

Brock University

Department of Computer Science

Searching for Search Algorithms: Experiments in Meta-search

Brian J. Ross
Technical Report # CS-02-23
December 2002

Submitted for publication.

Brock University
Department of Computer Science
St. Catharines, Ontario
Canada L2S 3A1
www.cosc.brocku.ca

Searching for Search Algorithms: Experiments

in Meta-search

Brian J. Ross

Brock University, Department of Computer Science, St. Catharines, ON, Canada
L2S 3A1

Abstract

The conventional approach to solving optimization and search problems is to ap-
ply a variety of search algorithms to the problem at hand, in order to discover a
technique that is well-adapted to the search space being explored. This paper in-
vestigates an alternative approach, in which search algorithms are automatically
synthesized for particular optimization problem instances. A language composed of
potentially useful basic search primitives is derived. This search language is then
used with genetic programming to derive search algorithms. The genetic program-
ming system evaluates the fitness of each search algorithm by applying it to a
binary-encoded optimization problem (Traveling Salesman), and measuring the rel-
ative performance of that algorithm in finding a solution to the problem. It is
shown that the evolved search algorithms often display consistent characteristics
with respect to the corresponding problem instance to which they are applied. For
example, some problem instances are best suited to hill-climbing, while others are
better adapted to conventional genetic algorithms. As is to be expected, the search
algorithm derived is strongly dependent the scale and representation of the problem
explored, the amount of computational effort allotted to the overall search, and the
search primitives available for the algorithm. Additionally, some insights are gained
into issues of genetic algorithm search. A novel “memetic crossover” operator was
evolved during the course of this research.

Key words: Meta-search, Heuristics, Genetic Algorithms, Genetic Programming
PACS:

Email address: bross@cosc.brocku.ca (Brian J. Ross).
URL: http://www.cosc.brocku.ca/ bross/ (Brian J. Ross).

Preprint submitted to Elsevier Science 6 December 2002

1 Introduction

One important and practical contribution of artificial intelligence research to
computer science is the notion of search[11]. Any introductory AI textbook
will devote a number of chapters to search techniques, from general search
notions such as blind and heuristic search, to more advanced paradigms such
as minimax, evolutionary algorithms, tabu, simulated annealing, and neural
network training [19][14]. The challenge in using search to solve a problem is
to find the most effective strategy for a particular problem at hand. Different
search algorithms tend to show different performance characteristics for dif-
ferent problems. The selection of an appropriate algorithm, and fine-tuning its
parameters, often depends on the practisioner’s experience with the problem
being analyzed.

This paper proposes a novel approach for finding an effective search strategy
for a given problem instance. Using genetic programming, we evolve search al-
gorithms for specific instances of optimization problems. This is an instance of
meta–evolution: (i) at the top meta–level, we are evolving search algorithms;
(ii) at level two, each search algorithm is applied to a problem instance, to
search for a solution for that problem. The meta-level search algorithm lan-
guage is composed of various primitives useful in a search algorithm context.
Primitives include operators for selection, alteration, and replacement of mem-
bers of the search set. A candidate search algorithm is executed upon the level
2 optimization problem. The search algorithm is repeatedly applied to the
problem until a solution of acceptable quality is found, or a maximum num-
ber of iterations is reached. The genetic programming procedure evaluates the
fitness of a search algorithm by inspecting the best solution in the set of level
2 candidate solutions.

There are a number of motivations for this research. Firstly, the plethora of
search algorithms found in the literature are all instances of computer pro-
grams. A practical way to describe a search technique, and contrast it to
another, is via code in a programming language. For example, a hill-climber,
beam search, random search, and genetic algorithm are definable by appro-
priate programming code. It is interesting to consider whether such search
algorithms might be automatically synthesized. More importantly, can effec-
tive algorithms be synthesized for particular instances of search problems?
Hence, this level of meta-search differs from most work in meta-heuristics, in
that an entire algorithm is sought, rather than a parameter vector of search
heuristics.

Another motivation of this work is to gain some insight into the interrelation-
ships of the methods used within search algorithms, and how they relate to
the problems to which they are applied. The success of a search strategies

2

for solving a problem is strongly dependent upon the ability of the search to
exploit regularities of the problem at hand. The search algorithms evolved in
this paper can usually be rationalized by examining how their primitive struc-
tures correspond to the characteristics of the problem they are being applied
upon.

Some background issues regarding search and meta-search are discussed in
Section 2. Section 3 describes the experimental design used in this research.
A variation of the Travelling Salesman problem is described, and the genetic
programming system is outlined in detail. A summary of the main experiments
undertaken is given. The results of the experiments are reported in Section 4,
and further analysis is given in Section 5. Section 6 summarizes the paper.

2 Background

Search is an intrinsic means by which computers can find solutions to prob-
lems. For problems with small search spaces, search can be an effective way
to obtain a solution, especially when a known search algorithm can be used.
This means that one can avoid writing a new algorithm specially designed for
the problem of concern. Search is also a useful means for finding solutions for
problems that are lacking efficient algorithmic solutions. Many NP-complete
problems fall into this category. Although search does not solve intractable,
complex problems, in many cases it will find “acceptable quality solutions” –
and often much better than what is possible with enumeration.

A conventional approach to solving a given search or optimization problem is
to apply a suite of search algorithms and parameterizations, and perform a
comparative empirical analysis of the results [18]. Intuitively, if a particular
search algorithm shows considerably better results, that search algorithm can
be said to be more naturally adapted to the fitness landscape defined by the
search space of the problem – at least in comparison to the alternative search
techniques tested.

The need for exploring a variety of search techniques for a problem stems
from the basic fact that, for most problems of interest, search is difficult. The
No Free Lunch (NFL) theorem by Wolpert and Macready states that, over
the space of all search problems, no search algorithm is superior over ran-
dom search or enumeration[20]. Similar results have been shown for optimiza-
tion problems [21]. Although the NFL theorem is theoretically irrefutable, a
counter-argument to its implications is that the space of all search problems is
of little interest. Rather, real-world problems of concern to most people have
structure and regularities, and define explorable, if not challenging, search
spaces.

3

In restating the NFL theorem for evolutionary computation, Culberson also
points out that the implications of computational complexity theory are even
stronger than the NFL theorem [2]. NP-complete and other intractable prob-
lems have structures that are totally well-defined. This structure cannot be
exploited by search – or any known algorithm – in solving NP-complete prob-
lems. Nevertheless, intractable problems (such as the famous Travelling Sales-
man Problem used in this paper) are often applied as test problems for search
algorithms and other soft computing techniques. Although a solution to such
problems will not be forthcoming in most instances, we are often interested in
obtaining reasonable solutions to known cases. This is a motivation for work
in the soft computing field, in which heuristic methods are used for finding
approximate solutions to difficult problems. Thus, search algorithms can be ex-
tremely practical for finding good answers to difficult (intractable) problems.
The challenge, however, is finding a good search algorithm for the problem at
hand.

The use of meta-heuristics for search is an attempt to automate the discovery
for useful search algorithm paradigms and parameterizations. Within genetic
algorithms, one approach is to include search parameters within the search
problem representation, and let the search mechanism find a useful parameter
configuration for a problem. This is called self-adaptation in genetic algorithm
work. A typical example is the work of Fogarty [4], in which mutation rates
adapt during the run. Liang, Yao and Newton discuss the self-adaptation
of step sizes as used in evoltionary algorithms [10]. Ombuki, Nakamura and
Onaga in applying a genetic algorithm towards the NP-complete Job Shop
Scheduling problem [13]. In their gkGA algorithm, three different heuristic
strategies for resolving deadlocks in scheduling solutions are encoded in the
chromosome. These strategies are subject to the same evolution effects as the
rest of the problem representation. They show that better overall performance
is obtained by permitting the the search algorithm to discover the appropriate
deadlock heuristic.

Meta-search or meta-evolution has also been studied in the context of genetic
programming, and usually in regards to evolving new variation operators.
Teller uses co-evolution to generate reproduction operators to be used by a
main program population evolving in parallel [17]. Angeline [1], and Iba and
de Garis [7], use self-adaptation to evolve crossover operators that adapt to
programs during the run. Edmonds investigates the co-evolution of variation
operators such as crossover [3]. In all these papers, meta-evolution of variation
operators that adapts to the particular problem at hand is conducive to better
performance, when compared to the use of generic operators.

Perhaps the most ambitious example yet of meta-search is the work by Spec-
tor and Robinson [15]. They apply genetic programming to a stack-based lan-
guage, in which programs have the ability to access and process themselves.

4

One goal of that research is to investigate whether evolutionary behaviour
itself can be evolved.

3 Experiment

The remainder of the paper uses the following terminology to describe the
search algorithms that are being evolved by the genetic programming system.
We wish to use these generic terms to describe search algorithms, in order
to remove any apparent terminological bias when describing the algorithms
evolved by genetic programming.

• search space: The universe of solutions to some problem of interest.
• individual: A single point in the search space that is currently known by

the search algorithm. Synonyms include state, point, candidate solution, or
hypothesis.
• representation: This is the denotation of the search space for a particular

problem of interest. Individuals are encoded using the representation for the
problem. The representation is called a chromosome or genotype in genetic
algorithms.
• search set: This is the finite set of individuals currently under investigation

by a search algorithm. This search set is called the population in genetic
algorithms.
• variation operator: This is an operator which, when given an individual

encoded with some representation, creates a variation of that individual.
Synonyms include next-state operators and reproduction operators.
• score: This is a measurement of the relative merit or quality of an individ-

ual. A score is obtained by applying a problem domain-specific objective
function or evaluation function to an individual. A score is called the fitness
in evolutionary computation.

For convenience, we will borrow a few genetic algorithm terms, such as “par-
ents” and “offspring”, when discussing crossover variation operators.

3.1 Travelling Salesman Problem

The NP-complete Travelling Salesman Problem (TSP) is used as a test prob-
lem for all the experiments in this paper [5,6]. It can be informally described
as follows: Given a graph of nodes and edges, what is the minimum distance
of the path that starts at an initial node, visits each node once, and returns to
the initial node? The TSP variant used here uses the following conventions: (i)
the nodes lay on either a 4-by-4 or 8-by-8 grid; (ii) the nodes are maximally

5

Fig. 1. 4x4 TSP: (a) grid; (b) erroneous path; (c) one solution path.

connected (ie. there is an edge between each node and every other node in
the graph); and (iii) the distance between horizontally and vertically adjacent
nodes is 1. Figure 1 shows a 4-by-4 grid, a non-optimal and erroneous path,
and a solution path (length 16). Each city in the grid is given a numeric label,
from 0 to 15 (or 63 for the 8x8 grid).

The TSP has been a traditional “lab rat” for heuristic search experiments,
as it is an excellent problem for studying the relationship between problem
representation and search performance [16]. We use two well-known binary
representations for the TSP. The representations for the 4-by-4 grid are as
follows; the 8-by-8 representations are similar.

• Direct: The representation uses a 64-bit string. Each contiguous 4-bit field
denotes a city label, from 0 to 15. A path is decoded by reading the city
label fields left-to-right along the bit string.
• Indexed: The representation uses a 64-bit string. Each contiguous 4-bit field

denotes an index or jump interval. A path is decoded as follows. A list of
unvisited cities is first composed. A list pointer into the list is set to the first
city in the list. The first jump index K1 is read from the left of the string.
Starting at the list pointer, the K1 city down from the list pointer is found
(the city at the top of the list is at K=0), added to the path, and removed
from the unvisited list. The following K2 index is read, the K2 city from
the current list pointer is added to the path and removed from the list. If
at any time the list pointer goes beyond the end of the list, it is set to the
start. This continues until all the cities have been visited.

With respect to genetic algorithms, the indexed representation performs much
better than the direct one. One reason is because the direct representation,
albeit simple, does not guarantee the denotation of a legal TSP path. The
list of city labels within the representation can contain duplicate cities, which
are illegal in the definition of the TSP. For every duplicate city, there will

6

I ::= Select | Replace | Growth | Variation

Select ::= sel rand | sel best | sel worst | sel tourn best(N)

| sel tourn worst(N)

Replace ::= rep rand(I) | rep best(I) | rep worst(I) | rep tourn best(N,I)

| rep tourn worst(N, I)

Growth ::= add rand(I) | add best(I) | add worst(I) | add tourn best(N,I)

| add tourn worst(N, I)

Variation ::= crossover(I,I) | crossover2(I,I) | crossoverN(I,I) | mutate(N,I)

| mutateX(N, I)

N ::= score(I) | iter num | pop size | N Op N | ERC

Op ::= min | max | + | - | / | *

Fig. 2. Search Language Grammar

be a corresponding city missing from the path. Illegal paths can arise during
random population generation, and during reproduction with crossover and
mutation. One solution is to repair the path after random generation or re-
production. We choose to leave illegal paths alone, and penalize them during
their evaluation.

The indirect representation always denotes legal paths. It is also the case that
the genetic algorithm crossover operator works better with the indexed rep-
resentation, due to the fact that it better preserves and transfers information
content between parents to offspring.

3.2 The Search Algorithm Language

A simple search language is now introduced. This language is intended to be
one with which a variety of basic search algorithms might be derived. It is in
no sense a general language, as the only possible useful algorithms derivable
in it are search strategies. It is also not attempting to be comprehensive over
all possible search algorithms.

Before discussing the specifics of the language, a few assumptions about the
search environment must be clarified. In our experiments, individuals are bi-
nary strings denoting TSP paths, as described in Section 3.1. Search programs
use a search set of individuals, which is a finite set of cardinality ≥ 1 from

7

which the search will explore. It is assumed a search set has known minimum
and maximum size bounds. When a search program is executed, it will perform
a single alteration to the search set – either replace an individual in it, or add
an individual to it. Alternatively, a search program might merely return an
individual expression with no alteration to the search set. In this case, we will
either: (i) if the set size is less than the maximum bound, add the individual
to the set; or (ii) if the set size has reached its maximum, replace a random
individual in the set with the expression.

Table 2 shows the full grammar of the search language. We will use subsets of
this grammar during experiments. In the grammar, terms without arguments
are terminals, and the others are functions. Expressions are evaluated with
eager, left–to-right execution of arguments.

Select operators are those used to select an individual from the current search
set of individuals. The select operators include selecting a random individ-
ual, the strongest individual, and the weakest individual, as based on each
individuals current score or distance to a solution. Selection also includes two
tournament selection operators. Sel tourn best performs selection by randomly
selecting N individuals from the search set, and keeping the one with the best
score. The size is calculated from the floating point argument by the following
expression:

tournsize = (mantissa(|Nval|) modulo 6) + 2

wheren Nval is the computed value of the numeric argument expression. This
returns an integer between 2 and 7. Sel tourn worst is similar, except that the
weakest individual in the tournament is selected.

Replacement operators take an individual expression, and replace an existing
search set member with it. Growth operators first try to add their individual
expression argument to the current selection set, so long as the set is smaller
than the maximum bound. If the set has reached its maximum size, the growth
operators revert to replacement operators. The semantics of how individuals
are selected to be replaced are the same as the select operators. However, only
one search set alteration (replacement or growth) is permitted during a single
iterated execution of the program. The last replacement or growth operator
executed during the normal execution order of the program is designated as the
single alteration operation for the program, and earlier replacement or growth
operations are ignored. In addition, the actual expression that is added or
replaces a population member is the final expression discovered by the whole
program during that iteration. Hence, in the following program,

8

(crossover

(rep worst sel best)

(rep tourn best sel best))

the rep tourn best operator is the last one interpreted, and so it will be the
replacement operator for the expression. The individual it will replace into the
search set is the result from the top-level crossover expression.

Variation operators are the basic operators for exploring the search space.
They are essentially “next state” operators that create a new state from a given
position in the search space. We borrow two types of variation operators from
genetic algorithm technology. The mutate operators create random variations
of an individual expression. The mutate operator flips each bit of an argument
expression with a probability P. For example, if the probability is 5%, then
there is a 5% chance that each bit is flipped. The probability is computed from
the argument N by computing the absolute value of its fraction component:

|mantissa(Nval)|

MutateX is similar, except that each bit has a probability P of getting a
random value. In other words, the probability of bit mutation is half that of
mutate.

The crossover operators create a single new individual using two other individ-
uals (“parents”). The crossover operator performs single-point crossover: finds
a random position in a path representation, and swap each portion around the
crossover point between the parents to create offspring. Note that only one
of the two potential offspring is retained and returned as a result. Crossover2
performs 2-point crossover, in which two random crossover points are used to
swap individual substrings. CrossoverN performs N-point crossover. A random
bit mask of the length of the path representation is generated, and the mask
bits determine which bits are swapped or not.

The remaining portion of the language is used for creating numeric expres-
sions. The score operator returns the objective score of its argument expres-
sion. Iter num is the current iteration number of the search execution, and
set size is the size of the current search set. Some standard mathematical and
comparison operators are included. Finally, ERC terminals are ephemeral
random constants [8]. These are randomly initialized numeric constants that
retain their values throughout the lifetime of the genetic programming run.

Some example programs are given in Figure 3. The first program shows one
possible random search strategy: select a random individual, flip half its bits,
and replace a random individual with it. The second program shows one style
of hill-climbing: select the best individual in the search set, randomly flip

9

Random search

rep rand(mutate(0.5, sel rand))

Hill-climbing

rep worst(rep best(mutate(0.5, sel best)))

Annealing

rep worst(rep best(mutate(0.8/iter num, sel best)))

Genetic algorithm

rep tourn worst(3,

mutate(0.05,

crossover(sel tourn best(4), sel tourn best(4))))

No search

rep best(sel worst)

Fig. 3. Example Search Programs

its bits, and replace the worst individual in the search set with the result.
Note that only the first replacement operator (rep best) is used, as the other
is executed earlier, and is hence ignored. The annealing program shows how
mutation is reduced as the iteration steps increase. The genetic algorithm is
a generic one. An offspring is created via crossover with two parents selected
via score-proportional selection. The result is given a slight mutation, and the
result replaces a weak individual in the search set. The final example shows
a nonsensical algorithm that is possible in the search language. This search
stagnates on the weakest individual in the search space currently visited.

3.3 Evaluation of Search Algorithms

A candidate search program is evaluated as follows. A random initial search
space for a given problem of interest is randomly generated. This is performed
once per genetic programming generation, and therefore all search algorithms
will be evaluated on the same initial search set. The program is iterated on the

10

problem set up to a maximum iteration limit. The score of the best TSP path
in the search set is used as the fitness of the search algorithm. Note that the
alternate strategy of using the mean score of the entire search set is unwise,
because search programs will try to repeatedly clone the fittest TSP paths in
the search set, in an attempt to boost their overall fitness.

The score of a TSP path depends on whether the direct or indexed repre-
sentation is used. The direct representation computes the length of the given
path in the bit string, and subtracts from it the minimum path for that grid
(16 or 64, respectively). It then adds a penalty for missing cities in the path,
adding 5 (for 4x4 grids) or 12 (for 8x8 grids) per missing city. For the indexed
representation, the path length minus the minimum path length is used as the
score.

Preliminary experiments showed that a single search algorithm’s performance
often varies dramatically in different search runs. The nature of heuristic search
means that different initial locations in the search space may produce differ-
ent results, entirely due to random chance. For a fixed problem instance with
randomly initialized data sets X and Y, program A run on X may produce
different results than when run on Y. Additionally, algorithm A can produce
varying results when executed on a single data set X in different runs, due
to the stochastic nature of operators used in the algorithm, such as mutate
and sel tourn best. The most accurate evaluations of search algorithm perfor-
mance requires statistically significant sized test sets. Unfortunately, for even
the simpler TSP problems we investigate, this is impractical within a genetic
programming context. A genetic programming run requires the evaluation of
thousands of programs, and prolonged evaluation of programs makes genetic
programming search too lengthy to perform.

To help address this problem, we perform a more thorough analysis on the
best search algorithm in each genetic programming generation. The best al-
gorithm of each genetic programming generation is tested on five additional
random TSP search sets, and the mean score for the five resulting scores and
the original program score is calculated. The best solution for a genetic pro-
gramming run is designated as the search algorithm that received the best
overall average score during the entire run.

3.4 Genetic Programming Details

The lilGP 1.1 system is used in the experiments[22]. This is a C-based genetic
programming system that implements tree-based genetic programming [8].
Strong typing is used for defining the individual and numeric types in the
search language in Figure 2 [12].

11

GP Parameter Value

Evolution paradigm generational

Max generations 100

Population size 1000

Runs/experiment 10

Initialization ramped half&half

Initial tree depth 2 to 6

Max tree depth 17

Crossover rate 0.95

Mutation rate 0.05

Tournament size, crossover 4

Tournament size, mutation 7

Probability internal mutation 0.10

Probability external mutation 0.90
Table 1
Common genetic program parameters

Table 1 shows the genetic programming parameters used in all experiments.
Most of these parameters are standard in the literature[8]. The initial genetic
programming population is generated using ramped half&half tree generation.
Here, half the trees generated are grow trees, in which a terminal or nontermi-
nal can be randomly selected as the root of each subtree, while the remaining
half are full trees, in which nonterminals are always selected so long as the
tree depth limit is not exceeded. During tree generation, the tree depths are
staggered (or ramped) from depths 2 through 6. The result is a population of
random expressions having a varied distribution of tree shapes. The probabil-
ity of applying crossover is 95%. When applied, parents are selected using a
tournament of size 4. When mutation is used, there is a 90% probability that
tree leaves will be mutated.

Table 2 shows some of the search problem variations investigated. Three gen-
eral sets of experiments are undertaken. Experiment set A restrict the vari-
ation operators to single-point crossover and mutation. No growth operators
are used, and the search set is kept at a constant size of 100. Experiment set
B also restricts the growth operators, and keeps the search set size to 100.
However, the full set of variation operators are possible. Experiment B also
tries various maximum iteration limits on different TSP sizes. Experiment set
C focusses on the effect of growth operators. These experiments begin with
an initial search set of size one.

12

Common parameters

Replacement: all

TSP representations: direct, indexed

TSP sizes: 4x4, 8x8

A: Restricted variation, no growth

Variation ops: crossover, mutate only

Growth: none

Terminals: all except set size

Iteration limit: 1000

Search set size: 100

B: Unrestricted variation, no growth

Variation: all

Growth: none

Terminals: all except set size

Iteration limits: 250, 1000, 3000

Search set size: 100

C: Unrestricted variation, growth

Variation: all

Growth: all

Terminals: all

Iteration limit: 1000

Search set size: min 1, max 100
Table 2
Search experiments

4 Results

The primary interest in our experiments is to analyze the characteristics of
evolved search algorithms for different TSP variations. In order to perform an
analysis of the search algorithms, some post-processing of the results had to

13

Table 3
Summary of algorithms

Best soln Hill- Memetic

Experiment fitness climbing Annealing GA crossover

A direct 4x4 8.27 5 2 - 3

direct 8x8 177.13 6 4 - -

indexed 4x4 2.65 - - - 10

indexed 8x8 114.68 - - - 10

B direct 4x4 250 9.88 4 - - 6

direct 4x4 1000 8.25 - - 1 9

direct 4x4 3000 5.26 - - - 10

direct 8x8 1000 172.22 2 4 3 1

indexed 4x4 250 4.72 - - 1 9

indexed 4x4 1000 2.72 - - - 10

indexed 4x4 3000 1.39 - - - 10

indexed 8x8 1000 101.75 - - - 10

C direct 4x4 8.51 4 - 6 -

direct 8x8 178.48 1 8 1 -

indexed 4x4 3.46 - - 4 6

indexed 8x8 122.67 - - 2 8

be undertaken:

(1) The best individual in each run was identified via the average score over
6 separate TSP data sets (see Section 3.3).

(2) The solutions from step 1 were simplified, by hand-editing them to remove
dead code (program bloat).

(3) Frequency counts of program operators were then obtained from the sim-
plified programs.

An overview of the results is in Table 3. The summary identifies 4 broad cat-
egories of search algorithms identified in the results (10 runs per experiment).
The following broad categories are used to classify search algorithms:

• Hill-climbing: mutation operators are exclusively used, and they are used
expressly on the best individual in the search set (sel best).
• Annealing: similar to hill-climbing, except that the mutation rate diminishes

as the search proceeds. The rate is usually inversely proportion to the itera-

14

tion step or search set size (in terms of the growth experiments in C). This
is similar to the reduction of mutation rates used in simulated annealing.
• GA: no more than 2 crossover operators are used, possibly in combination

with mutation. With the single search set used in our searches, this would
be a steady-state genetic algorithm.
• Memetic crossover: 3 or more crossover operators are used, possibly in com-

bination with mutation. The use of multiple crossovers from the search set is
akin to a memetic search [9], in which a number of individuals in the search
set contribute information to the next individual created. Repeated intro-
duction of new information by multiple individuals via crossover has the
statistical effect of introducing many instances of useful new information,
while simultaneously correcting erroneous or poor information obtained by
some.

We use the above classification labels fairly loosely; for example, annealing al-
ludes to the reduction of mutation rate found in simulated annealing searches.
Note that there are possibly other specialized variants of these general algo-
rithm categories, but they were not analyzed nor tabulated.

Some general trends in Table 3 are clearly seen. As expected, the scores for
the 4x4 TSP grids are lower than the more difficult 8x8 grids. The indexed
representations outperform the direct representation. In experiment set B,
permitting the search algorithms higher iteration limits results in better per-
formance.

Definite patterns are evident in the distribution of evolved algorithms. In all
the experiments, the indexed representations are biased towards crossover-
based search strategies (GA, memetic), while direct representations favour
mutation-based search strategies (hill-climbing, annealing). This is due to the
fact that the indexed representations retain structure, whereas the direct rep-
resentation is prone to noise and error. This implies that mutation will be more
productive on the direct representation, and crossover is more productive on
indexed paths. The non-growth experiments (A, B) tended to avoid GA-style
search, with one exception being with direct 8x8. The growth experiments
(C), however, favoured GA-style search in 3 of the 4 experiments.

It is interesting to note that whenever mutation is used as the exclusive vari-
ation operator (hill-climbing or annealing), it always uses the selection of the
best individual in the search set. No mutation-based algorithms were evolved
that used tournament or random selection of the next search state to ex-
plore. On the other hand, it was found that programs that favoured the use
of crossover also tended to use tournament selection.

Whenever mutation was used in experiment A and B, the rates were usually
very low (less than 5%). An exception was that very high rates (95This had

15

Table 4
Variation operator distribution in experiment B runs

Direct Indexed

Incidence Program Incidence Program

Experiment Operator avg freq avg freq

4x4 250 mut 0.56 0.5 0.15 0.5

mut/i - - - -

mutX 0.49 0.6 0.23 0.5

mutX/i 0.13 0.1 - -

cross 0.13 0.5 0.38 1.0

cross2 0.25 0.5 0.30 1.0

crossN 0.37 0.6 0.20 0.8

4x4 3000 mut 0.09 0.4 0.15 0.7

mut/i - - 0.14 0.1

mutX 0.17 0.9 0.11 0.6

mutX/i - - - -

cross 0.19 0.9 0.35 1.0

cross2 0.41 0.9 0.34 1.0

crossN 0.30 0.9 0.21 0.6

8x8 1000 mut 0.64 0.2 - -

mut/i 0.69 0.5 0.05 0.1

mutX 0.51 0.7 - -

mutX/i - - 0.06 0.1

cross 0.14 0.1 0.49 1.0

cross2 0.33 0.1 0.45 1.0

crossN 0.40 0.3 0.11 0.5

the effect of flipping the path within the representation, and thus preserving
inherent information. The experiment C runs usually required more significant
mutation rates, which is necessary in order to grow the search set from the
initial set of a single individual.

Some further analysis of the distribution of variation operators found in some
experiment B runs is given in Table 4. The operators listed include all the
variation operators. The mut/i and mutX/i are annealing mutation operations:

16

(add_tourn_worst 2

(crossover2

(crossover

(crossover

(sel_tourn_best 2)

(mutate 0.48448

(mutateX (/ (+ set_size 0.55210)

(- set_size 0.06402))

(crossover2

(crossoverN sel_best sel_worst)

sel_rand))))

(sel_tourn_best 2))

(mutateX (/ 0.33870 iter_num) sel_best)))

Fig. 4. Example annealing search solution: experiment C (growth), 8x8 indexed

those whose mutation rates decrease as the search proceeds. Incidence average
is a measure that answers the question: if an operator is found in a program,
how often is it used? It can be thought of as an “operator density” measure,
which is averaged over all 10 solutions per experiment. The program frequency
column refers to the proportion of solutions within which the operator can
be found. Multiplying the incidence average and program frequency values
together gives the total frequency of the operator within the entire set of runs
for that experiment.

Looking at this table, one result is that in all the indexed representations,
N-point crossover is used less frequently than 1-point and 2-point crossover.
This is likely due to the fact that the N-point crossover is overly destructive of
information structures encoded in the indexed path representations. The op-
posite holds for the direct representation. With this noisier, more error-prone
representation of paths, N-point crossover behaves more like a mutation op-
erator. This is especially evident in the direct 8x8 case, whose runs strongly
favour mutation. Another observation is that, when mutation is used in the
indexed runs, it plays a minor role compared to the crossover operators, and
is negligible in the 8x8 indexed runs. Finally crossover becomes more preva-
lent in the 4x4 3000-iteration direct runs than the 4x4 250-iteration direct.
This suggests that crossover variation has more opportunity to explore useful
patterns when more iterations are permitted in the search.

The growth runs in C were performed in order to see what general styles of
search might evolve for search sets consisting of a single random individual.
It was found that annealing-style mutation was negligible in the 4x4 grid, but
more prevalent in the 8x8. Crossover was also fairly rare in the 8x8 direct so-
lutions. The indexed 8x8 solutions, however, showed a fairly even distribution
of the full set of variation operators. An example (simplified) solution from
an 8x8 index run is shown in Figure 4. The program uses a cross-section of

17

different variation operators, including an annealing mutation (the second mu-
tateX expression). Note the high rate of mutation (48%). A variety of selection
operators are used as well.

5 Discussion

Parameter Value

Search set size 100

Runs/experiment 10

Replacement tournament worst

Tournament size 2

Mutation rate 0.03

Annealing rate 0.9/iteration
Table 5
Common reference run parameters

Fig. 5. Fitness performance comparison

As seen in Section 4, different styles of search algorithms were consistently de-
rived for different search problems. To verify that search algorithms obtained
are sensible for the problems used, some reference runs were done for a se-
lect sample of experiments, using some hand-coded search strategies. Some of
the common parameters for these reference runs are shown in Table 5. The
cross× 6 searches is the following memetic crossover structure:

(crossover

18

Variation Max Evolved

TSP operator iteration Selection Score algorithms

direct 8x8 mut 1000 best 288.6

mut/i 1000 best ?206.8

cross×6 1000 best, tourn 366.6 6 hill-climb,

mut 1000 tourn 314.7 4 annealing

mut/i 1000 tourn 275.5

cross×6 1000 tourn 331.0

indexed 8x8 mut 1000 best 148.0

mut/i 1000 best 140.2

cross×6 1000 best, tourn 154.0 10 memetic

mut 1000 tourn 142.4

mut/i 1000 tourn 136.8

cross×6 1000 tourn ?129.4

direct 4x4 mut 3000 best 9.9

cross2×6 3000 best, tourn 20.0

cross2×6 mut×2 3000 best, tourn 11.4 10 memetic

mut 3000 tourn 9.2

cross2×6 3000 tourn 11.6

cross2×6 mut×2 3000 tourn ?7.9

indexed 8x8 cross2 1000 tourn 147.4

cross2×6 1000 tourn ?115.8 10 memetic

crossN 1000 tourn 158.7
Table 6
Reference run results

(crossover

(crossover S S)

(crossover S S))

(crossover

(crossover S S)

(crossover S S)))

where S is a selection operator. The cross2× 6 mut× 2 uses this expression:

19

(crossover2

(crossover2

(mutate 0.03

(crossover2 S S))

(crossover2 S S))

(crossover2

(mutate 0.03

(crossover2 S S))

(crossover2 S S)))

Also, note that applying a crossover to the same individual, as would be ob-
tained with sel best, results in no variation of that individual. Hence some
runs combined sel best with sel tourn best in order to obtain the possibility of
creating variation.

Results of the reference runs are shown in Table 6. The score column refers to
the average of the objective scores of the best solution over 10 runs. The single
best result in each experiment is marked with a star. The evolved algorithms
column recaps the information from Table 3. All these reference runs con-
firm that the style of search algorithm evolved is consistent with the relative
performance of the search algorithm compared to other possibilities.

Table 6 highlights some pertinent points about the search strategies tested.
Firstly, crossover-style variation operators do not perform well with hill-climbing
selection (sel best). Rather, crossover requires variability with the parent struc-
tures, and this is best done with probabilistic selection as done with tourna-
ment selection, or even with random selection (as was seen in many evolved
algorithms). The mixture of mutation with crossover was found to be ideal in
this regard, as can be seen by the better performance of the mixed crossover
and mutation runs in the direct 4x4 experiment. As was evident in most
evolved algorithms, crossover and mutation were often used together.

The indexed 8x8 runs highlight the fact that memetic crossover is a much more
powerful reproduction operator than simple 2-parent crossover. Furthermore,
contrary to intuition, memetic crossover is not equivalent to N-point crossover.
The ability of memetic crossover to combine representation information from
a wide variety of individuals in the search set is a decidedly powerful strategy.
This can be seen in the performance graph in Figure 5, which is obtained by
averaging the best scores obtained each generation during the reference runs.
Note, however, that there is computational overhead involved in the memetic
crossover, and this may be an issue in determining its practicality.

20

6 Conclusion

This research shows that search strategies are automatically derivable for
search problems at the algorithmic level. Search algorithms for a variety of
structured and unstructured TSP problems of varying complexity were evolved
using genetic programming. Some analyses showed that the algorithms ob-
tained were consistent with empirical performance of known search strategies
for these problems.

There are a number of aspects of this research under continued investigation.
The first issue is the degree of bias caused by the search language used. The
language introduced in Section 3.2 is of limited scope and robustness, and is
not intended to denote a large variety of search paradigms. The use of a fixed
search set that can only grow greatly restricts the kinds of algorithms possible.
The lack of more advanced data structures, such as stacks, is also limiting.
Further work is under way to expand the generality of the search language. In
particular, primitives are being written to enable tabu-style search.

Another bias in the implementation of the language is the set of primitives
implemented, which are borrowed primarily from genetic algorithms. There are
an enormous variety of variation operators in the literature. A more general
language would include a larger set of such operators. Ideally, the details of
the operators should themselves be evolvable, as done in [].

The genetic programming paradigm itself contributed some bias to the styles
of algorithms obtained. Program bloat (intron, dead code) was prevalent in
many runs. This was largely a result of the way the replacement and growth
operators were implemented. For example, since only the final replacement
operator would have an actual effect in the iteration step, the earlier repla-
ment operators can grown unfettered without affecting the overall result. Al-
though sensible algorithms were nevertheless evolved, being able to restrict
bloat would result in better performance overall in the search for algorithms.
Bloat can also favour certain search operators over others. An expression like
(rep tourn worst E F) is more likely to survive reproductive alteration than
one like (rep worst F). This is because the tournament size term E in the
first expression can grow very large, and hence protect the parent node from
destruction. The rep worst term does not have this genetic insurance policy.

By necessity, the search problems explored in our experiments were of limited
complexity. The results we obtained in Sections 4 and 5 are limited by factors
such as search set size, maximum iteration limit, and grid size. Therefore, these
experimental decisions create a search horizon, and the results we obtained are
valid for the extent of search accordingly undertaken. This point is important,
as the analysis of the relative performance of various search algorithms in

21

Table 6 might be influenced by these experimental parameterizations. For
example, our chosen maximum iteration limit of 1000 on a search set of 100
would be a very weak choice of parameters for a vanilla genetic algorithm run
– it is equivalent to a mere 10 generations. More typically, a population of
500 might be run for 100 generations or more. The long-term performance
characteristics of hill-climbing, annealing, or memetic crossover search on this
extended search experiment might differ dramatically. Likewise, very different
styles of search algorithms would likely evolve if such changes in parameters
were influential.

This work contributes to the body of work in meta-heuristics and meta-
evolution. One paper that inspired this research is that of Spector and Robin-
son, and their autoconstructive evolution experiments [15]. In that paper, they
lay the foundation for evolving evolutionary operators and other behaviours,
from the Push language – a general purpose stack-based language. Evolving
evolutionary search from such a basic language is a much more ambitious goal
that the evolution of search algorithms from higher-level search primitives. It
is interesting to consider whether some level of abstraction between these two
levels of meta-evolution might produce novel and powerful search paradigms
heretofore unknown in the literature. For example, a more general-purpose
search language might permit the synthesis of more complex problem-specific
search strategies that coalesce the evalation function and variation operations.
One might imagine giving the search language operators more details about
the problem representation structure, and permitting the operators to com-
pute a finer-resolution measurement of partial fitness. Such information could
be used to derive much more effective search strategies, than is possible when
fitness is evaluated as one monolithic value for an entire candidate solution,
as is done in this paper.

Acknowledgement: This research is supported by NSERC Operating Grant
138467-1998.

References

[1] P.J. Angeline. Two Self-Adaptive Crossover Operators for Genetic
Programming. In P.J. Angeline and K.E. Kinnear, editors, Advances in Genetic
Programming II, pages 89–110. MIT Press, 1996.

[2] J.C. Culberson. On the Futility of Blind Search: An Algorithmic View of ’No
Free Lunch’. Evolutionary Computation, 6(2):109–127, 1998.

[3] B. Edmonds. Meta-Genetic Programming: Co-evolving the Operators of
Variation. Electrik, 9:13–29, 2001.

22

[4] T.C. Fogarty. Varying the Probability of Mutation in the Genetic Algorithm. In
J. Shaffer, editor, Proceedings of the Third International Conference on Genetic
Algorithms, pages 104–109. Morgan Kaufmann, 1989.

[5] M.R. Garey and D.S. Johnson. Computers and Intractability. W.H. Freeman,
New York, 1979.

[6] G. Gutin and A.P. Punnen. Traveling Salesman Problem and Its Variations.
Kluwer Academic Publishers, 2002.

[7] H. Iba and H. de Garis. Extending Genetic Programming with Recombinative
Guidance. In P.J. Angeline and K.E. Kinnear, editors, Advances in Genetic
Programming II, pages 69–88. MIT Press, 1996.

[8] J.R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, 1992.

[9] N. Krasnogor. Studies on the Theory and Design Space of Memetic Algorithms.
PhD thesis, Faculty of Computing, Engineering and Mathematical Sciences,
University of the West of England, Bristol, 2002.

[10] K. H. Liang, X. Yao, and C. S. Newton. Adapting self-adaptive
parameters in evolutionary algorithms. Applied Intelligence, 15(3):171–180,
November/December 2001.

[11] Z. Michalewicz and D.B. Fogel. How to Solve It: Modern Heuristics. Springer
Verlag, 2002.

[12] D.J. Montana. Strongly Typed Genetic Programming. Evolutionary
Computation, 3(2):199–230, 1995.

[13] B.M. Ombuki, M. Nakamura, and K. Onaga. An Evolutionary Scheduling
Scheme Based on gkGA Approach to the Job Shop Scheduling Problem. IEICE
Trans. Fundamentals, E81-A(6):1063–1071, June 1998.

[14] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall, 1995.

[15] L. Spector and A. Robinson. Genetic Programming and Autoconstructive
Evolution with the Push Programming Language. Genetic Programming and
Evolvable Machines, 3(1):7–40, March 2002.

[16] H. Tamaki, H. Kita, N. Shimizu, K. Maekawa, and Y. Nishikawa. A Comparison
Study of Genetic Codings for the Traveling Salesman Problem. In Proceedings
of the First IEEE Conference on Evolutionary Computation, pages 1–6. IEEE
Press, June 1994.

[17] A. Teller. Evolving Programmers: the Co-evolution of Intelligent Recombination
Operators. In P. Angeline and K.E. Kinnear, editors, Advances in Genetic
Programming II, pages 45–68. MIT Press, 1996.

23

[18] J.L. Wallis and S.K. Houghten. Comparative Study of Search Techniques
Applied to the Minimum Distance Problem of BCH Codes. In Proceedings
6th IASTED International Conference on Artificial Intelligence and Soft
Computing, pages 164–169, Banff, Alberta, July 2002.

[19] P. H. Winston. Artificial Intelligence. Addison Wesley, 1992.

[20] D.H. Wolpert and W.G. Macready. No Free Lunch Theorems for Search.
Technical Report SFI-TR-95-02-010, The Santa Fe Institute, February 1996.

[21] D.H. Wolpert and W.G. Macready. No Free Lunch Theorems for Optimization.
IEEE Transactions on Evolutionary Computation, 1(1):67–82, 1997.

[22] D. Zongker and B. Punch. lil-gp 1.0 User’s Manual. Dept. of Computer Science,
Michigan State University, 1995.

24

