B. Ross

Interior of Triangle Example

Given fast signed distance of point-to-line formula:
$\operatorname{dist}(\mathrm{Pa}, \mathrm{Pb}, \mathrm{P})=\mathrm{Ax}+\mathrm{By}+\mathrm{C}$
where: $A=(y 0-y 1)$
B = (x1-x0)
C $=x 1 y 1-x 1 y 0$
$\mathrm{Pa}=(\mathrm{x} 0, \mathrm{y} 0)$,
$\mathrm{Pb}=(\mathrm{x} 1, \mathrm{y} 1)$
and $P=(x, y)$
Here, Pa and Pb are 2 points on an edge of triangle (for example, vertices), and P is a point on the plane. We wish to test if P is inside or outside the triangle.

In the above illustration, testing point Q :

$$
\begin{aligned}
& \operatorname{dist}(P 1, P 0, Q)=-1 \\
& \operatorname{dist}(P 2, P 1, Q)=1 \\
& \operatorname{dist}(P 0, P 2, Q)=-1
\end{aligned}
$$

Since signs change, then Q is outside of triangle (could have stopped after second call to dist).

COSC 3P98 Computer Graphics
B. Ross

On the other hand, for point R:

$$
\begin{aligned}
& \operatorname{dist}(P 1, P 0, R)=-0.5 \\
& \operatorname{dist}(P 2, P 1, R)=-0.5 \\
& \operatorname{dist}(P 0, P 2, R)=-1
\end{aligned}
$$

Since the signs are the same, R is in the interior of the triangle.

