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Abstract

The automatic synthesis of procedural textures for 3D surfaces using genetic pro-
gramming is investigated. Genetic algorithms employ a search strategy inspired by
Darwinian natural evolution. Genetic programming uses genetic algorithms on tree
structures, which are interpretable as computer programs or mathematical formulae.
We use a texture generation language as a target language for genetic programming,
and then use it to evolve textures having particular characteristics of interest. The
texture generation language used here includes operators useful for texture creation,
for example, mathematical operators, and colour and noise functions. In order to
be practical for 3D model rendering, the language includes primitives that access
surface information for the point being rendered, such as coordinates values, normal
vectors, and surface gradients. A variety of experiments successfully generated pro-
cedural textures that displayed visual characteristics similar to the target textures
used during training.
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1 INTRODUCTION

Procedural textures are an integral part of contemporary rendering technology
[1] [12]. Procedural textures can convincingly model a variety of natural phe-
nomena, such as wood, stone, and terrain, as well as innumerable unnatural
effects. Moreover, procedural textures apply rendered results seamlessly over
surfaces, without tiling or other repetitive artifacts. This makes them ideal for
photorealistic rendering.

One disadvantage of procedural textures is their technical complexity. Mathe-
matical and procedural models of well-known effects, such as stone, wood, and
terrain, have been carefully engineered and hand-crafted. Typically, parame-
terized versions of these pre-defined effects are included in rendering tools,
along with suitable interfaces for user-manipulation of the parameters. The
derivation of a new procedural texture can be a challenging task. If the user
has a visual effect in mind, the derivation of a corresponding procedural tex-
ture that produces this effect will depend upon the user’s proficiency and ex-
perience in mathematical texture modeling. Even for experts, trial-and-error
will be the norm. Hence, the invention of computer-based tools which can
automatically derive procedural textures is a worthy goal.

This paper investigates the automatic derivation of procedural textures for
3D surfaces using genetic programming technology. Genetic programming is
a machine learning paradigm inspired by Darwinian evolution. Populations of
computer programs are bred until a program solving some problem of interest
is eventually evolved. We use genetic programming to evolve populations of 3D
texture formulae. The approach is similar to previous work in 2D procedural
texture evolution [3][9][13]. The main enhancement necessary for evolving ef-
fective 3D textures is to incorporate surface information into texture formulae.
The texture language implemented in our experiments includes provision for
surface coordinates, surface orientation (normal direction), and surface gradi-
ent (normal deviation). As in 2D texture evolution, a target texture is used
for training purposes. Surface points on an example model rendered with the
target texture are manually sampled. These sample points are then used as
a training set by the genetic programming system. The goal is to evolve a
3D texture whose colour rendering on 3D surface components is as similar as
possible to that in the target texture.

Section 2 reviews relevant work in texture evolution. An overview of genetic
algorithms and genetic programming is given in Section 3. System and exper-
imental details are discussed in Section 4. Some results are given in Section 5.
Section 6 gives some concluding discussion.



2 Texture Evolution

Genetic algorithms have been used for interactively exploring procedural tex-
tures [8] [10] [11]. A number of commercial products have used this approach;
Kai’s Power Tools and Alien Skin Textureshop are two examples. These sys-
tems rely on the user to interactively participate in the evolution process. The
scheme used is as follows. A population of candidate textures is displayed to
the user. He or she selects the texture(s) of interest, to be mutated or recom-
bined into the next set of textures. The user also controls a mutation rate
parameter, which determines the degree to which new textures differ from
current textures. The mutation rate is usually large at the beginning of a ses-
sion, and then is gradually reduced when a texture of interest is discovered.
In essence, the user becomes an oracle or “fitness evaluation function” for the
duration of the search. Although this procedure is a useful interactive tool
for texture exploration, a disadvantage is that it is not automated — the user
plays the pivotal role in guiding evolution at all stages. The user will suffer
fatigue if he or she must evaluate many hundreds of textures.

Fully automated texture generation using genetic algorithms has been investi-
gated [3][9][13]. In order to automate the search, genetic algorithms must select
candidate solutions based upon their fitness scores, which are indications of
how well the textures conform to some set of desired visual characteristics.
The challenge in automated texture evolution is to derive an effective fitness
function to rank candidate textures based on their visual characteristics. Cur-
rently, it is unknown how to derive a formula that rates aesthetic qualities
of a candidate texture. Instead, a suite of feature tests are used, which rate
rudimentary visual characteristics of a texture, such as colour distribution,
luminosity, and shape. Although each feature test by itself is a crude measure-
ment of an image’s characteristics, they often produce useful evaluations of
textures when combined together. During a session, the feature test scores are
compared to the corresponding feature scores of a target texture image. The
goal for evolution is to derive a procedural texture whose visual characteristics
closely match those of the target texture image, as indicated by the proximity
of feature test scores between the target and candidate textures. Note that it
is not realistic or desired for the genetic algorithm to derive a texture identical
to the target texture, but rather, to evolve one that is similar in flavour to the
target.

Ibrahim’s Genshade system evolves Renderman shaders [3]. High-level Ren-
derman shader expressions are denoted as dataflow graphs. Feature tests such
as luminosity (brightness), chromaticity (colour), and wavelet analysis (shape)
are performed. Evolution can proceed interactive with user guidance, or auto-
matically with feature test evaluation. Multiple target textures can be used as
well. The results show effective evolution of Renderman shaders that match



target textures generated by Renderman itself.

The Gentropy system by Wiens and Ross uses a similar approach as Genshade
[13]. Here, textures are formulated as tree expressions, and the texture primi-
tives are basic arithmetic, colour, and noise generators. A suite of feature tests
are used, such as luminosity, colour, and wavelet tests. Flexible user-defined
topologies of multiple populations and testing strategies are possible. Multiple
target textures can also be used, in which different textures can be assigned to
influence shape or colour. Gentropy is strictly for automated texture evolution,
and no user interaction is possible at present.

Both Genshade and Gentropy treat the texture search space as a single objec-
tive problem, in which various feature test scores are combined arithmetically
to define a single feature test score. With such a search space, the genetic
algorithm’s task is to find the optimal point — the highest or best score. This
single-objective characterization of an inherently multi-objective problem such
as texture analysis requires an arbitrary reconciliation of how differing feature
tests relate to the overall score. For example, one simple scheme is to merely
give all feature tests an equal weight in the overall final score. This is un-
satisfactory in many instances, because one feature score may prematurely
dominate the others, which results in a biased solution.

The multiple feature tests used by Genshade and Gentropy are more natu-
rally denoted as a multi-objective problem (MOP). Work by Ross and Zhu
consider texture evolution to be a multi-objective search problem [9]. A MOP
is characterized by having two or more features, which may not be related in
a straight-forward, linear fashion. In the Ross and Zhu system, the Gentropy
engine is enhanced so that each feature test is treated as a separate dimension
of a multi-dimensional search problem, and texture scores are rated using a
Pareto ranking technique [2]. Pareto ranking means that colour and shape
scores are never combined, but remain independent during the run. An ad-
vantage of this is that complex multi-population topologies with clever, cus-
tomized feature testing strategies are unnecessary. A practical outcome of the
MOP approach is that results competitive with the Gentropy system were
obtained much more easily and efficiently (often 10 times faster).

The research in [3][9][13] is primarily focussed on the evolution of 2D proce-
dural textures. Although these textures can be rendered onto 3D surfaces, the
results are usually unsatisfactory, since such textures do not consider mor-
phological features of the surface. This results in surface textures which are
uniform across the entire 3D surface, and which do not react to surface char-
acteristics such as location or orientation in 3-space.



3 Evolutionary Computation

3.1  Genetic algorithms

Evolutionary algorithms are search techniques inspired by Darwinian’s the-
ory of evolution. One such evolutionary algorithm is the genetic algorithm
(GA), which has proven very successful in finding good solutions for difficult
real-world problems [5] (see Figure 1). In a GA, a population of candidate
solutions is maintained. Each individual in the population is represented by a
chromosome, which encodes some candidate solution to the problem at hand.
Additionally, each individual is assigned a fitness score, which measures the
quality of the solution encoded by the individual. These fitness scores are used
to probabilistically select individuals for reproduction, in the sense that fitter
individuals will be more likely to be selected than those less fit. This parallels
Darwinian evolution’s “survival of the fittest”, in that fit individuals survive
and procreate, while weak individuals die off and become extinct.

A defining characteristic of a genetic algorithm is the means by which new
candidate solutions are generated. The most important reproduction opera-
tion in a GA is crossover. Crossover is inspired by natural sexual reproduction,
and is the means by which parental traits are inherited by offspring. Basically,
to perform crossover, two parents are selected based on their fitness, and their
chromosomes are randomly split and merged together to form two offspring.
For example, consider two individuals with chromosomes ABCDEFG and tu-
vwzyz respectively. A single-point crossover operation finds some random split
point in the 7-gene chromosome. If this point is 3, then the offspring become:

ABCDEFG tuwDEFG
—

tuvwryz ABCwzxyz

The other important genetic reproduction operator is mutation. This involves
randomly changing some random gene in a chromosome. For example, the
individual ABCDEFG may become ABxDFEFG by a random mutation of the
gene C'to x. Typically, mutation plays a lesser role than crossover, and is used
more sparingly.

It is worth reiterating the importance of fitness-based selection in the above
discussion. In order for a genetic algorithm to be successful, individuals used
for reproduction must be selected based upon their relative fitness or strength
in solving some problem of interest. There are a number of schemes for per-
forming fitness-based selection. The one used in this paper is the tournament
selection. Here, a set of 2 or more individuals are randomly selected from the
population. Then the individual with the highest fitness score is retained as



a parent for reproduction. This tournament selection is performed once for
mutation, and twice for crossover (once for each parent).

3.2 Genetic programming

Genetic programming (GP) is a specialized class of genetic algorithm, in which
individuals in the population are interpretable as computer programs [4]. One
of genetic programming’s strengths as a paradigm of evolutionary computa-
tion is its applicability to a wide variety of problems. Any application that is
best solved via an algorithm or mathematical formula is a good candidate for
genetic programming. This differs from a vanilla genetic algorithm that uses
bitstrings as chromosomes, in which such strings might require complex and
clever coding schemes in order to be applied to problems with dynamically
changing requirements.

This paper uses the common tree-based representation of programs. In this
representation, internal nodes denote function calls, and nodes below them
denote arguments (Figure 2). In order for this representation to be usable, it
must be ensured that all trees processed are both syntactically correct, and
executable without errors. Executability or closure is maintained by ensuring
that every function used in the program will execute without errors on any
supplied input data. For example, a closed division operator will not invoke
an error condition if a division by zero is attempted, but instead will return
some predefined value as an answer.

Syntactic correctness of programs is required if programs are to execute in a
correct and predictable fashion. Firstly, random trees as created in the initial
population must be syntactically sound. To do this, the random tree generator
must supply any function in a tree with its required arguments. Reproduction
must also maintain syntactic correctness. After two parents are selected for
crossover, random nodes are selected in each parents tree. The subtrees de-
fined at these nodes are then swapped to create the offspring. This maintains
syntactic correctness. Mutation involves replacing a randomly selected subtree
with a randomly generated subtree. A result of these tree-based reproduction
operators is that chromosomes are variable-sized, and can grow to unbounded
sizes if not checked. Tree-depth limits are typically used in GP runs.



4 Experiment

4.1  Graphics environment

A fundamental characteristic of procedural textures is that they define a colour
for all points in the coordinate space. This makes them ideal for ray-traced
environments, in which textures can be calculated for all visible hit points on
model surfaces. On the other hand, they are less useful for rasterized graphics,
in which lighting is computed for vertices only, and polygon surface shading
is interpolated via Gouraud or Phong shading, mixed perhaps with texture
maps. As a consequence, a ray-tracing environment is used in this research.
The intention is for the evolved procedural texture formulae to be supplied to a
ray-tracer for rendering purposes. However, actual rendering is not performed
during texture evolution, but rather, texture formulae will be evaluated for
defined sets of example points. Other well-known ray-tracer effects, such as
local lighting, reflection, transmission, and shadows, are not considered nor
implemented.

Theoretically, any surface texture is definable by some suitable procedural
texture. Naturally, the complexity of the corresponding texture formula or
algorithm can vary considerably, depending on the match between texture
primitives and the target texture desired. At a minimum, a 3-D texture re-
quires the XYZ coordinates of a surface point in order to calculate that point’s
RGB value:

fi(z,y,2) — (r,9,0)

Such textures are defined entirely by the position of surface points in the coor-
dinate space. For some textures, such as stone and marble, this is satisfactory
and adequate. More complex effects, such as the natural rendering of a moun-
tain surface, with a snow-capped peak, rocky cliff, and green base, can also be
handled to an extent by these formulae. To do so, the height of the model is
influential in producing the appropriate effect as seen in the model’s altitude.
Often, however, we require textures that conform to additional local shape
characteristics of a model. For example, a mountain surface might turn rocky
wherever there is a steep cliff, which might occur at various altitudes. The
steepness of the cliff might be modeled as a function of the surface normal. In
other instances, we might like a texture which changes when there are abrupt
discontinuities or creases on a surface. Such features are readily denoted via
gradients (the degree to which the surface normal changes).



We used the following model surface information in various experiments:

e X, VY, Z coordinate: This will be the coordinate of the hit point on the model
surface as computed during ray-tracing.

e Surface normal: the normal of a hit point.

e Interpolated mesh normal: This is Phong-style normal interpolation on a
polygonal mesh. Shared vertex normals are interpolated from surrounding
polygons. Then a hit point normal is interpolated from the surrounding
vertex normals.

e Surface gradient: This is a scalar value representing the degree to which
normals on a local area of a surface are changing. First, the interpolated
mesh normal N for a hit point is calculated (see above). Then the difference
in unsigned magnitude between it and the real surface normal N of the plane
on which it resides is found. These differences are then averaged:

(NG = Na| + [Ny = N[ +[N. = N.) /3

The above surface parameter definitions are used for generating training data
for target textures. An interactive texture sampling editor is used for this
purpose. A 3-D model with an applied bitmapped texture is read into the
system. The user then manually selects surface points to be used as training
data. For all points selected, a record of the above surface information is
generated and saved in a table, along with the corresponding RGB colour
used to render that sample. This table is saved in a text file, for use by the
genetic programming system.

The inclusion of normals and gradients in textures results in considerable
differences in texture characteristics. Without normals and gradients, surface
detail disappears for all but the simplest models (Figure 3, a). Adding normals
into texture formulae permits surface detail to arise without the use of lighting
(Figure 3, b), and gradients introduce an additional dimension of surface detail
(Figure 3, ¢). Gradient-based textures create shiny, (false) specular highlights,
and are often metallic and iridescent in appearance. As is shown in Section
5.4, normals and gradients can also be useful during training.

4.2 Fvaluation strategy

Once a training set of texture information is sampled by the user, we wish to
evolve a procedural texture that exhibits the texture characteristics as encoded
in the training set. Given a candidate texture formula, a requirement will be
to evaluate how well its rendered texture corresponds to the sampled target
texture. Such evaluations take the form of fitness scores, in which a high score
means a high (strong) fitness.



A simple evaluation strategy will be used to determine the fitness score of a
texture formula. The surface parameters of each sample point in the training
file will be made available to the procedural texture. The texture formula is
then interpreted on a training sample. It will make free use of the example sur-
face parameters whenever they are required. Eventually, the formula computes
an RGB colour for that point. The distance in RGB space between the actual
rendered colour RGB, and the sampled target colour RG B, is determined.
This distance is then tallied for all £ samples in the test set:

k
Fitness = _ dist(RGB,, RGB;)

i=1

where

dist(RGB1, RGBy) = \/(R1 — R2)? + (B1 — Ba)? + (G — Ga).
4.3  Texture language

The genetic programming system used here is based on Koza’s Lisp-based
genetic programming model, in which programs take the form of symbolic
expressions or s-expressions [4]. An s-expression is a list or atom in the Lisp
language. An example expression in Lisp notation is:

(/ (+66) 4)

This denotes the arithmetic expression (6 + 6)/4. The mapping between s-
expressions and trees is straight-forward: the first element in a list is the
function (subtree root), its arguments are branches, and atoms are leaves.

The strongly-typed lilGP 1.1 system is used as the GP platform for the experi-
ments [14]. This is a C-based GP system, which implements Koza'’s tree-based
GP paradigm. It is embellished with strong-typing, which means that expres-
sions can be assigned to return designated data types [6].

Figure 4 shows a Backus-Naur Form grammar of the texture language. Note
that expressions are denoted in standard algebraic notation, rather than as
Lisp s-expressions. There are two data types in the language — rgb vectors
(RGB) and floating point values (F). The RGB operators consist of either the
current 3-D coordinate of the point being rendered, the current surface normal
of the point being rendered, or an RGB vector rgbvec constructed from the
values of three floating point expressions. Note that the RGB-space is modeled
with clamped floating-point values between 0.0 and 1.0.



The rest of the grammar defines floating point expressions. Floating point
terminals can be basic surface information for the point being rendered, such
as one of its coordinate values (z, y, ), normal directions (n,, n,, n,) or surface
gradient (diff). The other floating point terminal, ephem, is an ephemeral
random constant. This is a constant value that is initialized with a random
value between 0.0 and 1.0, but then retains its initialized value throughout its
lifetime during the evolution process. In other words, it does not denote a call
to a random number generator.

The floating point functions include sine, cosine, minimum, maximum, and
conventional arithmetic operators. The divide operator was omitted, due to
its tendency to create extremely large or small values, which in turn nullify
the utility of many formula. The avg function finds the average between two
expressions, while lum finds the luminosity (average channel value) of an RGB
vector. The ¢ f expression interprets its first floating point argument. If that
expression is greater than 0.5 in value, then the value of the second argument is
computed and returned as a result. Otherwise the value of the third argument
is returned. Finally, noise generates Perlin noise computed to the 4* harmonic

7).

Because the texture language is strongly typed, tree generation and reproduc-
tion will maintain legal data typing at all times. During generation, any tree
generated must adhere to the typing conventions of each function shown in the
grammar in Figure 4. For example, if a function requires an RGB argument,
then an RGB function or terminal will be randomly selected. When applying
crossover, the data type of the root of each subtree to be swapped must also
match.

4.4 GP parameters

Table 1 lists the genetic programming parameters common to all the experi-
ments. All the experiments used a population of size 1000 running for at least
200 generations. This was done for 10 runs per experiment, where each run
has a new random number seed. Therefore, each run processes at least 200,000
textures, and each experiment at least 2 million textures. This processing was
greatly aided by the use of a 16-CPU Silicon Graphics Origin 2000 server,
which permits 10 runs to execute concurrently.

The initial randomized population is created using Koza’s ramped half&half
tree generation strategy from [4]. Half the trees are grow trees, in which each
randomly generated node has an equal chance of being a function (internal
node) or terminal (leaf), up to a maximum depth for the tree. The other trees
are full trees, where nodes are leaf nodes only when the maximum depth of
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the tree has been reached. Hence grow trees tend to be more asymetric and
smaller in size than the larger, bushier full trees. The idea of ramping means
that maximum tree sizes are iterated between 5 to 10 levels deep for both
grow and full trees. Ramped tree generation proceeds until the population is
filled.

During evolution, crossover is used to create 90% of a new population, and
mutation is used for the remainder. Trees can never exceed a maximum depth
of 17 levels. If they do, the reproduction operator is tried again with new
parents. Parent(s) are selected using a tournament selection with a tournament
size of 5. This tournament size creates a fairly strong selection pressure.

5 Results

Results from selected experiments are now given. All the experiments share
the genetic programming parameters of Section 4.4. Experiments differ with
respect to the composition of training sets, the subset of the texture language
used as a target language for evolved results, and in a few cases, the number
of generations. In the remainder of the section, alternate models are rendered
with solution textures by rescaling their coordinate extents to be those of the
original training model.

5.1  Primary Colour Cube

This first example uses a simple training set (Figure 5). Six sample points are
selected from centers of sides of a cube. These points are assigned the colours
red, green, blue, grey, white, and yellow. As is done in all experiments, the
fitness function evaluates how closely a texture formula renders these points
with colours near their sampled target colours. This does not imply that the
entire side of the cube will necessarily be that colour, but only the single
center point sampled for training. This indeed can be seen in the cube images
in the figure. The gradient and noise primitives are removed from the texture
language for this run.

Figure 6 shows the evolved texture formula used in column 3 of Figure 5.
The size and complexity of this formula is a fairly typical result from genetic
programming. There is room for simplification in the formula. For example,
the term (min 0.36341 0.13969) found 15 times in the formula can be replaced
with the constant 0.13969. Such extraneous expressions are called intron code
or program bloat, and have no deleterious effect on the quality of a solution,
other than making interpretation slower than necessary.
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5.2 Terrain Texture

Figure 7 shows the results of evolved textures suitable for a mountainous
landscape. The training model (top row) consists of 97 points sampled from a
polygonal mesh mountain. The intension is for the mountain to have a white
snowcap, grey cliffs, and a green base.

5.8 Clothing Texture

The next example is a bit offbeat. A female figure is used as a surface for
training (Figure 8). A total of 1327 sampled points are used. The idea is
that the procedural texture will colour the woman by giving her blonde hair,
a green tank-top shirt, purple pants, black shoes, and pink face and arms.
This is a complex task for a mathematical texture formula, given that the
training file does not have high-level information about model components
(arms, legs,...), but only the coordinate, normal, and gradient information of
each sample point. The results after 600 generations are shown in Figure 9.
The terrain images use the last clothing texture (row 2, column 2).

Figure 10 shows the fitness progress of the run that evolved the texture in row
2, column 2 of Figure 9. As can be seen, the fitness of the best individual and
population average shows steady progress through the entire 600 generations
of the run. This shows that 600 generations is not excessive. In fact, additional
generations would likely give further progress, based on the trend in this graph.

5.4  Normal and Gradient Specialized Texture

Figure 11 shows the evolution of a texture that captures a particular surface
orientation and shape for a model. The training model (column 1) consists of
5 steep hills on a flat surface. The tip of each hill is to be coloured red. The
tip area has a high gradient, and variable normal. The rest of the hill below
the tip is green. The flat base from which the hills rise is white. A total of 115
training points were used.

5.5 Miscellaneous Results

Figure 12 shows an experiment in which a terrain-oriented training set similar
to that in Section 5.2 is used. After completing the sampling of the training
set, however, we swapped the blue channel and gradient values. It is difficult
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to intuit the effect of this new interpretation of data. The runs yielded some
unexpected and interesting textures, and models tended to appear made of
transluscent minerals.

The final experiment uses the following training set. A total of 182 sample
points are used upon a cube (Figure 13). The cube is blue, with 3 coloured
bands (yellow, purple, tan) wrapping around the cube in the middle of each
face on each of the XY, XZ and YZ planes. The 8 vertices have shared nor-
mals, interpolated from the faces surrounding each vertex. Hence the normals
do not indicate the planar normals of each face. Since this is a particularly
challenging texture to evolve, we let the system run for a total of 600 genera-
tions, rather than the usual 200 generations. Some results are shown in Figure
14. The results of training (column 1) are unexceptional. This is likely due to
descriptive shortcomings in the texture language, which is clearly lacking in
primitives that are adaptable to this particular target texture. Nevertheless,
the results of applying the solution texture to other models are interesting,
especially given that the overall colours used in the training set were prevalent.

6 Conclusion

This paper reports a first investigation into the suitability of using evolution-
ary computation to automatically synthesize 3-D procedural textures. The
results of these experiments are positive and promising. Our scoring method
— positive example matching — is very simple. This makes the results even
more impressive, since 3-D procedural texture spaces can be complex and
high—dimensional. The randomness and chaos that is an inherent part of evo-
lutionary computation is a distinct advantage in texture generation, as it lends
an element of invention and surprise to the texture synthesis process. Admit-
tedly, some of the target textures used here are simple enough that hand-
written solutions could be derived. The important point, however, is that no
manual derivation of procedural textures was necessary — genetic program-
ming obtained results automatically from training data. Obtaining samples
for training is a much simpler task than deriving texture formulae.

There are a number of directions for improving this research. Firstly, the tex-
ture language used in this paper is very rudimentary, having only a basic set
of arithmetic and RGB operators, along with a basic noise primitive. More
complex textures will arise with a language that has higher-level texture gen-
erating primitives. For example, the use of Renderman shaders as done in
Genshade would immediately result in more complex texture results [3]. The
language could also be supplemented with additional 3-D model information.
For example, a notion of model hierarchy might be introduced into the lan-
guage. This would permit the texture to incorporate which portion of the
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model hierarchy a texture is to be rendered upon. This would yield textures
that are tuned more intimately to the model’s structure.

More work needs to address the issue of fitness evaluation. Although the pos-
itive example matching approach used here is simple to implement, and often
yields acceptable results, it could use improvement. A fundamental problem
with example scoring is that the results are strongly dependent on the fair-
ness of the example set. For example, if the majority of examples are blue,
then fitness evaluation will naturally be biased towards formulae yielding blue
colours. To overcome this bias, the user needs to balance the example set in a
way that different features are adequately populated within the set.

Another problem with example scoring is that positive example matching is
unsuitable for evolving noisy textures. The nature of noise is that a target
pixel satisfying various surface characteristics may have substantially variable
colour depending on the chaotic nature of the noisy texture space itself. Unfor-
tunately, the use of positive example matching is decidedly prejudiced against
noise, because of the chaotic colouring that occurs when noise primitives are
present in a texture formula. For example, a noisy area of texture space may
generate colours within some distribution. Fitness scoring, however, requires a
strict match with the colour designated within the example. This means that
the existence of a noise function will detract from fitness, and so evolution
will prefer non-noisy formulae with more deterministic rendering behaviour.
Our experience is that noise primitives usually tend to disappear from the
population during early generations.

An alternative fitness evaluation technique that would not be biased against
noise would be to incorporate probabilistic matching of candidate and target
examples. For example, one could ascribe to an example point a probabilistic
colour distribution. This would presume that a number of examples would be
included in this probabilistic colour set, so that the resulting texture’s colour
distribution would closely align itself to the example set.

We found that the most pleasing aesthetic results do not necessarily correlate
with the strongest fitness scores. Therefore, although fitness guides evolution,
it is clear that artistic applications such as this one require human evaluation
to determine the appropriateness of overall solutions. Although automated
3-D texture evolution is a challenging and worthy topic, it is interesting to
consider the implementation of semi-automated texture synthesis systems that
incorporate a dynamic interplay of automated and user-directed evaluation.
Such tools might in fact turn out to be the most practical.
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1. Initialize the population with random chromosomes.
Rate the fitness of the individuals in the initial population.
2. Repeat until solution found OR maximum generation reached:
i) Repeat until new population generated:
a) Select 2 individuals based on their fitness, and apply crossover to
generate two offspring. Add them to new population.
b) Select an individual based on fitness, and apply mutation.
Add mutant to new population.
ii) Rate the fitness of individuals in new population.

Fig. 1. Example genetic algorithm

Cos

+///;\\\2
e

fcos " (+ XY} 2)

Fig. 2. Example tree and corresponding expression

Fig. 3. Texture language effects. (a) Basic. (b) Normals. (¢) Normals and gradients.
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RGB = RGBterm | RGBfunc

RGBierm  t= Uzys | Nays
RGBjyn. == rgbvec(F,F,F)
F = Fim | Frune
Frowm 5= @ |y| 2| ne|ny|n.|diff | ephem
Frune = sin(F)|cos(F)|F+F|F—F|F«F|avg(F,F)|lum(RGB)

| maz(F, F) | min(F, F) | if (F,F,F) | noise(RGB)

Fig. 4. Texture Language Definition

Parameter Value

Population size 1000

Generations 200 (sometimes more)
Runs/experiment 10

Initialization ramped half&half

Initial ramped tree depth 5 to 10

Max. tree depth 17
Crossover rate 0.9
Mutation rate 0.1
Selection scheme tournament (size 5)

Table 1
Genetic Programming Parameters
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Fig. 5. Primary colour cube. Each column is a separate solution. The rows show
training front view, training back view, woman front and back views, and terrain.
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(rgb (+ (cos (+ (avg Z NZ) (- (* (- (cos (if (cos (- Z Y)) 0.28686 Y)) (min 0.36341 0.13969)) (min (4 (- Z NZ)
(* NX X)) (- Z NX))) NX))) (* (- (cos (if (- (cos (if (min 0.36341 0.13969) (- (min 0.36341 0.13969) (avg Z NZ))
(if (min NY 0.13969) (min (+ (avg Z NZ) (lum NXYZ)) (+ Z (- (min NY 0.13969) NZ))) Y))) 0.41939) (+ NZ
2) ¥)) (- Z NX)) (+ (* (avg (+ (- Z NX) (+ NY X)) (ave (+ (+ NZ (+ NY X)) (avg (+ (+ NZ NX) (+ NY X))
(- (cos (avg (+ (+ Z (* NX X)) X) NX)) (- (cos (min NY 0.13969)) (- Z NX))))) (- (cos (+ (avg Z NZ) (+ Y (-
Z NX)))) (min 0.36341 0.13969)))) (- Z NZ)) (- NZ NX)))) (cos (+ (min (avg (4+ (min (+ Z (min (4 (avg Z NZ)
(lum NXYZ)) (cos (+ (* (avg (+ (+ NY X) (avg Z NZ)) (- Z NZ)) (- (cos NZ) NY)) (- NZ NX))))) (avg (+ (+ Z
(* NX X)) X) NX)) (+ NY X)) (- (cos (min (avg (+ NY (* NX X)) (avg (+ NY X) (- (cos (avg (+ NY (+ (+ Z
(* NX X)) X)) (- (cos (- Z Y)) (min 0.36341 0.13969)))) (- (cos (min 0.36341 0.13969)) (min 0.36341 0.13969)))))
(* NX X))) (min 0.36341 0.13969))) (min (avg (+ (+ NZ NX) (+ NY X)) (- (cos (min (avg (+ (+ NZ NX) (-
(- (cos NZ) NY) 0.41939)) (- (cos (avg (- Z NX) NZ)) (- (cos (if (lum NXYZ) 0.28686 Y)) (- Z NX)))) (- (- (*
(- (cos (avg (- NZ NZ) NZ)) (- (cos (min 0.36341 0.13969)) (min 0.36341 0.13969))) (- Z NZ)) NX) NZ))) (min
0.36341 0.13969))) (* (avg (+ (* NX X) X) (avg (+ (+ Z (* NX X)) X) NX)) X)) (+ Z (- (+ NZ (+ Z (* NX
X))) NX)))) (* (- (avg (- (cos (+ (* (avg (+ (+ NZ NX) (+ NY X)) (- (cos (- Z Y)) (min 0.36341 0.13969))) (-
(- NZ NX) NZ)) (- NZ NX))) (+ NY X)) (sin X)) (min (+ (avg Z NZ) (lum NXYZ)) (cos (cos (- (cos (cos (+ (*
(avg (+ (+ NY X) (avg Z NZ)) (- Z NZ)) (+ Z (* (- Z NX) X))) (- NZ (+ Z (min (4 (avg Z NZ) (lum NXYZ)) (-
(cos (* NX X)) (min 0.36341 0.13969)))))))) (cos (- (+ (+ NZ NZ) (avg (+ (+ NZ NX) (4+ NY X)) (- (cos (avg
(+ (+ Z (* NX X)) X) NX)) (- (cos (min NY 0.13969)) (sin X))))) (min 0.36341 0.13969)))))))) (cos (avg (- (+
(- Z NZ) (* NX X)) (4 (avg Z NZ) (lum NXYZ))) (avg (max (+ (avg Z NZ) (+ Z (- NZ NX))) (min (+ (* (avg
(+ (+ NZ NX) (£ NY X)) (- (cos (- Z Y)) (min 0.36341 0.13969))) (- (- NZ NX) NZ)) (- NZ NX)) (- (cos NZ)
NY))) (- (* (- (cos NZ) (- Z NX)) (min (sin X) (- Z N2))) NX))))))

Fig. 6. Example solution
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Fig. 7. Terrain texture. Each column is a separate solution.
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Fig. 9. Woman’s clothing texture. Four solutions.
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Fig. 10. Fitness progress for clothing texture run.
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Fig. 11. Normal and gradient specialized texture. Each row is a solution.

23



Fig. 13. Banded cube training points.

24



Fig. 14. Banded cube texture. Each row is a solution.
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