COSC 2P93 FINAL April 2002
page
 of 11

BROCK UNIVERSITY

Final exam
pages: 11

Course: COSC 2P93 Logic and Functional Programming
students: 40

Date of exam: Wednesday, April 24, 2002
hours: 3

Time of exam: 1900-2200

Instructor: B. Ross

NAME (print): ___________________________________

STUDENT NUMBER: ________________________________

There are 6 questions totalling 100 marks.

No aids are permitted. Use or possession of unauthorized materials will automatically result in a grade of zero for this examination.

Please answer all questions on the exam paper. Use the backs of pages if necessary.

Read the questions carefully. Keep written answers brief and to the point. Write legibly.

A grade of 40% is required on this exam to pass the course.

	Question
	Total
	Mark

	1
	12
	

	2
	8
	

	3
	18
	

	4
	20
	

	5
	12
	

	6
	30
	

	TOTAL:

	100
	

Question 2 [12] Define and briefly discuss the following terms:

a) var(A)

b) clause(A, B)

c) deterministic predicate

d) meta-interpreter

e) assert(A)

f) compile(A)

Question 2 [8] Define and discuss the concepts of declarative and procedural Prolog programming. Include in your discussion a comparison of these styles of programming, as well as their relative advantages and disadvantages.

Question 3 [6+2+2+2+6 = 18] Consider the following program:

even_odd(L, even) :- even(L).
% 1

even_odd(L, odd) :- odd(L).

% 2

even([]).

% 3

even([A,B|T]) :- even(T).

% 4

odd([C]).

% 5

odd([C,D|T]) :- odd(T).

% 6

(a) Draw a computation tree for the query: ?- even_odd([1,2,3], T).

Be sure to label all the branches of the computation tree appropriately. Circle the final solution obtained, if any.

(b) Rewrite the program to remove all singleton variables.

(c) Using cuts, modify the program so that needless backtracking will not occur.

(d) Repeat (c), but this time use implication (“A -> B ; C”) instead of cuts.

(e) Finally, write a new predicate “even_odd_lists/3”. It takes as an input argument a list of embedded lists. The output arguments are 2 lists. The first list contains all the lists from the input that have an even number of entries, and the other list has the lists with an odd number of entries. Make the predicate as efficient as possible with respect to avoiding pointless backtracking.

Question 3 (cont.)

Question 4 [6+8+6 = 20] The following questions assume that the first solution obtained is correct. Solutions obtained during backtracking can be erroneous. Hence you do not need to consider cuts.

(a) Write a predicate remove_last/3. Given a list, this predicate returns the last element of the list, along with the list with this last element removed. In the case of empty lists, it fails. For example,

?- remove_last([a,b,c,d], A, L).

A = d

L = [a,b,c]

(b) Write a predicate odd_calc/2. Given a list of numbers [K1, K2, K3, K4, ..., Kn], odd_calc returns the following calculation: K1*Kn + K2*K(n-1) + K3*K(n-2) + ...

For example, odd_calc([1,2,3,4,5], Val) computes Val = 1*5 + 2*4 + 3*3 = 22. If the list is empty, it computes 0 (zero). You can presume that the list will contain legal numbers.

(c) Rewrite odd_calc/2 from (b), by adding some error recovery. This version of odd_calc will not process any item in the list that is not a legal number. As before, odd_calc([1,a,2,3,cat,dog,4,[oops],5], Val) computes Val = 22. The illegal members have been ignored.

Question 4 (cont.)

Question 5 [12] Write a Prolog program that will sort a list of numbers into increasing order. You can implement any sort algorithm you know of. Naturally, you may not use any built-in sort predicates!

Question 6 [25+5 = 30] A die is a cube with a number between 1 and 6 on each side.Yahtzee is a game of chance using 5 die (“dice”). A player rolls the dice up to 3 times, holding some dice as desired, until a good set of values is obtained. Then the player scores the dice according to the following chart:

	
	Name
	Score
	
	Name
	Score

	# 1
	1’s
	sum of 1’s
	# 7
	3 of a kind
	sum of all

	# 2
	2’s
	sum of 2’s
	# 8
	4 of a kind
	sum of all

	# 3
	3’s
	sum of 3’s
	# 9
	Full house
	25

	# 4
	4’s
	sum of 4’s
	# 10
	Small straight
	30

	# 5
	5’s
	sum of 5’s
	# 11
	Large straight
	40

	# 6
	6’s
	sum of 6’s
	# 12
	Chance
	sum of all

	
	
	
	# 13
	Yahtzee
	50

One set of dice values can be scored with one and only one of the above categories at once. However, one dice roll can qualify for different categories. The strategy of the game is for the player to select a good category for the set, based on probabilities.

The set of dice are scored as follows. If there is at least 1 die having a value of “1”, then category #1 can be used, in which all the dice of value “1” are summed up. The entries #2 through #6 are similar. Hence, if a roll has the values “2 5 6 6 1”, then it qualifies for categories #1 (tot= 1), #2 (tot=2), #5 (tot=5), and #6 (tot=6+6=12).

3-of-a-kind can be selected if there are 3 or more dice with the same value. For example, “2 3 3 3 6” would qualify. The score is the sum of the dice (17 in this case). 4-of-a-kind is similar, except that there must be 4 identical values. Full house means that there are 2 of one value, and 3 of another: “2 2 5 5 5”.

A small straight is a sequence of 4 consecutive values. For example, “1 2 3 4”, “2 3 4 5”, or “3 4 5 6”. A large straight is a consecutive sequence of 5 values: “1 2 3 4 5” or “2 3 4 5 6”.

Chance can be used for any roll. Sum the dice values for the score.

Finally, a Yahtzee is when there are 5 of the same value: “1 1 1 1 1”.

[25 marks] Write a Prolog predicate(s) score/3. The input argument is a list with the dice values rolled by a player. Score then returns a valid score for the roll. One argument is a constant that denotes the category qualifying for the roll. The other output argument is the actual score for that category. During backtracking, score will return successive legal categories and scores for the roll. For example,

?- score([1,4,2,4,3], Cat, Val).

Cat = 1, Val = 1 ;

Cat = 2, Val = 2 ;

Cat = 3, Val = 3 ;

Cat = 4, Val = 8 ;

Cat = small_straight, Val = 30 ;

Cat = chance, Val = 14 ;

no

[5 marks] One final requirement is that score should not return duplicate categories during the scoring process. For example, the roll “1 2 3 4 5” has 2 instances of small straights; only one should be reported. Similarly, “4 4 4 4 4” has a number of possible combinations of 3-of-a-kind. Only one should be generated.

Question 6 (cont.)

Question 6 (cont.)

*** student_mood(happy) :- exam(over), pass(exam). ***

