
COSC 4P98 Lecture notes: CSound
October 30, 2017
B. Ross

• Reference: mostly chapter 1 of The CSound Book, ed. R. Boulanger, MIT Press, 2000.
• http://csounds.com/chapter1/index.html
• note: [1.1] means Fig 1.1 in chapter 1
• Csound examples (local Brock access):

http://www.cosc.brocku.ca/Offerings/4P98/csound/local/

• Csound: a sound generation, audio processing, music production system
• data-flow programming
• event sequencing
• Over 20 years old
• developed by Barry Vercoe (MIT Media Lab)
• Descended from Music V by Max Matthews in late 1960’s (grandfather of

computer music)
• Over 1200 uGens (functions)

• user extendable
• lots of GUI front-ends, real-time interfaces

• Advantages:
• power: limited only by time to render compositions
• batch mode lets you render very complex sounds
• real-time with midi is possible
• compositions never become obsolete due to hardware advances

 like a “program” output
• Free!
• Portable!
• Large user community (university music departments)

• Disadvantages:
• not as algorithmic as other systems (eg. Supercollider)
• tends to be a data flow language with modules and some calculations
• few control primitives (if-then-else)
• batch-mode tweaking is long, tedious, “trial and error”
• too large? Difficult to master large library of primitives.

• You should consider Csound if:
• You are interested in technical study of sound design.
• You are interested in abstract soundscapes.
• You are interested in experimentation: microtonal intervals (outside of 12-note

scale), polyrythms, algorithmic composition.
• You might not consider Csound if:

• You are mainly interested in producing conventional music (pop, etc.)
• You are mainly interested in recording acoustic instruments in a studio.
• You need to create the music quickly.
• You want to use standard music notation.

http://csounds.com/chapter1/index.html
http://www.cosc.brocku.ca/Offerings/4P98/csound/local/

COSC 4P98 Lecture notes: CSound
October 30, 2017
B. Ross

• Files:
• orchestra file (“.orc”)

 define your instruments, sound generation
• score file (“.sco”)

 define your performance (notes, events over time)
• (optional) unified format (“.csd”)

 combines orc and sco together
• (optional) Other files

 midi
 sample files
 others

ORC files: define your instruments

1. header [1.1]
o define sample and control rates
o sample: (eg.) 44100
o control: (eg) 4410

 much slower, prefix with “k”
 if its too fast, render time is needlessly lengthened

2. Instrument section [1.2, 1.3, 1.4]
o each given unique instrument number
o surround the definition by: instr … endin
o Syntax:

outpt opcode args ; comment

eg.

a1 oscil 10000, 440, 1 ; oscillator playing sine (1) at 440 Hz, 10000 ampl.

 ; output sent on “a1” channel (label)

• Use labels to route output (akin to wires, patch cables) to send to other opcode inputs
• permits creativity: any argument to a module can be computed from elsewhere!

SCO files: define your composition

1. Table section [1.5]
• generate waves in function tables (f-tables)
• done via: (a) builtin GEN routines; (b) sound files (wave, aiff)
• Different GEN routines generate different shapes (over 40 of them!)
• eg. GEN 1: wave file
• eg. GEN 9, 10: combine sine waves (ie. inverse DFT)

f 111 0 16 10 1

COSC 4P98 Lecture notes: CSound
October 30, 2017
B. Ross

; table 111; load at time 0; 16 entries; GEN 10; full strength = 1; no phase shifts

eg. square wave…

 f 112 0 1024 9 1 3 0 3 1 0 9 .333 0

; size=1024; GEN 9; harm 1; ampl 3 phase 0; harm 3; ampl 1; phase 0; harm 9, ampl 1/3,
phase 0…

[1.10, ... ,1.15]

2. Note (event) list
• first 3 fields are always:

p1 p2 p3

… reserved for: i# start-time duration

• other p-fields are fed to instrument referred to, and used any way desired or
needed by instrument

o call them p4, p5… in instrument definition
• fractional times (seconds)
• times can be in any order (CSound sorts them)

o can separate events into instrument-specific sections
o or have mixed instruments sections… whatever is convenient

• p4 and beyond are always instrument specific parameters
• character “.” means, use value from line above in same field [1.59, 1.60]

o “<” means do linear interpolation from earlier values
• Other statements exist to help set up scores, for example:

o s – end of section
 all the table & instrument defns following it are taken together
 timing is relative to start of the section (ie. time starts at 0)

o t – tempo
 can set tempo (speed)

Clipping

• audio values from simultaneous signals are added together to generate a mix of
instruments/sounds

• if result is > 32767, there is clipping (overflow)
o harsh distortion

• Only solution: scale down formulas in CSound definitions, and re-render
• Remember: Csound is applying arithmetic computations. Overflow is often common!

Data rates

• i-rate: note rate (slow)
o use for note durations, some parameters

• k-rate: control rate (kr, slow too, but faster than i-rate)
o use for envelopes

COSC 4P98 Lecture notes: CSound
October 30, 2017
B. Ross

• a-rate: audio rate (sr, fast – akin to sample rate)
o filters, oscillator updates

• Your variables in Csound should be prefixed with an I, k, or a
o this letter will determine how often CSound updates it, according to respective

rate above.
o Yes, this is old fashioned (like early FORTRAN), but that’s life.

Examples

• Chapter 1 of The CSound Book is online. Worth working thru different exercises and
examples.

• Other tutorials are online as well.
• The CSound book has tons of chapters and examples.
• CSound is a system for experimentation. Try things out. Try really unusual ideas! You

can get results that you simply cannot obtain with any other system.

Granular synthesis in CSound

• Two operators: granule, grain
• eg.

granule xamp, ivoice, iratio, imod, ithd, ifn, ipshift, igskip, igskip_os, ilength, kgap,

 igap-os, kgsize, igsize_os, iatt, idec, [others…]

• xamp: output amplitude
• ivoice # output streams
• iratio: speed of sampling pointer, eg.0.1 means stretch by factor of 10
• imod: direction of pointer (+1, -1, 0)
• ithd: skip sample if amplitude below this (stops silence in wave)
• ifn: ftable #
• ipshift: pitch shift control: 0 = random +/- 1 octave (12 notes)

o others control pitch shift amounts
• igskip, igskip_os, ilength: control where in ftable (wave table) to process
• kgap, igap_os: gap size, random offset between grains
• kgsize, igsize_os: size of grains, with random offset
• iatt, idec: attack and delay of grains (% grain size)
• etc.

COSC 4P98 Lecture notes: CSound
October 30, 2017
B. Ross

• Note: all the above parameters may be read from tables (samples?), computed by other
instruments, calculated with arithmetic expressions,…

• They can change over time. Nothing needs to be static!

