers with a
narrow time window. Test problem r108:[38]

rank 1 set at the end of a run. pGA Vehicles solution is the rank 1 solution
that has the minimal number of vehicles, while the pGA Cost value is the rank
1 solution with the minimal cost. Note that in experiments in which the dif-
ference in the number of vehicles in these two columns is ≥ 2, there are even
further rank 1 solutions between these two extremes. We report only these two
instances, however, to give an idea of the range of possible solutions returned
by the Pareto MOP approach. Bolded figures in Tables 1 and 2 indicate an
improvement on the best currently known results from literature (when consid-
ering either number of vehicles or cost). A tick on the other hand indicates that
the solution we obtained is the same as the best known. The results obtained
by our GA are quite good as compared to the best published results found in
literature.

The advantages of the efforts of interpreting the VRPTW as a MOP using
Pareto ranking as opposed to the single objective using weighted sum can be
established from the solution quality. When using the Pareto ranking, one has
a choice of two (or more) solutions, depending on whether the user wants the
best number of vehicles or best travel costs solutions. In some experiments, for
example c101 in Table 1, there is a single Pareto solution that is optimal to
the best known in both vehicle and distance dimensions. Other solutions, such
as rc102, reduce the distance significantly, but at the expense of adding extra
vehicles. In rc105, there are two reported solutions in the table that have better
distance scores than the best known solution. However, both these solutions use
14 and 16 vehicles, which add 1 and 3 vehicles respectively to the 13 vehicles
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used in the best known solution. Should distance (and hence time) be critical,
then these alternate Pareto solutions are clearly preferable. Note that another
Pareto solution with 15 vehicles may likely exist in rc105 as well, but it was not
reported in the table. With weighted sum approach, there is only one solution
which does not necessarily effectively serve the purpose of both objectives.

Tables 3 and 4 give comparisons of our results with published results using
GA (or hybrid GAs) in terms of average number of vehicles employed and aver-
age costs respectively (boldface are best solutions). Table 3 illustrates that our
GAs (given by wGA and pGA) obtained better or similar average number of
vehicles as compared to some of the well known published GA based methods
for VRPTW. Except for [31] which is an hybrid strategy (incorporating GA,
tabu search and simulated annealing), our wGA solution quality is better or
very competitive with most of the other published work. The results of our
multiple objective GA (given by pGA in Table 3) are equally competitive with
other published work. Also in Table 4, it is shown that our multi-objective
GA gives the best distances in almost all instances (see bold figures in Table
4) when considering costs. The corresponding average number of vehicles for
the respective distances of the multi-objective GA is given in brackets under
column pGA cost in Table 4. The corresponding average number of vehicles for
the other published distances in Table 4 can be inferred from Table 3.

5 Concluding Remarks

This paper presented a multi-objective genetic algorithm approach to the vehicle
routing problem with time windows. The solution quality of our GA is com-
petitive with the best solutions reported for the VRPTW by other researchers.
However, the most significant contribution of this paper is our interpretation
of the VRP as a MOP. Our simple translation of the VRPTW into a MOP
was surprisingly effective. Firstly, its performance was very good. Our results
are competitive with other vehicle-biased results in the literature. Secondly,
the Pareto scoring procedure precludes the need to experiment with weights as
required in a weighted-sum approach. Poorly chosen weights result in unsat-
isfactory solutions, and only after considerably experimentation can effective
weights be obtained for a specific instance of a VRPTW.

Perhaps most significantly, our MOP interpretation of the VRPTW repre-
sents a philosophically view of the problem as the whole. When the VRPTW
is viewed without bias towards number of vehicles or total cost, we are afforded
with a more natural multi-modal perspective for this application problem. No
unnecessary bias is introduced into the search. This is in stark contrast to most
other work in VRP’s, in which the number of vehicles is given implicit prior-
ity, and consequently the scoring procedure must prioritize this dimension of
the problem. We claim that there is no theoretical nor practical advantage to
giving priority to the number of vehicles, perhaps other than having a common
framework from which to compare different researcher’s results. Admittedly,
there is an associated cost to having more vehicles, and the associated man-
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Table 1: Solomon Benchmarks with narrow time windows: Comparison of our
GAs with best published results

Instance Best Ref. wGA pGA pGA
data known Vehicles cost

c101 10 828.94 [21]
√ √ √

c102 10 828.94 [21]
√ √ √

c103 10 828.06 [21]
√ √ √

c104 10 824.78 [21]
√

10 825.65 10 825.65

c105 10 828.94 [13]
√ √ √

c106 10 828.94 [21]
√ √ √

c107 10 828.94 [21]
√ √ √

c108 10 828.94 [21]
√ √ √

c109 10 828.94 [13]
√ √ √

r101 19 1650.8 [21]
√

1685.27
√

1690.28 20 1664.13

r102 17 1486.12 [21] 18 1523.10
√

1513.74 18 1487.07

r103 13 1292.68 [27]
√

1348.28 14 1237.05 1237.05

r104 9 1007.31 [27] 10 1010.36 10 1020.87 11 1010.24

r105 14 1377.11 [27] 15 1427.72
√

1415.13 15 1390.12

r106 12 1252.03 [21]
√

1273.62 13 1254.22 13 1254.22

r107 10 1104.66 [27] 11 1100.97 11 1100.52 1100.52

r108 9 963.99 [27] 10 960.26 10 975.34 10 975.34

r109 11 1194.73 [16] 12 1211.81 12 1169.85 13 1166.09

r110 10 1124.4 [20] 11 1146.11 11 1112.21 11 1112.21

r111 10 1096.72 [20] 11 1132.51 11 1084.76 12 1079.82

r112 9 982.14 [8] 10 985.99 10 976.99 10 976.99

rc101 14 1696.94 [23] 15 1675.86 15 1636.92 15 1636.92

rc102 12 1554.75 [23] 13 1536.04 14 1488.36 14 1488.36

rc103 11 1261.67 [27] 12 1309.59 12 1306.42 12 1306.42

rc104 10 1135.48 [27]
√

1154.18
√

1140.45
√

1140.45

rc105 13 1633.72 [20] 14 1623.33 14 1616.56 16 1590.25

rc106 11 1427.13 [25] 12 1441.46 12 1454.61 13 1408.70

rc107 11 1230.48 [27]
√

1271.59 12 1254.26 12 1254.26

rc108 10 1142.66 [23]
√ √

1141.34 12 1254.26
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Table 2: Solomon Benchmarks with wide time windows: Comparison of our
GAs with best published results

Instance Best Ref. wGA pGA pGA
data known Sum Vehicles cost

c201 3 591.56 [13]
√ √ √

c202 3 591.56 [13]
√ √ √

c203 3 591.17 [21]
√ √ √

c204 3 590.60 [13]
√

596.55
√

596.55
√

596.55

c205 3 588.88 [13]
√ √ √

c206 3 588.49 [13]
√ √ √

c207 3 588.29 [21]
√ √ √

c208 3 588.32 [21]
√ √ √

r201 4 1252.37 [16]
√

1276.2
√

1268.44 7 1173.75

r202 3 1191.7 [20] 41087.52 4 1112.59 5 1046.16

r203 3 942.64 [16]
√

952.52
√

989.11 5 890.50

r204 2 849.62 [25] 3 766.92 3 760.82 3 760.82

r205 3 994.42 [20]
√

1036.08
√

1084.34 5 954.16

r206 3 912.97 [21]
√

921.32
√

919.73 4 889.39

r207 2 914.39 [22] 3 821.32 3 825.07 4 822.90

r208 2 726.823 [8] 3 738.41
√

773.13 3 719.17

r209 3 909.86 [20]
√

928.93
√

971.70 5 874.95

r210 3 939.37 D[26]
√

983.77
√

985.38 5 930.42

r211 2 910.09 [16] 3 786.23 3 833.76 4 761.10

rc201 4 1406.94 [25]
√

1438.43
√

1423.73 7 1306.34

rc202 3 1377.089 [8] 4 1181.99 4 1183.88 8 1118.05

rc203 3 1060.45 [16]
√

1078.38
√

1131.78 5 951.08

rc204 3 798.46 [8]
√

810.15
√

806.44 4 796.14

rc205 4 1302.42 [16]
√

1334.83
√

1352.39 7 1181.86

rc206 3 1153.93 [20]
√

1203.7 4 1269.64 5 1080.50

rc207 3 1062.05 [25]
√

1093.25
√

1140.23 5 982.58

rc208 3 829.69 [20]
√

912.76
√

881.20 4 785.93

Table 3: Comparison of Average Number of Routes on the Solomon Benchmarks
with other GA based published results.

Set [18](95) [13](96) [31](99) [14](99) [12](01) [17](01) [32](01) [12](01) [10](03) wGA pGA (V)

C1 10.0 10.0 10.0 10.0 10.0 10.1 10.1 10.0 10.0 10.0 10.0

C2 3.0 3.0 3.0 3.0 3.0 3.3 3.3 3.0 3.0 3.0 3.0

R1 12.8 12.6 12.3 12.6 12.6 13.2 14.4 12.6 12.8 12.7 12. 7

R2 3.2 3.0 3.0 3.1 3.2 5.0 5.6 3.2 3.0 3.2 3.1

RC1 12.5 12.1 12.0 12.1 12.8 13.5 14.6 12.8 13.0 12.3 12.5

RC2 3.4 3.4 3.4 3.4 3.8 5.0 7.0 3.8 3.7 3.4 3.5
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Table 4: Relative Average Cost on the Solomon Benchmarks with other GA
based published results

Set [18](95) [13](96) [31](99) [14](99) [15](01) [17](01) [32](01) [12](01) [10](03) pGA cost

C1 892.11 838.11 830.89 857.64 867.36 861 860.62 833.32 828.9 828.48 (10.0)

C2 749.13 590.00 640.86 624.31 625.40 619 623.47 593.00 589.9 590.60 (3.0)

R1 1300.25 1296.83 1227.42 1272.34 1369.97 1227 1314.79 1203.32 1242.7 1204.48 (13.1)

R2 1124.28 1117.64 1005.00 1053.65 1193.6 980 1093.37 951.17 1016.4 893.03 (4.5)

RC1 1474.13 1446.25 1391.13 1417.05 1577.64 1427 1512.94 1382.06 1412.0 1370.79 (13)

RC2 1411.13 1368.13 1173.38 1256.80 1377.86 1123 1282.47 1132.79 1201.2 1025.31 (5.6)

power to drive them. However, there is also an associated cost to the additional
fuel and time used in using fewer vehicles at longer distances to service clients.
Furthermore, vehicle counts can be less important when vehicle and manpower
costs are low if using for example bicycle couriers. By considering minimal cost
(distance), we reduce energy consumption. Such ecological considerations are
arguably of growing concern in a world of green house gases and a depleted
ozone layer. In any case, the VRPTW is naturally multimodal, and neither
dimension is fundamentally more important than the other from a theoretical
perspective and even from a practical aspect, it is arguably debatable as to
whether the optimization search should be biased towards minimizing the num-
ber of vehicles deployed as most current research work on VRPTW tends to do.
Hence, as can be seen with our results, the MOP approach generates a set of
equally valid VRPTW solutions. These solutions represent a range of possible
answers, with different numbers of vehicles and costs. We leave it to the user
to decide which kind of solution is preferable.
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