COSC 4P98 Lecture notes: **Granular Synthesis** Feb 27, 2008 B. Ross

Granular synthesis

- Reference: Microsound, C. Roads, MIT Press, 2002.
- light: wave model vs. particle (photon) model
- granular synthesis treats sound as composition of 1000's of grains (atoms, particles)
 - o each lasts a brief moment (1 to 100 ms)
 - o minimum perceived amount if approx 50 ms
- combines time information (start time, duration, envelope, waveform shape) with frequency domain info (period of waveform inside grain, spectrum of waveform, etc)
- an amplitude envelope shapes each grain
 - prevents "clicking" from abrupt grain start/stop amplitudes, which will cause distortion
 - o can also create new resonances (strong harmonic areas)
- many parameters can control granular synthesis, and they can vary grain-by-grain
 - o start time
 - o duration
 - o **envelope**
 - o pitch
 - o location in sample file (if sampled)
 - shape of waveform (if generated)
 - o direction of sample
- Types of granular synthesis
 - o a) Fourier grids: treat STFT windows as grains
 - permits time stretching and pitch shifting
 - o b) Asynchronous granular synthesis ("granular clouds")
 - statistical distribution of grains on a freq vs time plane
 - parameters include: start time, duration of cloud
 - grain durations
 - density of grains per second (may overlap)
 - frequency limits
 - movement of cloud in pitch/time/waveform space
 - and lots more!
 - o c) Time granulation of samples
 - like AGS but purely on sampled waves
 - can do on files, or realtime audio (eg. Ableton)
 - Note: Ableton Live's "Granular delay" effect is granular synthesis, but used on incoming signal
 - a "window" of input is used to generate the grains
 - Other applications process an entire wave file.
- Uses
 - o Powerful composition and synthesis tool
 - o Experimental sounds

COSC 4P98 Lecture notes: **Granular Synthesis** Feb 27, 2008 B. Ross

- Also practical: pitch, time stretching/compression
- o lots of control parameters: opportunities for unique interfaces