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Abstract This paper investigates the application of evolutionary mul-
tiobjective optimization to two-dimensional procedural texture evolution.
Genetic programming is used to evolve procedural texture formulae. Ear-
lier work used multiple feature tests during fitness evaluation to rate how
closely a candidate texture matches visual characteristics of a target tex-
ture image. These feature test scores were combined into an overall fitness
score using a weighted sum. This paper extends this research by replac-
ing the weighted sum with a Pareto ranking scheme, which preserves the
independence of feature tests during fitness evaluation. Three experi-
ments were performed: a pure Pareto ranking scheme, and two Pareto
experiments enhanced with population divergence strategies. One diver-
gence strategy scores individuals using their nearest-neighbour distance
in feature-space. Another scheme uses a normalized, ranked measurement
of nearest neighbour distance. A result of this work is that acceptable
textures can be evolved much more efficiently with MOP evolution than
compared to the weighted sum approach done earlier. The ability to cre-
ate a diverse selection of Pareto solutions is advantageous in this problem
domain, since the acceptability of a final texture is ultimately a subjec-
tive, aesthetic decision by the user.

Keywords Procedural Textures, Computer Graphics, Genetic Pro-
gramming.
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§1 INTRODUCTION
Procedural textures are used in computer graphics to produce a variety

of photo-realistic effects, such as stone, wood, clouds, and other natural and
unnatural phenomena 17, 1). The successful engineering of new procedural tex-
tures that display desired visual effects requires extensive mathematical insight
and analytical modelling. This means that procedural texture design is techni-
cally difficult and unintuitive for most users. Consequently, a number of texture
exploration tools based on evolutionary computation have been devised. Evolu-
tionary computation can often excel in efficiently exploring a large search space.
Most of these texture evolution systems are interactive, and rely on the user to
be the judge of texture fitness and suitability to guide the direction of evolution.
A few texture evolution systems used unsupervised evolution 7, 18). These sys-
tems replace the user with a conventional fitness evaluator, in which candidate
textures are scored via a number of image analyses routines, in an attempt to
find a match with the features from a “target” texture image. Although rudi-
mentary in their scope, a combination of feature tests usually gives satisfactory
results. The reconciliation of independent feature tests by the fitness function,
however, is difficult to do effectively. Furthermore, effective evolution in these
systems also requires extensive computational effort.

This paper addresses the texture evolution problem by considering it
to be an instance of a multiobjective optimization problem or MOP 2, 16). MOP
is characterized by a set of distinct features, in which different combinations
of these features result in optimized results. We use Goldberg’s Pareto fitness
ranking strategy, which considers the fitness space to be a stratification of ranks
3). The top rank represents a set of solutions that is not dominated or improved
upon by any other solution in the population. The value of Pareto optimization
in the texture evolution problem is that it circumvents the need to reconcile inde-
pendent feature tests. Each feature test is retained as an independent dimension
of a vidual characteristic of a texture, and no single feature will dominate any
others during the run. Along with a pure Pareto ranking scheme, a couple of
diversity promoting strategies were used. The end result is that textures are
evolved with the Pareto fitness strategy that are competitive with the original
Gentropy results, but are obtained significantly more efficiently.

Section 2.2 discusses the use of evolutionary computation in texture gen-
eration, and overviews the texture feature tests used in our experiments. Section
3 discusses multiobjective optimization, and the Pareto and diversification algo-
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rgb(mod(turbflow(Y,X,X), sin(X)),
lum(marble(0.94, -0.78, (-0.46,0.50,-0.63))),
turb(chn(COLGRAD), cos(-0.24)))

Fig. 1 Formula and texture

rithms. Details about the genetic programming experiments are given in Section
4. Some results are shown in Section 5. A discussion and directions for future
research conclude the paper in Section 6.

§2 Automatic Texture Evolution

2.1 Procedural textures
Textures help create photorealism in computer graphics 17, 1). The most

common textures are procedural textures and bitmapped textures. Procedural
textures are computed via algorithms and mathematical formulae. They take
as input a coordinate or pixel location in 2D- or 3D-space, and compute a cor-
responding pixel colour, in terms of an RGB (red, green, blue) triple. Bitmap
textures wrap or tile a bitmap image onto an object surface. Procedural textures
have a number of advantages over bitmap textures. Procedural textures can be
applied seamlessly over 3D objects, whereas bitmaps tend to produce seams,
stretch marks, and tiling artifacts. Procedural textures faithfully simulate a
variety of natural phenomenon, including stone, cloud, wood, and landscaping
effects. Their mathematical nature makes them extremely robust, as there are
an infinite variety of equations conceivable, all yielding new, unique effects. Due
to their mathematical nature, it is extremely difficult to write a procedural tex-
ture formula from scratch that will produce an arbitrary desired graphical effect.
With a bitmap texture, however, one merely needs to scan an image of the de-
sired texture effect. Most applications therefore store a library of parameterized
procedural textures for known effects, which the user can tailor as desired.

Figure 1 shows a texture formula and its corresponding texture.

2.2 Texture evolution
The use of evolutionary computation is well established as a means for
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searching the infinite space of procedural texture formulae 10). Genetic algo-
rithms are well-adapted to this task, as the abstract concept of chromosomal
“building block” seems to correlate well with the visual characteristics found
within terms of a texture formula. Texture formulae can be implemented as
tree–based programs, which can then be subjected to crossover and mutation
operators as used in genetic programming. Most texture evolution systems are
interactive, and rely on a human being to perform fitness selection on candidate
textures. This overcomes the complexity of automatic texture evaluation. A
combination of user-directed selection, mutation and refinement lets these sys-
tems converge on a texture formula that satisfies some aesthetic requirements.

A few systems, such as Genshade 7) and Gentropy 18), perform automatic
texture analyses. A fitness function tests how closely a candidate texture shares
colours, patterns, and other features with a target texture. These feature tests
perform fairly basic image analyses, since it is a practical necessity that fast
and efficient tests be used in an evolutionary environment. The most accurate
analyses of images would use sophisticated computer vision technology, which is
too slow to be practical, and an open research problem anyway.

The Genshade system evolves Renderman shaders 7). Chromosomes take
the form of directed acyclic graphs, which are akin to the S-expression trees used
in conventional genetic programming 8). Nodes of these graphs are references to
Renderman shader primitives, which are high-level texture generation functions
15). Genshade applies lumination, colour, and wavelet analyses to candidate tex-
tures, and attempts to match these scores with counterpart analyses performed
on target textures. Multiple parallel populations are used, to promote genetic
diversity. Genshade can be run in automatic or interactive modes.

Gentropy uses strictly automatic texture evolution18). Unlike Genshade’s
high-level texture language, Gentropy uses a lower-level set of texture genera-
tors, such as basic mathematical operators, and noise and turbulence effects. A
suite of different image feature tests is available, ranging from simple pixel-to-
pixel colour matches, to higher-level wavelet shape matching. Although each
feature test by itself is not a satisfactory nor adequate metric for image match-
ing, a combination of different tests often gives impressive results. Nevertheless,
sometimes the most pleasing results are those that do not necessarily have the
highest fitness score. Hence the notion of an “optimal solution” is not entirely
pertinent in this problem domain.

Gentropy’s use of multiple feature tests is effective for automatic texture
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evolution. A straight-forward combination of feature tests, however, often gen-
erates unsatisfactory results. This is because one feature usually dominates the
overall score for the run, resulting in a texture biased towards that particular
feature test. Although this behaviour can be lessened with a strategic weighted
combination of fitness scores, in general this is an unsuitable solution, because it
is intuitively difficult to reconcile independent feature tests with a set of ad hoc
predefined weights. The stochastic nature of genetic algorithms dictates that
one run can differ significantly from another, which a static definition of weights
may be unable to effectively address.

To overcome this problem, Gentropy resorts to the use of an Island-
model genetic algorithm. A network of demes is defined, in which each deme
is dedicated to one or more feature tests, possibly on different target textures.
At the highest level in the deme network, the various results from other demes
are combined into an overall score, using some weighted sum of feature scores.
This differs from Genshade’s parallel model, in which each population uses the
same standard feature tests. Unfortunately, this approach is computationally
expensive, as the combined population size was often over 5000.

2.3 Texture feature tests
Image feature tests evaluate how closely various visual characteristics

of candidate textures match against target textures. These feature tests are
adapted from those used by query by image content systems 13). The Gentropy
system supports a number different feature tests, and any combination of them
can be used within runs. The goal of each test is to act as a heuristic for
matching the image produced by a candidate texture with the target texture, by
measuring how close the candidate image matches the target’s feature of interest.
Except for the most trivial textures, it is unlikely that an evolved texture will
exactly match the target. Hence perfect feature matches are not expected. In
any case, it is not a goal of texture evolution to generate the exact target texture.
Rather, the goal is to evolve a new texture having similar characteristics of the
target. The remainder of this section briefly reviews the feature tests used in
this research. See 18) for more details on feature tests.

Gentropy’s feature tests fall into one of three general categories: colour,
shape, and smoothness (Table 1). These categories are not mutually exclusive.
For example, the CDIR test indirectly evaluates shape and smoothness features
as well, even though colour is the primary characteristic of interest. The colour
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Colour tests Description
CDIR Pixel-by-pixel colour correspondence.
CHISTQ Matches similar colours, position independent.

Shape test Description
WAV Matches wavelet coefficients.

Smoothness test Description
SHIST Matches colour smoothness, position independent.

Table 1 Feature test summary

matching tests evaluate colour characteristics of an image:

1. CDIR (colour direct): This test matches a target and candidate texture
pixel-by-pixel. The distance in RGB colour space between a candidate’s
generated pixel colour and the corresponding target’s pixel colour is
computed. The overall distance is summed for all pixels in the image.

2. CHISTQ (colour histogram quadratic): The image is first quantized, by
rounding colours into coarser ranges. Then a histogram of quantized
colour frequencies is calculated. The histograms for two images are
then compared with one another, and an overall distance between them
is calculated. The term “quadratic” refers to the fact that all the
histogram entries in both images are compared exhaustively with one
another, to determine how close the colours distributions are between
the images. Unlike CDIR, the CHISTQ test is position-independent,
as it does not consider the locations of colours within images.

Shape tests evaluate pattern and edge correspondences:

1. WAV (wavelet): This performs a wavelet comparison of two images.
An image is first converted to grey-scale, by assigning shades of grey to
the frequencies of quantized colours in the original. Then basic Haar
wavelet decompositions are performed on the rows and columns of this
grey-scale image 14). The most pronounced coefficients in the image are
then saved. The wavelet decompositions of two images are compared
with each other, resulting in a basic shape comparison between the
images.
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Smoothness tests analyze inter-pixel deviations.

1. SHIST (smoothness histogram): This measures the degree to which a
pixel deviates from its eight surrounding neighbour pixels, and thus
measures colour discontinuity. The relative deviation is mapped into
a grey-scale image, which essentially is a type of edge analyses of the
texture. A frequency histogram is then computed for it, and used for
comparison.

§3 Evolutionary Multiobjective Optimization

3.1 Pareto Ranking
A multiobjective optimization problem (MOP) is characterized by a set

of multiple objectives or parameters, often of which are related to one another
in conflicting, nonlinear ways. Evolutionary computation has been widely ap-
plied to MOP’s 2, 16). Their success in MOP resides in their natural adaptability
to the MOP characterization of problems in terms of representation (chromo-
somes) and performance evaluation (fitness functions), and the correspondence
of the multidimensional MOP search space with the schema characterization of
evolutionary search 5).

A popular approach to solving MOP with genetic algorithms is Gold-
berg’s Pareto ranking scheme 3). The basic idea of a Pareto ranking is to preserve
the independence of objectives. This is done by retaining a set of possible so-
lutions, all of which are legitimate solutions with respect to the population at
large. This contrasts with a pure genetic algorithm’s attempt to ascribe one opti-
mal solution for a MOP, which necessitates a reconciliation of different objective
strengths in order to obtain a single optimal solution. Relating different objec-
tive dimensions with one another can be difficult, and the results are usually
unsatisfactory for nontrivial MOP’s.

The following is based on a discussion in 16), and defines the concept
Pareto ranking more rigorously. We assume that the MOP is a maximization
problem (higher scores are preferred).

Definition 3.1

Given a problem defined by a vector of objectives ~f = (f1, ..., fk) subject to
appropriate problem constraints. Then vector ~u dominates ~v iff ∀i ∈ (1, ..., k) :
ui ≥ vi ∧ ∃i ∈ (1, ..., k) : ui > vi. This is denoted as ~u � ~v.
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Curr Rank := 1
N := (population size)
m := N
While N 6= 0 { /* process entire population */

For i := 1 to m { /* find members in current rank */
If ~vi is nondominated {

rank(~vi) := Curr Rank
}

}
For i := 1 to m { /* remove ranked members from population */

if rank(~vi) = Curr Rank {
Remove ~vi from population
N := N-1

}
}
Curr Rank := Curr Rank + 1
m := N

}
Fig. 2 Pareto Ranking Algorithm

The above definition says that a vector is dominated if another vector exists
which is better in at least 1 objective, and at least as good in the remaining
objectives.

Definition 3.2

A solution ~v is Pareto optimal if there is no other vector ~u in the search space
that dominates ~v.

Definition 3.3

For a given MOP, the Pareto optimal set P∗ is the set of vectors ~vi such that
∀vi : ¬∃~u : ~u � ~vi.

Definition 3.4

For a given MOP, the Pareto front is a subset of the Pareto optimal set.

A typical MOP will have a multitude of conceivable solutions in its Pareto op-
timal set. Therefore, in a successful run of a genetic algorithm, the Pareto front
will be the set of solutions obtained.
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To implement Pareto scoring in a genetic algorithm, chromosome fitness
scores take the form of Pareto ranks. Figure 2 shows how a Pareto ranking
can be computed for a set of vectors. To compute Pareto ranks, the set of
nondominated vectors in the population are assigned rank 1. These vectors are
removed, and the remaining set of nondominated vectors are assigned rank 2.
This is repeated until the entire population is ranked. Genetic evolution then
proceeds as usual. Note that Pareto ranks are always relative to the current
population. This implies that every generation in a run will have at least a
rank 1 set. This has repercussions on performance measurements, as there is no
concept of “best solution” amongst all the rank 1 members.

3.2 Population diversity strategies
The Pareto ranking strategy in Figure 2 will invariably suffer from pre-

mature convergence, and hence populations that lack diversity. This occurs
because the discrete Pareto ranks define a coarse search space. As soon as a sig-
nificantly improved candidate chromosome is discovered, it will quickly dominate
rank 1. To compensate for this, attention has been directed towards the main-
tenance of genetic diversity within the Pareto ranks 16). For example, fitness
sharing amongst solutions in the Pareto front will prevent premature conver-
gence. This can be done with respect to population density amongst niches 6),
or vector distances between members 11). Others have suggested more auto-
mated, parameterless techniques for Pareto population distribution, which do
not require foreknowledge of objective fitness space characteristics 9). In any
case, the use of some strategy for maintaining population diversity within the
Pareto rankings is mandatory for most problems.

To counteract premature convergence, we implement two population
diversity or diffusion schemes. These strategies are generic, and should give sat-
isfactory results for many MOPs. Besides their simplicity and low overhead, an
advantage of these strategies is that the user does not need to submit param-
eterizations of the objective fitness space or population characteristics. We do
not claim that these diversity strategies are exceptionally unique within the evo-
lutionary MOP literature. In fact, they are largely inspired by the population
density and fitness sharing approachs mentioned above 6, 11, 9).

To encourage population diversity, fitness evaluation must award di-
verse individuals. One indicator of diversity is the proximity of an individual’s
objective vector to those of its fellow members of the rank set. The heuris-
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Fig. 3 Effects of nearest-neighbour heuristic on diversity

tic chosen here is the nearest-neighbour distance between population members
within ranks. This diversity heuristic can be computed with no prior knowledge
of the topology of the multiobjective fitness landscape. It captures the fact that
a perfectly diverse population will have equal nearest-neighbour distance mea-
surements (Figure 3a). It is only a local measurement of diversity, as it does not
examine global distribution characteristics of the population. Hence, the global
distribution can be unbalanced (Figure 3b). There is a debate in evolutionary
MOP research whether crossover amongst widely diverse members in the same
rank set is detrimental, and whether mating amongst distant rank set mem-
bers should be restricted 16). Hence a localized measurement of diversity such
as nearest-neighbour distance may be preferrable for some problems. It must
be emphasized that texture evolution does not require overly precise diversity
testing. The feature analyses used are a rudimentary estimation of texture suit-
ability, and are always secondary to the user’s subjective aesthetic judgement at
the end of a run.

Both diversity strategies score individuals such that the following two
constraints are maintained. In the following, each individual xi in a population
has an associated objective vector ~vi. We will often refer to population mem-
bers by their objective vectors. Firstly, fitness scores respect the Pareto rank
hierarchy:

if Rank(~vi) < Rank(~vj)
then score(~vi) > score(~vj)

Secondly, given two feature vectors ~vi and ~vj for individuals belonging to the
same rank set R:
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1. Find Pareto ranks.
2. Compute feature-space distance to nearest neighbour for population:

For each rank set Ri {
For each individual ~vj ∈ Ri {

Compute feature-space distance between ~vj = (vj1, v
j
2, ..., v

j
n)

and all other ~vk ∈ Ri(k 6= j)

where distjk =

√√√√ n∑
i=1

(vji − vki )2.

MinDistj := (minimum distjk, the nearest-neighbour distance)
}

}
3. Convert nearest-neighbour distance into fitness score:

For each rank set Ri {
Lowi := (minimum fitness score for rank Ri)
Highi := (maximum fitness score for rank Ri)
dmin := (minimum MinDistj for members in Ri)
dmax := (maximum MinDistj for members in Ri)
For each individual vj ∈ Ri {

scorej := Lowi +
MinDistj − dmin
dmax − dmin

∗ (Highi − Lowi) ∗ c

}
}

Fig. 4 Diversity Rating Algorithm Div1

if nearest neighbour distance(~vi) > nearest neighbour distance(~vj)
then score(~vi) > score(~vj)

The algorithms compute a score for each population member using the above
constraints. Selection will then favour more optimal (lower) Pareto ranked indi-
viduals, and more diverse individuals within the same rank.

[ 1 ] Div1: Nearest neighbour distance diversity

Figure 4 shows pseudocode for the first diversity scoring algorithm, Div1.
In step 1, the normal Pareto ranks are assigned to the population, as done in
Figure 2. Then the members in each Pareto rank set are processed . In step
2, the objective-space distance between each member and its nearest neighbour
within members in its rank set is computed. Finally, in step 3, these nearest-
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Nearest
# ~v neighbour MinDist Score

1 (0.1, 0.2, 0.9) 2 0.4243 0.92
2 (0.2, 0.1, 0.5) 3 0.3000 0.90
3 (0.4, 0.3, 0.4) 2 0.3000 0.90
4 (0.8, 0.9, 0.0) 3 0.8246 0.99

Table 2 Div1 scoring example. Scores range is [0.90, 0.99].

neighbour distances are scaled into a score. It is assumed that the scores for
all ranks will be assigned in a fractional manner, perhaps between 0.0 and 1.0,
where a perfect solution is 1.0. Score calculation is done linearly with respect to
the nearest neighbour distances obtained for members in that rank set, and is
scaled into a range [Lowi,Highi) for each rank Ri, under the above constraints.
The member of Ri with the longest nearest-neighbour distance is assigned a score
of Highi ∗ c, and the individual with the shortest nearest-neighbour distance is
mapped to Lowi. The c constant is a fraction < 1.0. It is used to prevent scores
getting assigned to Highi, which belongs to the next rank set, or 1.0 (a perfect
solution). Experiments in Section 5 use c = 0.90. Note that a perfect objective
score (eg. 1.0) will be mapped to 1.0 ∗ c, which might need to be accounted for
within the genetic algorithm. Also note that the linear mapping performed here
works well with tournament selection. Other selection schemes may benefit with
other mappings.

An example of Div1 scoring is given in Table 2. Note how these 4
feature vectors are undomininated with respect to one another, and hence are
in the same rank 1 set should they represent the entire population. Nearest
neighbour refers to the ID of the nearest neighbour for each member, and MinDist
is the corresponding distance to it. The score is calculated for the range [0.9,
0.99]. Using the formula from Figure 4, this range could be computed with
Low1 = 0.90, High1 = 1.0, and c = 0.9.

[ 2 ] Div2: Ranked nearest neighbour distance diversity

Although Div1’s scoring formula preserves the Pareto ranks, the nearest-
neighbour distances within each rank’s score range is computed from raw ob-
jective score values. As with weighted sums of multiple objective scores, this
strategy can be unduly affected by changes in single objectives. This may oc-
cur because multiple objective tests are not uniform in their metrics spaces. A



Procedural Texture Evolution Using Multiobjective Optimization 13

# ~v ~d ~r ravg Score

1 (0.1, 0.2, 0.9) (0.1, 0.1, 0.4) (1, 1, 2) 1.33 0.922
2 (0.2, 0.1, 0.5) (0.1, 0.1, 0.1) (1, 1, 1) 1.0 0.90
3 (0.4, 0.3, 0.4) (0.2, 0.1, 0.1) (2, 1, 1) 1.33 0.922
4 (0.8, 0.9, 0.0) (0.4, 0.6, 0.4) (3, 2, 2) 2.33 0.99

Table 3 Div2 scoring example

drastic change occur in one particular objective may impact the overall nearest-
neighbour distance.

The Div2 scoring scheme in Figure 5 also uses nearest neighbour dis-
tances as a diversity heuristic. Rather than using a raw combined nearest-
neighbour distance, however, Div2 normalizes these distances into relative ranks,
and keeps the ranked ordering for each objective independent from one another.
This ensures that objective distances will not unfairly dominate one other. In
step 2, the minimum distance for each feature dimension is determined for every
population member. This differs from Div1, which computes the overall distance
in feature-space. Step 3 then converts these feature distances into ranks, where
each rf corresponds to the ranking of feature vf . The average rank value is
computed in step 4. It is then converted to a fitness score in step 5, in the same
manner as in Div1.

An example of Div2 scoring is in Table 3. The same 4 individuals from
Table 2 are used. The net effect on the scores compared to those in Table 2 is
that vector #3 now has an intermediate fitness level, whereas it is considered
less fit in Table 2.

§4 Experiment
Table 4 summarizes the MOP strategies and feature test sets we used in

our experiments. The two feature sets use at least one feature test from each of
the colour, shape, and smoothness categories. Not all MOP strategies were run
with all feature test sets, since it was clear during early runs that pure Pareto
consistently produced poor results.

The strongly-typed lilGP 1.1 system is used 19). LilGP is a C-based
system, which implements tree-based genetic programming 8). Table 5 lists the
common parameters used in all the experiments. The GP parameters are stan-
dard in the literature; see 8) for details. A total of five rank 1 solutions were
randomly extracted per run, which the user can then select from. Although the
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MOP strategies:
1a. pure Pareto
1b. Div1

1c. Div2

Feature test sets:
2a. CHISTQ, WAV, SHIST
2b. CDIR, CHISTQ, WAV, SHIST

Table 4 Major parameter sets

actual rank 1 set is often in the 100’s, the generation of five solutions is ade-
quate to show the relative diversity of the population. The image parameters
are particular to the image processing done during the feature tests described in
Section 2.3.

The texture language, inspired by one in 12), is outlined in Table 6.
LilGP’s strong typing is useful for differentiating expressions that operate over
floats and RGB colour vectors (an array of three float values). During interpre-
tation, numeric values in floats and vectors are truncated to the range [-1.0, 1.0]
before converted to RGB. The float terminals x and y are the current 2D coor-
dinates being processed. An ephemeral constant (float or vector) is a constant
that is initialized with a random value when created, and then retains that value
throughout its lifetime during a run. The float nonterminal set includes stan-
dard arithmetic and trigonometric functions. Some specialty texture-oriented
functions are also included. lum computes luminance by averaging the RGB
channels. avg returns the mean of two arguments. Repeating tile patterns are
generated with tilerad. Various texture effects are generated by noise, turb,
turbflow, and cloud. The if function permits conditional processing, and forv,
chn, and ichn perform iterative processing on vectors. Vectors terminals include
ephemeral constants, as well as colgrad, which generates a vector using the cur-
rent x, y, and distance to origin. The nonterminal rgb constructs a vector from 3
float values. The remaining vector nonterminals generate a variety of noise and
other texture effects. Further details about the texture primitives are found in
18).

§5 Results
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GP Parameter Value
Evolution paradigm generational
Max generations 100
Runs/experiment 6
Rank 1 solutions/run 5
Population size 1000
Initialization ramped half&half
Initial tree depth 2 to 6
Max tree nodes 100
Max tree depth 50
Crossover rate 0.90
Mutation rate 0.10
Tournament size 5

Image Parameter Value
Resolution 50x50
# quantized colours 1000
# quantized greys 50
# wavelet coefficients 50

Table 5 Common experiment parameters

Figures 6 and 7 illustrate solutions that show typical behaviours of the
pure Pareto, Div1 and Div2 experiments. These results are from the feature set
2b in Figure 4. Two separate run results are shown for each experiment, and 5
random solutions are shown for each run. These runs are selected from a total
of 6 for each experiment, and are chosen as examples of better quality solutions.
All of these experiments used the same random number seed, and hence the
same initial population. The individual feature test scores are included with
each texture. These scores are between 0 (worst) to 100 (best). The top feature
test scores are underlined.

In the Pareto runs, the first thing to note is that the solutions show a
high degree of convergence. In other Pareto runs examined, it was common to
find all the solutions to be identical. Also note how a few of the solutions in run 2
have a problem with colour; the CDIR scores are correspondingly low. Compared
to the Pareto runs, the Div1 and Div2 runs have a better overall colour match
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Float terminals: x, y, ephemeral constants
Float nonterminals: lum, avg, +, -, diff, *, /, max, min, not, sin, cos,

mod, log, pow, tilerad, noise, turb, turbflow, cloud,
if, chn, ichn

Vector terminals: colgrad, ephemeral constants
Vector nonterminals: rgb, marble, warprel, warpabs, kaleid, tile, forv

Table 6 Texture language

with the target image. Furthermore, the Div2 runs have more diverse solutions
than Div1, thus showing how the ranked nearest neighbour diversity heuristic is
advantageous. Nevertheless, Div1 did produce more higher-scoring feature tests.
Which solutions from these two strategies are better is a subjective decision.

Figures 8 and 9 show good results selected from different runs using
Div2 diversity, and using the two different feature test sets from Figure 4. In the
first figure, both feature test sets produce visually similar results. It was found
that set 2b, which uses the additional CDIR test, tended to produce textures
that matched the positions of colours in the target, since the CDIR test scores
positional colour matches. A good example of this tendency is the first texture
in the upper row 2b. That texture is attempting to create a colour gradient
that roughly matches the target colour distribution. This is similarly apparent
in the first texture of the lower row for test 2b. Here, there is a good attempt
at putting colours into the quadrants where they are found in the target.

The stripe target texture in Figure 9 are fairly well simulated in the
results, and there are not many differences in the quality of the Div1 and Div2

runs. Perhaps the most challenging texture studied is the second one in this
figure. This target has a wide variety of colours of different luminosities within
complex convoluted shapes. All the results shown have fairly good colour and
luminosity (brightness) matches. The shape was difficult to reproduce, however.
Many results used a familiar radial pattern, which is seen in 8 of the 10 results
shown. This difficulty is perhaps due to too imprecise a wavelet analysis, or
a lack of necessary texture primitives. We also noted that the 2b results were
much less varied than the corresponding 2a ones. This is due to 2b’s attempt at
positional colour matching. An example solution showing this is the second last
one in the 2b row.

Table 10 shows some results using multiple targets – one target image for
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shape, and the other for colour. These experiments use Div2 with the CHISTQ
feature test for colour, and the WAV feature test for shape. The results in the
figure show a number of hand-selected solutions from multiple runs.

§6 Conclusion
This research establishes that evolutionary MOP with diversity is ideally

suited to texture evolution. Pareto with diversity is an excellent way to evolve a
variety of textures from which the user can inspect and select, which is natural
for texture evolution, given the ultimately subjective nature of the problem.
Treating multiple feature tests as independent objectives removes the difficulty
of reconciling independent feature scores. The results obtained here with the
Div2 diversity strategy are competitive with the non-MOP ones in 18). One
difference, however, is that these MOP results were obtained more efficiently, as
a population size of 1000 was used here, instead of 5600 used in 18).

The pure Pareto strategy without diversity heuristics was unacceptable
since, predictably, premature convergence always arose. The nearest-neighbour
distance strategies used by Div1 and Div2 prevented premature convergence.
Although Div1’s population was diverse, the quality of solutions was often un-
satisfactory. This undoubtedly arose because of domination by individual fea-
tures when computing the raw nearest-neighbour distance in objective space.
Div2’s ranked diversity scoring consistently produced the best results.

One unexpected discovery is that increasing the number of feature tests
can detract from the quality of evolved results. This contradicts the intuitively
appealing idea that a large bank of feature tests would result in more accurate
analyses: since each feature test measures one specific characteristic of an image,
lots of tests will therefore cover a host of various aspects. After comparing the
results from feature sets 2a and 2b, we found that the 2b results, which use the
additional CDIR test, were often weaker. This was puzzling at first, especially
considering the tenet of Pareto ranking – that features scores be kept indepen-
dent. The reason this happens, however, is because an increase in the number
of objectives creates a more difficult optimization problem. With additional
objectives, populations are stretched thinner across the corresponding higher-
dimensional search space. With respect to texture evolution, fewer feature tests
means that the population has a greater opportunity to evolve solutions with
better performance in all feature dimensions, which naturally results in better
overall matches to target textures.
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There are a number of obvious ways in which we could evolve better
quality results using our system. First, more sophisticated feature tests could
be used. A simple extension would be to increase the number of coefficients used
in the wavelet analysis. More advanced extensions would employ more sophis-
ticated image analyses as feature tests. Of course, such techniques will impact
computation time, and hence evolution efficiency. Second, the texture language
can be expanded. Fractals and other texture generation primitives can be added
to enrich the texture generation formulae 10). Multiple expressions taking the
form of texture channels could be used, which would result in more complex
images. An advantage of using MOP evolution is that it removed the need for
multiple subpopulations, thus reducing computational effort. Nevertheless, it
would be interesting to apply distributed MOP evolution to texture generation,
especially if more complex feature tests were to be used.

Our treatment of texture evolution as an MOP can useful in other unsu-
pervised systems such as Genshade 7). In addition, population diffusion heuris-
tics might be beneficial in interactive systems, to ensure that the user is not
presented with a population of identical textures.

The nearest-neighbour diversity heuristic used in Div1 and Div2 are sim-
ilar in spirit to other diversity promotion strategies. We do not require the user
to set any problem-specific parameterization of the MOP search space, unlike
6, 11), which require the user to enter niche radius values in order to define the
objective size of niches. This requires some foreknowledge of the MOP fitness
space, and can adversely affect evolution if the values are inadequate. 9) present
some alternative strategies for promoting diversity in evolutionary MOP, many
of which are applicable to texture evolution. However, given the ultimately sub-
jective nature of texture selection, it is unlikely that more sophisticated diversity
strategies will add significant improvement to texture evolution as done in this
paper.
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1. Find Pareto ranks.
2. Compute feature distance vectors to nearest neighbours:

For each rank set Ri {
For each individual ~vj ∈ Ri {

Compute ~dj := (dj1, ..., d
j
n)

where each djf is the minimum |vjf − v
k
f |

for all ~vk ∈ Ri(k 6= j), (f = 1, ..., n)
}

}
3. Assign ranks for all feature distances to nearest neighbour:

~ri := (ri1, r
i
2, ..., r

i
n)

where ranked ordering increases as distances djl increase.
4. Compute average rank for each individual:

ravgi := (
n∑
f=1

rif )/n

3. Convert average nearest-neighbour ranks into fitness score:
For each rank set Ri {

Lowi := (minimum fitness score for rank Ri)
Highi := (maximum fitness score for rank Ri)
rmin := (minimum r avgj for members in Ri)
rmax := (maximum r avgj for members in Ri)
For each individual vj ∈ Ri {

scorej := Lowi +
ravgj − rmin
rmax − rmin

∗ (Highi − Lowi) ∗ c

}
}

Fig. 5 Diversity Rating Algorithm Div2
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Target:

Pareto
run 1:

(49,62,35,8) (52,58,31,5) (42,49,19,8) (50,64,29,17) (52,59,28,9)

run 2:
(45,76,18,60) (33,75,30,18) (33,75,30,18) (32,71,24,24) (49,67,24,11)

Fig. 6 Randomly selected rank 1 solutions from single runs for Pareto, with feature set 2b

(CDIR, CHISTQ, WAV, SHIST).
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Target:

Div1

run 1:
(54,72,31,49) (55,64,15,72) (54,73,38,61) (55,69,35,71) (56,71,25,53)

run 2:
(44,57,42,64) (40,75,22,75) (55,71,31,43) (56,70,26,52) (56,72,13,49)

Div2

run 1:
(45,85,16,63) (54,63,17,37) (43,79,17,71) (50,60,28,70) (44,59,23,16)

run 2:
(48,85,22,70) (54,78,29,68) (47,88,15,62) (46,87,21,69) (47,85,23,70)

Fig. 7 Randomly selected rank 1 solutions for Div1 and Div2. Feature set 2b (CDIR,

CHISTQ, WAV, SHIST).
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Target:

Test 2a:

Test 2b:

Target:

Test 2a:

Test 2b:

Fig. 8 Selection of results from Div2
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Target:

Test 2a:

Test 2b:

Target:

Test 2a:

Test 2b:

Fig. 9 More results from Div2
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Shape:

Colour:

Shape:

Colour:

Fig. 10 Multi-target results using Div2


