1. Wavetable synthesis

- big in mid-80’s (Korg M1 keyboard in 1988)
- aka “sample playback”; difference with samplers is that user cannot record/load samples
- sounds are pre-recorded and burned into ROM
- libraries of artificial, natural sounds
- pitch alteration:
 - table lookup indexing – “munchkin” if too drastic
 - pitch shift and time compression: FFT analysis, granular reconstruction
- other processing
 - filtering: send sample through filters to change its harmonic composition
 - alter amplitude/filter strength over time: ADSR
 - attack, decay, sustain, release
 - “wave shaping”
 - LFO: low-frequency oscillators
 - drive amplitude and filters with auto-generated waves, which have very slow frequencies (sub-audible)
 - sine, square, sawtooth, random, …
 - spread, width, frequency, etc., are all user-controllable
- mixing: mix 2+ signals
 - can “cross fade” with various waves, envelopes: “wave programming”
 - famous hardware: Korg Wavestation

2. Subtractive synthesis

- filter-based synthesis that boosts or attenuates (weakens) regions of waveform’s harmonic frequencies
- 1960/70’s style “analog” synthesis (Moog, ARP)
- if source wave is harmonically rich, filters can create reasonable approximations of many real sounds
- note: analog means the wave is a voltage, whereas digital means digitally-denoted wave (binary numbers)
 - subtractive synthesis can be done in both. Analog requires special circuits, while digital requires DSP versions of filters algorithms
- source waves in original analog synthesizers: sine, saw, square, random,…
 - pro: rich, thick, phat, unique
 - con: circuits heat up and drift, hard to tune, very expensive, can burn out

3. Additive synthesis

- combining signals to create new ones
- note: harmonic reconstruction via Fourier series is additive, because you combine harmonics to create overall wave
- Many techniques and effects (table 4.1 Roads)
5. Modulation synthesis

- 2 signals: carrier and modulator
- carrier is altered by modulator
 - a) acoustic modulation:
 - vibrato: slow frequency modulation
 - tremolo: slow amplitude modulation
 - b) Ring modulation
 - bipolar: signal varies between -1 and 1
 - unipolar: signal varies between 0 and 1
 - RM: multiply two bipolar signals together
 - signals can be wave tables
 - if M is below 20Hz, amplitude of C varies at frequency M: tremolo
 - but if M is an audible frequency, timbre of C changes
 - sidebands created: sum of difference of frequencies C and M (C disappears)
 - if C and M are integer ratios, the sidebands are harmonic; else inharmonic
 - Uses: colour signals, create new signals (bells, gongs)
 - c) Amplitude modulation (AM, as in AM radio)
 - like RM, except M is unipolar (C is bipolar)
 - result: sum and difference around C
 - carrier bands like RM, but C is included
 - d) Frequency modulation (FM, as in FM radio)
 - C's frequency is modulated by M oscillator
 - series of sidebands
 - popularized with Yamaha DX7 keyboard (early 80’s)
 - C:M ratio: if integer, then harmonic sidebands; else inharmonic
 - modulation index: “Depth”
 - I = D / M, where D = freq deviation from carrier
 - can envelope D to vary the bandwidth over time
 - Uses: better simulation of real instruments than subtractive synthesis, especially horns, brass, metallic percussion effects
 - Unfortunately, not very intuitive to use. Many musicians would experiment and dabble until something interesting arises.

6. Granular synthesis (covered earlier, separate lecture notes)

7. Wave Terrain Synthesis

- An exotic synthesis technique.
- different variants
- conventional wave table: wave(x), index x
- wave terrain: wave(x, y), indices (coords) x, y
 - wave is the “z” --> 3D surface
- 2D function conditions:
1) both x, y functions and partial derivatives are continuous
2) x, y functions are 0 on terrain boundaries
eg. wave(x,y) = (x-y)(x-1)(y-1)(y+1)

Orbits
- scan over terrain
- determine final shape of audio wave via orbit (trajectory)
- periodic orbits: periodic waves
- aperiodic orbits: time-varying waves