
COSC 4P98

Paint to Audio
Image to Audio Synthesis Engine

Dan Chandler

5/9/2014

Contents
Project description .. 1

Image to Audio ... 2

Direct colour mapping .. 3

Indirect colour mapping .. 4

System Design .. 5

System Use.. 5

Conclusion .. 8

Project description

 My course project is program that converts images to audio signals. The program allows

you to paint on a canvas, load images, and apply various image filters. Once the image is ready,

you can convert that image to a .wav file by selecting a number of parameters. There are

numerous ways to map images to audio. I’ve chosen to focus on two of them, which I call: direct

colour mapping and indirect colour mapping. More is explained on my interpretations of these

techniques later on. The program also graphs audio signals in a separate window on each

conversion. In some cases of direct colour mapping, it makes sense to allow for recreation of an

image from the converted audio signal, this is done in the program as well.

 This idea intrigued me when shown a similar example in class. I decided that with my

graphics background, I could reasonably do this and was curious about the results. At the end of

the project, I believe I formed some reasonably audible sounds from images and the algorithms

used. My program uses OpenGL, GLUT, GLUI, and libsnd to establish all the necessary aspects

needed. Here’s a screenshot of the program in action:

Image to Audio

 Since image data is simply RGB integer values in some range and audio signals are

simply discrete samples in some range, mapping these two is clearly possible. However, as I’ve

learned through using this program, some interpretations create noise, whereas others create

audible signals that seem distinct to the image.

 Audio has two distinct things we need mapped: time and amplitude. Images have pixel

XY location and RGB values. To me, it makes the most sense to map pixel XY location to time –

location in the image, location in the sound. Using simply X or Y alone won’t give very long

sounds using a 44,100 Hz sample rate, when full screen at 1980 pixels wide is like 44

milliseconds. So X*Y will give us an appropriate amount of samples. Since width * height

implies an ordering of how it is read, we have two options for reading: row-major and column-

major.

 With the mapping of time and pixel position established, we need to look at how to map

amplitude at each sample. There are definitely countless interpretations of mapping RGB values

to amplitude once you consider types of indirect mapping, which I’ve started to explore in this

program. But first, let’s take a look at the most obvious way to map – direct mapping.

Direct colour mapping

 By direct mapping, I mean let the RGB values go straight to sample amplitude. As long

as the resolution is the same, there aren’t any major problems. In my program, I used 16-bit

resolution for both image and audio. So if we’re mapping RGB values, which ones? Well, I’ve

got 5 main methods:

- Average of RGB

- Red only

- Green only

- Blue only

- Each RGB as its own signal which is added together

But this leads to another question with direct mapping, what about negative values? Audio

signals range from positive to negative amplitude levels, whereas images only range from zero to

the maximum bits per pixel. Well, there is countless approaches to use for this, first of which is

to use no negatives at all. Here’s a list of methods implemented in my program:

- No negatives

- If value is even, then it’s negative. Otherwise, it’s positive.

- If value is odd, then it’s negative. Otherwise, it’s positive.

- Random

- Random with a positive tendency

- Random with a negative tendency

- Every other row

- Every other column

- Every other sample

- Altering groups of x, where x is selected by user

As you can see, there are a number of options for negation and most are straightforward.

Although they are simple, after lots of testing, their results vary greatly. Even/odd, the random

negations, and every other sample usually generate noise. Whereas every other row works well

with row-major ordering, and every other column works well with column-major ordering.

Altering groups of x varies depending on the image size used and the group size selected because

you can vary your results between the best to worst seen. And finally, no negative value actually

works fairly well, but with what I’d describe as a less rich sound. This covers the techniques of

negation I’ve implemented. Here’s a screen of the direct mapping panel:

Indirect colour mapping

 By indirect mapping, I mean taking the RGB values at each pixel and mapping the value

in some indirect manner to audio signals. One way I came up with is to map the RGB value to a

ratio which is applied to frequency oscillation changes of existing waves, such as sine waves,

square waves, saw tooth waves, and triangle waves. A minimum and maximum frequency is

used to maintain the frequency changes within a certain range. This leads to two options: use an

RGB average for one existing waveform, or use each RGB with a different existing waveform.

The results of this vary wildly depending on the ranges used and the manner used. For the base

range, the program uses 20 Hz to 20,000 Hz, which can be changed as desired. Here’s a

screenshot of the indirect mapping control panel:

System Design

 The system uses some key libraries for graphics and user interface, as well as audio

signal creation and playback. For the paint window, I’ve used OpenGL and GLUT. For the

image reading and writing, I’ve used FreeImage. For the user interface, I’ve used GLUI. For

writing to .wav file, I’ve used libsnd. And since this is designed for a Windows OS, I used the

.NET framework for playback. All these APIs I used are ports for Windows, so there is no issue

with conflict. GLUI uses live variables which are in turn used in the audio algorithms. GLUT

and GLUI actually are designed to work together, so this worked out well in terms of the

graphics portion with the program’s interface needs. Although GLUI’s menus aren’t the prettiest,

they serve their functional purpose. Conversion is done in a callback and based on the parameters

set. The program is written in C/C++ on Visual Studio 2010.

System Use

 The paint controls allow for selecting each RGB channel ranging from 0 to 32767 (16-bit

resolution). The brush has 3 sizes: small, large, and extra-large. The small brush is 3 by 3 pixels.

The large brush is 10 by 10 pixels. And the extra-large brush is 25 by 25 pixels. You can select

to add variation to the brush, and select by what percent. You can clear the paint window using

the clear button. Images can be loaded by using the load image button, which loads the image

specified by the input text at the last clicked location. The image file must be in the same

directory as the program. You can also save whatever is on the paint window to the name

specified under save. Here’s a screenshot of the brush control:

On the paint window, you can right-click and apply image filters to the window. I’ve added the

following filters:

- Greyscale

- NTSB Greyscale

- Monochrome

- Invert

- Pure RGB

- Max filter

- Min filter

- Average filter

- Edge detection

These filters are also available on the keyboard their keys 1 to 9. As I covered earlier, conversion

to audio is a major portion of the program. Once you select ordering, you select which mapping

method and the necessary parameters. But what I didn’t mention before is you can apply an

envelope to the created audio signal using a linear ramp or linear ramp with alternating positives

and negatives. You can also pitch shift the audio signal by +/- octaves, which adjust the duration

of the signal. Here’s a screenshot of the main conversion to audio options:

You can also view the audio signal as a waveform in the graph window on conversion, which is

an option that is selected on the conversion parameters. Here’s a screenshot of an image of

marbles and its graphed signal using certain parameters:

You can also somewhat recover the image from the converted audio signal. However, direct

mapping would need to be used; otherwise there is no direct correlation to the original image.

Pitch shift can’t be used since the samples and size is altered, since pitch shift changes the signal,

we don’t know what width and height to rebuild at. And since we’re not separately maintaining

the RGB channels and using an average or one channel or overlapped, the rebuilt image will be

greyscale and the individual RGB value is lost. Here’s a screenshot of the marbles and their

recovery:

As we can see, the image is somewhat recovered and you can see what the old image was. The

last main feature to know is playback. You can simply press the play once button to play the last

converted audio signal. You can also play the signal in a loop and stop any other sounds.

Conclusion

In conclusion, the paint to audio program worked fairly well, as you can see with running

the program. It didn’t create a symphony, but I wasn’t expecting it to. It did prove to make

interesting and unique sound from images and showed this concept is very much possible and

had interesting results. This was a worthwhile project and I enjoyed working on it. This

application could easily be extended to make a real-time audio synthesis engine, and use more

image-to-audio mapping techniques.

