

Sample Tweaker
COSC 4P98

4654166

Kevin Delisle

5/4/2012

Overview

This project is a sample tweaker, made in Processing using the Beads and ControlP5 libraries.

Beads allows you to manipulate audio data within the Processing environment. ControlP5 is an

open-source library of control objects for Processing to allow for easy creation and use of

mouse-based controls.

Sample Tweaker allows you to load a sample, play it back, tweak select variables during

playback, and save the recorded buffer to a new wave file.

Figure 1 - SampleTweaker

Technical Foundations

General

In Beads, audio is handled through the use of objects referred to as Unit Generators, or “uGens”. All unit

generators must be connected to an “AudioContext”, which establishes the base for the manipulation

and playback of audio samples. uGens can be fed into AudioContexts so that their calculations can be

output as sound, and in addition, uGens can be fed into one another to create multiple effects. For the

remainder of this report, when a uGen takes in, or is fed into, another uGen or AudioContext, this will be

colloquially referred to as “patching”.

Visualizer

The visualizer rips values from the AudioContext buffer to draw a snapshot of the position of each

sample within the playback buffer, and does so repeatedly during the entire playback of the sample (this

effect will start and stop with the controls). These buffer values are modified slightly to stretch the wave

to fit it to its window properly.

Loading a Sample

Samples are loaded into Beads through the use of Sample objects, and are manipulated and played

using SamplePlayer objects. SamplePlayer objects allow us to interface with Samples without having to

deal with lower-level manipulation of discrete values.

Playing a Sample

During any playback of a sample, a buffer is setup using the RecordToSample object, another instance of

the Sample object, and an AudioFormat object, all of which allow us to capture any output being passed

through an AudioContext.

Volume

The volume control is based upon a simple increase in gain, using a Gain object as defined in the Beads

library. Each discrete value currently being played from the sample has its value multiplied by a float

multiplier (between 0 and 1), captured directly from the volume knob. This effect is applied to the

entirety of the sample during playback, modifying the volume. This principle is based upon the design of

the .wav format. In the design of this program, the Gain uGen is patched into the uGens that handle

delay and panning.

Speed

The speed control directly manipulates the playback rate of the SamplePlayer, but does not synchronize

this rate increase or decrease with the recording rate of the buffer. This allows us to alter the frequency

of the sample as it plays back, and directly save those changes to the new sample.

Echo

Echo is accomplished using a TapIn and TapOut object. The TapIn object retrieves audio samples as they

are being served up by some AudioContext object (specified at instantiation). TapOut has a TapIn object

patched into it, as well as a delay (in ms) and pushes the samples out to the patched in AudioContext

after the specified delay. In this program, the delay of the TapOut object is tied directly into the output

of the Echo knob, which allows real-time addition of echo to the recording buffer.

Lowpass

A lowpass filter was added to this project, not because it was difficult to implement, but rather to

reduce clipping of certain samples during playback for better sounding recordings. The Lowpass filter

was implemented using the OnePoleFilter object, which simply is patched into an AudioContext and

given a maximum allowed frequency. The filter’s maximum frequency is then modified by the lowpass

knob’s function.

Panning

Panning was also added for cleanup of sample balance, (although you can use it to make weird sounding

transitions between headphones if preferred) and was implemented using the Panning object, which is

patched into an AudioContext and a value between -1 and 1 to represent the balancing between left

and right channels, respectively. The Panning knob simply outputs a fraction between these values to

modify how much gain is delivered to each channel.

Instructions for Use

Volume – simply click and hold the mouse button on the Volume dial and drag left or right to increase

and decrease volume of the sample playback. Note that you can use this to control the intensity of the

samples in the recording (allowing you to apply a fade-out effect to the recording).

Speed – click and hold to manipulate the speed; turning the dial to the left of the centrepoint will play

the sample back at a fraction of the original sample speed, whereas turning it to the right of the

centrepoint will increase playback speed.

Echo – The echo is set to zero by default, but turning the dial will begin to implement a delay effect, up

to a maximum of 2000 ms. Turning down the delay to zero again while the delay buffer is playing back

will purge the buffer of any excess information, allowing you to restore the playback to an echoless state

without having to wait for the buffer to empty (this allows you to implement echo for key parts of the

sample if you’d like).

Lowpass – the low pass filter, by default, is turned up to maximum, allowing all frequencies below

20,000 Hz to play at their respective gain. As this knob is turned left, this frequency range will decrease,

drastically reducing the gain of frequencies nearer to the cutoff point, and gradually removing

frequencies far above the cutoff point. This is useful for samples that are clipping, allowing you to

reduce the harsh sound they produce.

Panning – as previously mentioned, panning simply allows you to adjust which stereo channels receive

what percentage of the incoming sound. This lets you create the sensation of moving audio, or simply

allows you to rebalance the sound of a sample to certain parts of the stereo output.

Load_Wave – Opens up a dialog where you can select a wave file for playback. All of the objects

associated with the controls and recording are instantiated at this point and prepared for playback.

Save_Wave – Opens up a dialog where you can save the recorded sample that you modified.

Play – Begins the sample playback, and begins recording sound from the AudioContext.

Pause – Pauses the sample playback and halts the recording for the AudioContext. Pressing Play again

will resume playback at the same location and continue recording. Please note that you can use the

Pause controls to make changes to the audio controls (and therefore, the recording) in a more precise

manner.

Stop – Stops audio playback entirely and stops recording. Please note that if you press Play again, the

current recording will be lost. If you wish to keep the recording you have made, click “Save_Wave”.

Bibliography

Bown, O. (2011, September). Beads Project. Retrieved May 1, 2012, from http://www.beadsproject.net/

Bown, O., Crawford, B., & Porter, B. (2011, September). Beads JavaDocs. Retrieved May 1, 2012, from

http://www.beadsproject.net/doc/

Schlegel, A. (2010). Control P5 JavaDocs. Retrieved May 1, 2012, from

http://www.sojamo.de/libraries/controlP5/reference/index.html

Schlegel, A. (2010). processing GUI, controlP5. Retrieved May 1, 2012, from controlP5:

http://www.sojamo.de/libraries/controlP5/

	Overview
	Technical Foundations
	General
	Visualizer
	Loading a Sample
	Playing a Sample
	Volume
	Speed
	Echo
	Lowpass
	Panning
	Instructions for Use

	Bibliography

