What is Jamal?

Jamal is a Java application that creates a virtual computer which reads in MAL code and optional input data, executes MAL code, and outputs results. 

Jamal was primarily built and designed as a replacement for the previous method of executing MAL code through Marmalaid and SPIM, and to be used as an aid in the compiler construction course.

It was built by Joe Peric, who, at the time was a computer science student at Brock University and enrolled in the compiler construction course, with help from Dave Bockus and Dr. Dave Hughes.

Version 1.0 of Jamal was completed on May 26, 2008. Minor work has been done on it since, and possibly more work to follow.

Program Requirements

JRE 1.6 or higher

Formatting

The format of the .spm (code) files will be as described by Dr. Dave Hughes. Jamal is intended to run the MAL code according to those specifications.

Input files must have one piece of data per line. For example "Bob" and "42.3" would be on their own lines in the file. Jamal reads one line and parses it for the specified piece of data and moves to the next line of the input file.

How to Jamal in command line mode

In order for a program to run in Jamal, all the program's .spm files must be in the same directory. If the program has an input file and the you wish to use the input file, it must also be in this directory.

If the Jamal.jar flie is in the same directory as the program files for the program you wish to run, and no input file is needed for the program, the program can be run with a simple command:


java -jar Jamal.jar -c

This command will take all the .spm files from memory, prepare the program for execution, and start execution of the program. Note that the flag -c is used. This is so there is at least one argument passed to the program so that it does not execute in GUI mode.

If the files to be executed are in a directory different from the current one that the Jamal.jar file is in, the target directory must be specified. For example, if the current directory contains the Jamal.jar file, and the files to execute are in the directory C:\test, then this command can be used to run the program in the directory:


java -jar Jamal.jar -c C:\test
If you wish to use the input file in that directory, simply append the flag -i and the name of the input file. In this case, the input file is named input.in. Also in this case, we see that there are .spm files specified. This means that Main.spm along with the specified .spm files will be loaded into the program


java -jar Jamal.jar -c C:\test employee.spm report.spm -i input.in

If the current active directory has the Jamal.jar file, the .spm files, and the input file, this command will execute the program with the input file for input, and create an output file in the current directory:


java -jar Jamal.jar -c -i input.in -o output.txt

In order to load and execute a program, the directory with the .spm files must have one file named Main.spm. This file is needed to start program execution.

When the program has been successfully loaded, Jamal will prompt the user with "Running Jamal in command line mode". This means the program has loaded into the “memory” without error and that program execution will start.

How to run Jamal in GUI mode

To load the GUI version of Jamal, double-click the Jamal.jar file. What you will see should be similar to the image below:

[image: image1.png]Jamal

File System Displaymode Memory settings

View1 | View2

[=[ofx]

Code:

Stack trace:

Registers:

Add program file

Select Input File

Select Output File

pc:

Step





The Menus

File: From here, you can select whether input will be by file or console, output will be file or console, clear parts of memory on the machine, all memory on the machine, or exit the program.

System: This is where the user can initialize the machine when all the program files and any other optional I/O files are set. After the machine is initialized, program execution may begin.

Display Mode: The user may select whether they prefer to see labels in the code section or the addresses they are translated to.

Memory Settings: The amount of memory reserved for code, stack, heap and globals may be set here. The defaults are sufficient for small programs, but a larger size might be needed for larger programs.

Buttons

Add Program File: Click this button to add code for a program. When the button is pressed, a file chooser box will appear. Use this to navigate to the .spm files that the program you wish to run is comprised of. (you can select multiple files here by control+clicking them)

Select Input/Output File: Clicking these buttons will also open up a file chooser box. Navigate to the file you wish to use for file input or output. These buttons are enabled by choosing the correct option in the menu.

Step: When the program is loaded and the system is initialized, the user can press this button in order to execute one instruction which is located at the program counter. This is useful when debugging applications or when you wish to see how the instructions operate. Each time the button is pressed, an instruction will be executed and all the displays will be updated.

Run: This button is used to execute an initialized program. If there is any console input, you will be prompted during execution for this input. Otherwise, the program will face an exception, or execute cleanly and output any results.

Displays

These displays tell you nearly everything about the state of the virtual computer. These displays refresh after an instruction executes. Some displays are visible on one tab, some of the displays on the other.

Code: Once code is loaded into the system and the machine is initialized, Jamal will display all the program code here with its address in memory, and labels in instructions and preceding instructions.

Registers: In this window, all the registers and their contents are visible. This is updated after every instruction execution.

Stack: Shows the system stack. Labels the stack pointer and frame pointers. All the content in the system stack is visible, and addresses are displayed.

Heap: Shows the system heap and its contents.

Globals: Used for strings and temporary strings in this current iteration of Jamal.

Stack Trace: The stack trace for the procedures taken in the program currently running on the virtual machine.

Output: If console output is selected all output instructions will print here.

PC: Displays the current value of the program counter.

Quick tutorial

1. Open up the GUI version of Jamal

2. Click "Add program file"

3. Select the program files you wish to run. These files are the .spm files generated by the program you had compiled. For this example, we will use the Main.spm and Employee.spm files from the sample employee payroll program.

4. After the files have been selected, select "Initialize Machine" in the system main menu. At this point, the code, registers, stack and heap windows should have something in them. Switch tabs for different windows. You can scroll through the windows to look at the contents of the virtual computer's memory and see if you have all the code files necessary for this program. You can add more files by repeating step #3 and choosing the files that you missed.

[image: image2.png]File System Displaymode Memory settings

View1 | View2

Code:

[=[ofx]

Stack trace:

Registers:

180
a0
a1
oz
193
a4
fas
196
1oy
98
190
200
201

203
204
205
208
07
208
208
210
11
212
213
14
215
216

varnam
val 10
psh1o

val 10
sels
val 1o
calon
Pt
varn s
val 10
pfitr0

pin

bra Main_1

(202 Main_2: pin

varn 210
val 1o

pint 0
cstMain_str_a 10
pstrro

pin

1

1S Main 0

mth Main_create

Sir Main_str_0" National Widgy

sir Main_str_1

Sir Main_str_2"Emp # Hours

sir Main_str_3

sir Main_str_4 " employees proc|

Payroll Repo

D]

hdd p

rogram file

Select Input File

Select Output File

PC: 120

step





5.At this point, we can press "run" and the program will run. Or we can go through instruction by instruction and look at the contents of the system.

6. After clicking the step button many times, and answering prompts (since the input mode is console input by default) we can see that there is some data in the heap and stack, and some of the registers contain something other than a zero.

[image: image3.png]B Jamal (-[o[x]

File System Displaymode Memory settings

View 1 | View2

Stack: Heap: Globals:

1000: 3001 000:0
1001 001113
1002 0024
1003 300330
1004
1005
1008
1007
1008
1008
1010
1011
1012
1013
1014
1015
1016
1017

i 1018
1019
1020
1021
1022
1023
1024

jsp: 1025

Registers:
1021
3001
mih Employee_create

001 Output:

National Widgets Inc.
Payroll Report

01 Emp# Hours Rate Pay

Add program file Select Input File Select Output File PC: 163 Step Run





7. At any time during the instruction stepping, you may press "Run" to run the program until execution is complete.

