Syntax Analysis

- structural relationship among tokens
- detection of incorrectly formed programs
- compiler organization
 - multi-pass
 - input file contains tokens
 - only valid tokens (maybe special error token)
 - scanner guarantees eof token
 - single pass
 - parser calls scanner when needs next token
 - scanner handles eof and returns eof token

Recursive Descent Parsing

- recursive
- top-down
- single symbol (token) lookahead
 - must be able to look ahead to determine if at end of sequence
- construction rules for parsing based on syntax
 - derived from Brinch Hansen
- classes match syntax rules of language
- SyntacticUnit
 - superclass of all rule (syntactic unit) classes

```java
public abstract class SyntacticUnit {
    public abstract void parse ( ) ;
}
```

Rule 1

- for every EBNF rule of the form:

 \[N \rightarrow E \]

 there is a parser class of the same name with the form:

```java
public class N extends SyntacticUnit { 
    public void parse ( ) { 
        a(E); 
    } // parse
}
```

where \(a(E) \) is an algorithm which parses (recognizes) the sequence of tokens which satisfies the expression \(E \).

- \(a(E) \) looks at tokens in order
- once \(a(E) \) has found a string satisfying \(E \), it has input all the tokens satisfying \(E \) plus one more (single symbol lookahead)
- if sequence does not satisfy \(E \), \(a(E) \) issues an error message after inputting some number of tokens
Rule 2

- an expression of the form:
 \[E_1 \; E_2 \; \ldots \; E_n \]
is recognized by the algorithm \(a(E_1 \; E_2 \; \ldots \; E_n) \) through recognition of the individual subexpressions in turn, i.e.:
\[
a(E_1 \; E_2 \; \ldots \; E_n) = a(E_1) \cdot a(E_2) \cdot \ldots \cdot a(E_n)
\]

Rule 3

- the expression \(t \) (where \(t \) is a token) is recognized by a call to the
 procedure \(\text{expect}(t) \), i.e.
\[
a(t) = \text{expect}(t)
\]
where \(\text{expect} \) (defined in \(\text{SyntaxicUnit} \)) is:

```java
protected void expect (TokenKind t) {
    if (current token is t) {
        next token
    } else {
        syntax error
    }
} // expect
```

- note that \(\text{expect} \) satisfies the requirements for a parsing algorithm
 (i.e. inputs a string of tokens matching \(E \) (plus one more) or emits a
 syntax error after inputting some number of tokens)

Rule 4

- the expression \(N \) (where \(N \) is a non-terminal symbol) is recognized
 by a call to the \(\text{parse} \) method of a new object \(n \) of class \(N \), i.e.
\[
a(n) = n = new N();
n.parse();
\]
Option and Repetition

- consider the syntax rule for `class-dcl`:
  ```java
  class identifier [ extends identifier ] is body end
  ```
 The extends clause only occurs when `extends` occurs, so it can be handled by:
  ```java
  if (current token is extends) {
    parse extends clause
  }
  ```
- consider the syntax rule for `while_stmt`:
  ```java
  while expression do [ statement ] end ;
  ```
 Which indicates 0 or more occurrences of `statement`, and can be parsed by:
  ```java
  while (current token starts a statement) {
    stmt = new Statement();
    stmt.parse();
  }
  ```
- Note that `{ statement } `⇒ `[statement [statement { … }]]`

First Symbols

- From Brinch Hansen
- Define `first(E)` to be the set of all possible symbols starting strings derived from `E`
- E.g.
  ```plaintext
  first(class-dcl) = { class }
  first(var-dcl) = { identifier }
  first(method-dcl) = { identifier, method }
  ```
Rule 5

- an expression of the form:

 \[E \]

 is recognized by the algorithm:

 \[
 a(\[E \]) = \text{if} (\text{current token in first}(E)) \{ \\
 a(E) ; \\
 \}
 \]

Rule 6

- an expression of the form:

 \{ E \}

 is recognized by the algorithm:

 \[
 a(\{ E \}) = \text{while} (\text{current token in first}(E)) \{ \\
 a(E) ; \\
 \}
 \]
Rule 7

* if all of the expressions \(E_i \) are non-empty, an expression of the form:
 \[E_1 | E_2 | \ldots | E_n \]
 is recognized by the algorithm:

 \[
 a(E_1 | E_2 | \ldots | E_n) =
 \begin{align*}
 &\text{if (current token in first}(E_1)\text{) } \{
 &\quad a(E_1);
 &\}\text{;}
 &\text{else if (current token in first}(E_2)\text{) } \{
 &\quad a(E_2);
 &\}\text{;}
 &\text{\ldots}
 &\text{else if (current token in first}(E_n)\text{) } \{
 &\quad a(E_n);
 &\}\text{;}
 &\text{else }
 &\quad \text{syntax error}
 &\}\text{;}
 \end{align*}
\]

First Symbols

* definition: \textit{first} \((E) \)
 - the set of all tokens which begin any string derivable from \(E \)

 \textit{uses}
 - develop parsing procedures
 - determine viability of single-symbol lookahead without backtracking
 - six rules for derivation
- rule 1
 - the empty expression has no first set, i.e.
 \[\text{first}(\{\}) = \{\} \]

- rule 2
 - the first symbol of an expression consisting of a terminal symbol \(t \) is the set containing that symbol, i.e.
 \[\text{first}(t) = \{ t \} \]

- rule 3
 - if all derivations from \(E \) are non-empty then:
 \[\text{first}(E F) = \text{first}(E) \]
 - e.g. \(\text{first}(\text{class-dcl}) \)

- rule 4
 - if any of the derivations from \(E \) can be empty then:
 \[\text{first}(E F) = \text{first}(E) \cup \text{first}(F) \]
 - e.g. \(\text{first}(\text{method-dcl}) \)

- rule 5
 - an expression of the form:
 \[E_1 | E_2 | \ldots | E_n \]
 has the first symbol set
 \[\text{first}(E_1) \cup \text{first}(E_2) \cup \ldots \cup \text{first}(E_n) \]
 - e.g. \(\text{first}(\text{statement}) \)

- rule 6
 - since
 \[N = \{ E \} \text{ and } N = \{ E \} \]
 can be rewritten as
 \[N = E | \text{empty} \text{ and } N = E N | \text{empty} \]
 respectively:
 \[\text{first}(\{ E \}) = \text{first}(E) \cup \text{first}(\{} = \text{first}(E) \]
 \[\text{first}(\{ E \}) = \text{first}(E N) \cup \text{first}(\{} = \text{first}(E) \]
 \[\text{first}(\{ E \} F) = \text{first}(E) \cup \text{first}(F) \]
 \[\text{first}(\{ E \} F) = \text{first}(E) \cup \text{first}(F) \]
 - e.g. \(\text{first}(\text{method-dcl}) \) and \(\text{first}(\text{method-body}) \)
Follow Symbols

- from Brinch Hansen
- definition: follow(n)
 - the set of tokens which can follow strings generated from n in strings generated by the grammar
- uses
 - determine viability of single-symbol lookahead without backtracking
- look at each occurrence of n on the right-hand side of a rule in the grammar
- rules have the forms:
 \[N = m n o \]
 \[N = m \{ n \} o \]
 \[N = m [n] o \]
- four rules for derivation
• rule 1
 - if all strings derivable from o are non-empty then
 $\text{follow}(n)$ includes $\text{first}(o)$
• rule 2
 - if some of the strings derivable from o can be empty then
 $\text{follow}(n)$ includes $\text{first}(o) \cup \text{follow}(N)$
• rule 3
 - if o is the empty sequence then
 $\text{follow}(n)$ includes $\text{follow}(N)$
• rule 4
 - if n occurs as $\{n\}$ then
 $\text{follow}(n)$ includes $\text{first}(n)$

 e.g. $\text{follow}(\text{var-dcl})$

follow(var-dcl)

Grammatical Restrictions

- choice ([], [], []) in grammar implies parser must be able to decide which alternative to follow
- if no backtracking, must decide looking at only a fixed number of tokens (one, for single symbol lookahead) ahead of the point where the decision must be made
- poses restrictions on grammar
 - if each alternative begins with an unique token the problem is trivial
 - can design language to allow this e.g.
 - "let a := b instead of a := b"
 - "call p(x) instead of p(x)"
 - parser can know (at any point) which rules can apply and thus only those which apply at this point must begin with unique symbols
Restriction 1

- in each expression of the form $E | F$
 - the alternatives (E & F) must begin with disjoint sets of symbols, i.e.:
 \[\text{first}(E) \cap \text{first}(F) = \{ \} \]
 - e.g. in statement
 - check all pair-wise intersections for null set, e.g.
 \[\text{first}(\text{method-call-stmt}) \cap \text{first}(\text{assign-stmt}) = \{ \text{super, identifier} \} \cap \{ \text{super, identifier} \} = \{ \} \]
 - single symbol lookahead cannot be used!
 - rewrite grammar to remove problem

Restriction 2

- if an empty sentence can be derived from rule N then
 \[\text{first}(N) \cap \text{follow}(N) = \{ \} \]
- since
 \[N = [E] \text{ and } N = \{E\} \]
 are abbreviations for
 \[N = E | \text{empty} \text{ and } N = E N | \text{empty} \]
 respectively
 \[\text{first}(E) \cap \text{follow}([E]) = \{ \} \]
 and
 \[\text{first}(E) \cap \text{follow}({E}) = \{ \} \]
- e.g. in method-dcl and body
 - this restriction prohibits left (infinitely) recursive rules
 \[\text{expr} = \text{expr} \{ \text{op expr} \} \]
 by restriction 2
 \[\text{first}([\text{op expr})] \cap \text{follow}([\text{op expr})] = \text{first}([\text{op}) \cap \text{follow}([\text{expr})] = \text{first}([\text{op}) \cap \{ \} \]

Syntax Errors

- parser detects an error, then what?
 - quit
 - continue with same symbol
 * i.e. assume missing symbol
 - ignore the symbol
 * i.e. assume inserted symbol
 - skip some number of symbols
 * i.e. 0 or more

 - e.g.
ignoring symbol
int x,
int y;
int z;
same symbol
int x,
int y;
int z;

Recovery

- error could be
 - omitted symbol(s)
 - inserted symbol(s)
 - replaced symbol(s)
- goal
 - correct context to continue parse
- solution
 - at any point there is a set of symbols which can legitimately follow the current expression in current context (not follow set) — the stop set
 - abandon parse of current expression and skip 0 or more symbols until get a symbol which can legitimately follow the expression and continue parse at that point

- e.g.
 - ; is error (expecting identifier), abandon parse of ; and skip to start of whatever can follow in context (var-dcl or constr-dcl) to continue (i.e. skip , and continue with int as start of var-dcl).
 - ; is error (expecting identifer) abandon parse of var-dcl and skip to start of whatever can follow var-dcl (here semicolon) to continue (i.e. skip 0 symbols and continue with ;).
Stop Sets

- context of rule is defined by parent rule
- cannot proceed past the set of symbols which may occur after it in the parent rule
- parent rule also has a stop set
- stop set for child is union of the local context and the stop set for the parent
- must revise the 7 parser construction rules
 - original technique by Hartmann (1977) with improvements by Pemberton (1980) and Balanescu, Gavrila, Gheorghe, Nicolescu & Sofonea (1986)

Symbol Sets

- need sets of symbols (TokenKind)
- class TokenSet
 - should be immutable (treat sets as values)
 - private constructor(s)
 - operations
 - factory methods oneOf
 - var-args
 - overloading
 - contains
 - except
 - toString
Rule 1

- for every EBNF rule of the form:

 \[N = E \]

 there is a parser class of the same name with the form:

  ```java
  public class N extends SyntacticUnit {
    public static final TokenSet STARTS = ...;
    public N ( TokenSet s ) { super(s); }
    // constructor
    public void parse ( ) {
      a(E,stopSet);
      // parse
    }  // N
  }
  ```

 where \(a(E,stopSet) \) is an algorithm which parses (recognizes) the sequence of tokens which satisfies the expression \(E \) and \(stopSet \) is a set of tokens which could follow \(E \) in the current context (not necessarily follow(\(E \))).

- \(a(E,stopSet) \) looks at tokens in order and either:
 - recognizes a sentence derivable from \(E \) and inputs all the of the sentence plus one more symbol
 - fails to recognize a sentence derivable from \(E \), generates an error message and inputs some number of symbols until it has input one symbol from \(stopSet \).

Rule 2

- an expression of the form:

 \[E_1 E_2 \ldots E_n \]

 is recognized by an algorithm \(a(E_1 E_2 \ldots E_n,stopSet) \) by recognition of the individual subexpressions in turn, i.e.:

  ```java
  a(E_1 E_2 \ldots E_n,stopSet) =
  a(E_1,first(E_2) \cup \ldots \cup first(E_n) \cup stopSet)
  a(E_2,first(E_3) \cup \ldots \cup first(E_n) \cup stopSet)
  \ldots
  a(E_n,stopSet)
  ```

Rule 3

- the expression \(t \) (where \(t \) is a token) is recognized by a call to the procedure \(expect(t) \) where \(expect \) (defined in \(SyntacticUnit \)) is:
  ```java
  protected void expect ( TokenKind expected, String errMsg, TokenSet context ) {
    if ( tokenIs(expected) ) { accept(); }
    else { listing.writeError(errMsg, context.except(expected)); }
  }  // expect
  ```

 \(skipTo \) discards tokens until it encounters one in the specified set.
Rule 4

- the expression N (where N is a non-terminal symbol) is recognized by a call to the `parse` method of a new object n of class N, i.e.

 $a(N, \text{stopSet}) = n = \text{new } N(\text{stopSet});$

 $n.parse();$

Rule 5

- an expression of the form:

 $\{E\}F$

 is recognized by the algorithm:

 $a(\{E\}F, \text{stopSet}) =$

 $\text{check(oneOf(first(E), first(F)),..., stopSet); if (tokenIn(first(E))) { a(E, oneOf(first(F), stopSet); }); a(F, stopSet);}$

 where `check` (defined in `SyntacticUnit`) is

 protected void check (TokenSet expect, String errMsg, TokenSet context) {
 if (! tokenIn(expect)) {
 listing.writeError(…);
 skipTo(oneOf(expect, context));
 });
 // check

Rule 6

- an expression of the form:

 $\{E\}F$

 is recognized by the algorithm:

 $a(\{E\}F, \text{stopSet}) =$

 while (true) {
 check(oneOf(first(E), first(F),..., stopSet);
 if (tokenIn(oneOf(first(F), stopSet).except(first(E)))) break;
 if (tokenIn(first(E))) {
 a(E, oneOf(stopSet, first(E), first(F)));
 };
 a(F, stopSet);
Rule 7

- if all of the expressions E_i are non-empty, an expression of the form:
 \[E_1 \mid E_2 \mid \ldots \mid E_n \]
 is recognized by the algorithm:

  ```
  a(E_1 \ldots E_n, \text{stopSet}) =
  check(oneOf(first(E_1), first(E_2), \ldots, first(E_n)), \text{stopSet});
  if ( \text{tokenIn(first(E_1))}) {
  a(E_1, \text{stopSet});
  }
  else if ( \text{tokenIn(first(E_2))}) {
  a(E_2, \text{stopSet});
  }
  \ldots
  else if ( \text{tokenIn(first(E_n))}) {
  a(E_n, \text{stopSet});
  }
  ```

Special Cases

- $a(E \{E\} F, \text{stopSet}) =$

  ```
  do {
  a(E, oneOf(\text{stopSet}, first(E), first(F)));
  check(oneOf(first(F), \text{stopSet}), first(E), first(F));
  while (\text{tokenIn(oneOf(first(F), \text{stopSet}), except(first(E)))})
  a(F, \text{stopSet});
  ```

- $a(E \{t \} F, \text{stopSet}) =$

  ```
  while (true) {
  check(oneOf(first(F), t), \text{stopSet}, first(E), first(F));
  if ( \text{tokenIn(oneOf(first(F), \text{stopSet}), except(t))})
  break;
  a(E, oneOf(\text{stopSet}, first(E), first(F)));
  expect(t, oneOf(\text{stopSet}, first(E), first(F)));
  }
  a(F, \text{stopSet});
  ```

- if first(F)\text{stopSet} includes any of first(E), this will prematurely exit on missing t, can correct by

  ```
  a(E \{t \} F, \text{stopSet}) =
  while (true) {
  a(E, oneOf(\text{stopSet}, first(E), first(F), t));
  check(oneOf(first(F), t), oneOf(\text{stopSet}, first(E), first(F)));
  if ( \text{tokenIn(oneOf(first(F), \text{stopSet}), except(t))})
  break;
  expect(t, oneOf(\text{stopSet}, first(E), first(F)));
  }
  a(F, \text{stopSet});
  ```

- however, this favors missing t over stopSet and generates an extra error message
SyntacticUnit Class

- Abstract superclass of all syntactic unit classes
- Maintains a set of tokens (`stopSet`) beyond which the `parse` procedure is not to continue
- All subclasses define a set of tokens (`STARTS`) as `first(N)`
- Subclasses define parsing method by implementing `parse`
- Constructor
 - Initializer `stopSet`
- Convenience (helper) methods
 - `tokenIs` and `tokenIn`
- Parsing helper methods
 - `accept`
 - `expect`
 - `check`
 - `skipIn`
 - `recognized`

Examples

- `return-stmt`
- `class-dcl`
- `statement`
- `if-stmt`

Testing Syntactic Analysis

- Input
 - Class
- Output
 - Listing with error messages
 - To trace execution, can display message whenever a syntactic unit is recognized (`recognized`)
- Tests
 - Every construct (syntactic unit)
 - For alternatives (|), each part
 - For options ([]), with and without
 - For repetitions ({}), 0 and 1
- Error recovery
 - Test omitted, inserted and replaced symbols
- Many short tests rather than one large test