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All of the GA's we have studied up until now have assumed that the fitness function worked on a single 
objective. For some problems (eg. find maximum of f(X) = X*X), it is easy to translate the problem in to a 
single objective: use f(X) as the fitness function itself. 
 
However, many problems in the real world are defined by multiple characteristics. The Sudoku problem is 
one example. A correct solution for a puzzle means that each row, column, and grid has the integers 
between 1 and 9 without repeats. In other words, there are 3 objectives to solving a puzzle : row score, 
column score, and grid score. A common way to handle such problems is to combine these separate 
measurements into one overall score: 
 
  Score = row_score + col_score + grid_score 
 
This formula is also known as a weighted sum. A more general form for this formula is: 
 
  Score = (W1*row_score) + (W2*col_score) + (W3*grid_score) 
 
The first formula shows that the weights Wi are all equal (to 1 in fact). It is possible to play with the 
weights, thereby changing the shape of the fitness landscape. For example, if columns happened to be 
much harder to solve, their weight could be increased relative to the other scores, so that the overall 
score is much more sensitive to column scores. 
 
Although weighted sums are commonly used, they can also be difficult to use for many kinds of problems. 
For example, some problems have multiple objectives that are not naturally merged together (unlike 
Sudoku). Combining the scores is akin to mixing apples and oranges... the scores refer to entirely 
different concepts that are not directly related to each other. However, they all do affect the overall search 
space, often in complex and unpredictable ways.  
 
An example of the complexity of using weights is as follows. When different scores are merged, one 
score or dimension may overwhelm the others. This can happen because the scales of score 
measurements can differ drastically with one another. Perhaps one score commonly ranges between 500 
and 1000 in value, while another score is between 0.1 and 0.2. This second score will barely register on 
the radar because of the large first score. A weighting scheme will need to reduce the first score and 
increase the second, in order to balance them. Finding effective weights for such problems is very 
challenging. Even changing the problem just a little, perhaps with different training data, can mean that 
the weights need to be adjusted even further. Moreover, some problems have many dimensions, and 
finding effective weights can be haphazard and arbitrary, because changing one weight may mean a 
chain reaction requiring adjustment of all the other weights. When the search space is so sensitive to 
changes in weights, it indicates that there can be a high degree of bias introduced by the user when 
deciding weights. The solutions you get will be highly dependent on the weights given by the user. 
 
An active area of research is multi-objective optimization. The idea is quite simple. The weighted sum 
idea is discarded entirely, and fitness measurements happen in 2 stages. In stage 1, each objective is 
measured with its natural fitness measurement, as is seen in the weighted sum formulae above. 
However, these scores are not merged at all, but are kept separate for each population member within a 
vector of scores. A GA would therefore evaluate each individual according to all the multi-objective 
evaluation tests as are necessary for the problem.  
 
Stage 2 involves finding overall rankings for the population. Recall that ranked fitness measurements 
discard absolute fitness scores, and instead replace them with integer numbers (1, 2, 3,..., with 1 being 
the most fit, 2 being 2nd fittest, etc.). The ranking done here uses the Pareto ranking strategy. The idea 



behind Pareto ranking is that it will never try to compare apples with oranges: each dimension of the 
problem is always kept independent of the other dimensions, and an individual is better than, or 
dominates, another individual if it is shown to be at least as good in all dimensions, and better in at least 
one dimension. For a minimization problem (one in which we are trying to minimize scores), then for 2 
individuals U(u(1), u(2), ..., u(k)) and V (v(1), v(2), ..., v(k)), with k objectives, we say that: 
 
  U dominates V iff: 
 
  for all objectives i: u(i) ≤ v(i)    
  and there exists at least one objective i where:  u(i) < v(i) 
 
The first expression with "for all" says that there is U is at least as good as V is in all objectives. And the 
2nd expression ("there exists") say that there is at least 1 objective in which U is definitely better than V. 
Hence it is clear that U is superior to V, because it is better in at least 1 objective, and not worse in any 
objective. 
 
The Pareto ranking algorithm relies on the idea of domination. It first goes through the entire population to 
find the non-dominated individuals. These are the individuals in which nothing dominates them. These will 
be assigned rank 1, the fittest individuals in the population.  The ranking algorithms takes an individual A, 
and then looks through the rest of the population to see if any individual B dominates A. If so, then A 
cannot be in rank 1, and it is skipped. If however, it is found that there is no B that dominates A, then A is 
assigned rank 1. Once the entire population is evaluated for the rank 1 members, these rank 1 individuals 
are marked as "processed", and the whole procedure is repeated on the remaining population to find the 
rank 2 individuals... those that are undominated by any yet unranked individuals. This repeats until the 
entire population is assigned a rank. 
 
The end result of the Pareto ranking is that each member of the population has a single Pareto rank value 
assigned to it. The lower the rank, the better the individual. These ranks can then be converted to a 
Roulette wheel or used within a tournament selection to create the next generation. 
 
There will usually be sets of individuals in each rank as well. The individuals in a rank dominate all the 
individuals with higher rank numbers, and are in turn dominated by the sets with lower ranks. However, 
individuals in the same rank set are incomparable, in the sense that none of them is clearly better or 
worse than any other member of that set. Each individual will be better in some dimensions of the 
problem, but worse in others. 
 



An example: Pareto ranking a population (Goldberg) 
 
Consider a population for a minimization problem (low scores preferable) with the following fitness 
vectors: 
 
1: (2, 4) 
2: (2, 10) 
3: (3, 4) 
4: (4, 3) 
5: (5, 10) 
 
We must first determine the rank 1 set. Remember: an individual is in rank 1 if no other individual 
dominates it. Be careful to not use the wrong idea, that an individual is in rank 1 if it dominates everything 
else! We then find the following for the above 5 individuals: 
 
1: (2, 4) – nothing dominates it, so it is rank 1. 
2: (2, 10) – it is dominated by individual 1 
3: (3, 4) – it is dominated by individual 1 
4: (4, 3) – nothing dominates it, so it is rank 1 
5: (5, 10) – it is dominated by individual 1 
 
So the rank 1 set consists of individuals 1 and 4. Notice how (2, 4) and (4, 3) contribute unique aspects to 
the problem. Individual 1 has a low 1st 1, while individual 4 has a lower 2nd dimension. These individuals 
are removed (marked “processed”), and the procedure is repeated on the remaining population: 
 
2: (2, 10) – dominated by nothing, so it is rank 2 
3: (3, 4) – ditto 
5: (5, 10) – dominated by individual 2 
 
So rank 2 has individuals 2 and 3.  The final pass will mark individual 5 as rank 3. 
 
An alternate variation: dominance ranking (Fonseca and Fleming) 
 
An alternative to Pareto ranks is to compute dominance ranks. Here, the rank of every individual is the 
number of individuals in the population that dominate it, plus one. Hence, the rank 1 individuals will be the 
same as those having rank 1 in the Pareto ranking above. But the rest of the ranks will usually be more 
highly distributed, to a higher maximum rank value. This might tend to reduce the amount of convergence 
that might arise when fewer ranks are being used with the first Pareto ranking scheme. 
 
In the above population, the dominance ranks are: 1 (indiv 1, 4); 2 (indiv 2, 3); 5 (indiv 5). 
 
Comments 
 
Pareto ranking is advantageous over weighted sums for the following reasons: 
 

• User bias is less likely, unlike the weighted sum.  

• It is easier to use than weighted sums, since the problem is kept as natural as possible, with little 
user intervention.  

• At the end of a run, the user is given a set of rank 1 individuals as potential solutions. The user is 
then free to decide which of the set, if not all of it, is a preferred solution. 

• Pareto ranking has been shown to be remarkably effective for solving complex multi-objective 
problems.  

• It is fairly efficient to compute. 
 
However, there are also deficiencies with Pareto ranking: 
 



• Convergence due to duplication of individuals in each rank is common. This happens largely because of 
the loss of fitness information that occurs with ranks. With a weighted sum, small fractions in the sum 
may help distinguish individuals, which act as a natural force for diversity. In other words, there could be 
1000’s of different fitness values in the population. But with a Pareto ranked population, there may be 
perhaps only 10 to 20 discrete ranks in the population. This makes it easier for one individual to be 
selected repeatedly over others in weaker ranks, resulting in its excessive duplication in the population. 
To get around this, Pareto search often uses diversity strategies to help promote genetic diversity within 
the ranks, and population as a whole. The dominance ranking approach might tend to help diversity. 

• Pareto ranking begins to lose its effectiveness with  too many dimensions are being considered. Practical 
limit is perhaps 5 or 6. Because the population is now evaluated along so many dimensions, it becomes 
more difficult to find clear cases of domination between population members. In other words, the 
population becomes diluted in the Pareto search space, and everything will be rank 1, with few in lower 
ranks. GA then does a random search. 

• It is more difficult to analyze population fitness during a run. This is because there is no absolute fitness 
score that everything uses. Rather, the population in each generation always has a rank 1 set, rank 2, etc.  

 
One strategy often used with Pareto and GA is to do multiple runs as usual, and then take the rank 1 sets found in 
all the runs, merge them together, and re-rank them. The new rank 1's obtained would be designated as being the 
solutions for all the runs. 
 
One final comment: if you are given 2 individuals and their fitness vectors, and then are asked to determine which 
is in rank 1, this cannot be done. Although you might be able to say whether one individual dominates the other, 
you cannot say for certain that an individual is of rank 1 (or 2, etc) without looking at the entire population. All it 
takes is one individual elsewhere to dominate it, and that individual will no longer be in rank 1.  
 
Further information 
 
1. Evolutionary Algorithms for Solving Multi-Objective Problems (2e) 
C.A. Coello Coello, D.A. van Veldhuizen, G.B. Lamont, Kluwer, 2007. 
 
Great resource specializing in multi-objective evolutionary algorithms.  
 
2. Genetic algorithms in search, optimization, and machine learning by David E. Goldberg. 
Imprint  Reading, Mass. : Addison-Wesley Pub. Co., 1988. 
QA 402.5 G635 1988 (5th floor) 
 
Read the short discussion of Pareto ranking from Goldberg's book. He uses a simple example of a problem that 
analyzes different factories based on 2 dimensions: number of accidents, and cost of production for an item. The 
cheaper an item is to make, the more accidents occur. Likewise, accidents can be greatly reduced, but at the cost 
of increasing the production cost per item. It is not easy to reconcile these 2 different measurements with a 
weighted sum. But the Pareto approach gives an interesting solution to it. 
 
3. "Procedural Texture Evolution Using Multiobjective Optimization" by B.J. Ross and H. Zhu. New Generation 
Computing, vol. 22, n. 3, 2004, pp. 271-293. 
http://www.cosc.brocku.ca/~bross/research/gentropy2.pdf 
 
This paper uses multi-objective optimization to evolve procedural textures. Pay particular attention to the pseudo-
code in Figure 2, as well as the discussion in Section 3.1: 
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