COSC 2P93 FINAL April 2001 page
 of 13

BROCK UNIVERSITY

Final exam
pages: 13

Course: COSC 2P93 Logic and Functional Programming
students: 20

Date of exam: Tuesday, April 24, 2001
hours: 3

Time of exam: 1900-2200

Instructor: B. Ross

NAME (print): ___________________________________

STUDENT NUMBER: ________________________________

There are 7 questions totalling 94 marks.

No aids are permitted. Use or possession of unauthorized materials will automatically result in a grade of zero for this examination.

Please answer all questions on the exam paper. Use the back of pages if necessary.

Keep written answers brief and to the point. Write legibly.

Read the questions carefully. Pay attention to when a question requires a pure declarative Prolog solution.

A grade of 40% is required on this exam to pass the course.

	Question
	Total
	Mark

	1
	12
	

	2
	8
	

	3
	8
	

	4
	12
	

	5
	12
	

	6
	12
	

	7
	30
	

	TOTAL:

	94
	

Question 2 [12] Define and briefly discuss the following terms:

a) backtracking

b) cut

c) univ (=..)

d) Constraint logic programming (CLP)

e) Meta-interpreter

f) nonvar(_)

Question 2 [8] Define the following terms:

declarative logic programs, procedural logic programs, pure Prolog, extralogical Prolog

Discuss how these concepts relate to one another.

Question 3 [8]

 (a) Consider the following query and program:

?- maxlist([5,4,3,2,1], [2,10,3,20], A).

maxlist([], _, []).

 %1

maxlist(_, [], []).

 %2

maxlist([A | R], [B | S], [A | T]) :- (A > B, (maxlist(R, S, T). %3

maxlist([A | R], [B | S], [B | T]) :- maxlist(R, S, T). %4

(a) What is/are the computed value(s) for A for the above query and program, including backtracking results?

(b) If a cut is inserted at location ((ie. before A>B), explain its effect on the above, and program execution in general.

(c) If a cut were placed at location (instead (ie. after A>B), what is its overall effect on the query answer? Execution in general?

(d) Rewrite the program without using explicit cuts so that the program behaves as in question (c) above.

Question 4 [12] Write a declarative pure Prolog predicate remove/4, which performs as follows. Given a goal remove(Type, Item, List, Result):

(a) if Type=first, then the first instance of Item is removed from list List, resulting in list Result. If Item is not found in List, then List is returned in Result.

(b) if Type=all, then all instances of Item are removed in List, resulting in list Result. Again, if no instances of Item are in List, then List is returned in Result.

(c) if Type is anything other than first or all, the predicate fails.

In addition, backtracking should not result in erroneous solutions. You may add any predicates which help the implementation, as long as they are declarative pure Prolog predicates.

Question 5 [12] Consider a basic arithmetic expression language defined by the BNF grammar:

E ::= n | E+E | E-E | E*E | E/E

where n is an integer. Write a declarative pure Prolog predicate simplify/2 which takes a syntactically valid expression written in the above expression language, and performs some basic symbolic simplification transformations on it. You can assume that the 1st answer obtained is correct, and that backtracking behavior after that answer can be ignored. The 8 transformations to be implemented are:

E + 0 (E

E + E (2*E

0 + E (E

E – E (0

E * 1 (E

E / 1 (E

1 * E (E

E / E (1

An example execution is as follows:

?- simplify(0+(((x+x)/(2*x))*1), F).

F = 1

?- simplify ((x+x)+(x+x), F).

F = 2*(2*x)
Question 5 (cont)

Question 6 [12] Write a Prolog utility countprog/2, which takes as input arguments the functor and arity identifying some (dynamic) predicate, and then prints the following information about the predicate onto the standard output: Total number of clauses, total number of facts, and total number of rules. countprog/2 does not have to be declarative. For example, for maxlist/3 in question 4:

?- countprog(maxlist, 3).

Total number of clauses: 4

Total number of facts: 2

Total number of rules: 2
Question 6 (cont)

 Question 7 [30] This question involves writing a number of utilities that could be used by a poker playing program. Please read all the questions carefully first before deriving solutions, because the different parts may be related to each other. You may add auxiliary predicates that are helpful. Indicate any built-in predicates you are using!

(a) [2] Derive and show an appropriate Prolog data structure for representing a single deck of playing cards (w/o jokers). Recall that a deck has 4 suits (hearts, spades, diamonds, clubs), and each suit has the cards 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A.

(b) [8] Write a utility shuffle/1. It returns in its single argument a shuffled deck of cards, using the data structure you gave in 8(a). You can assume the existence of a built-in random number generator randint(Low, High, Rand), which returns a random number Rand between Low and High inclusive.

(c) [8] Write a utility select/4, in which calls take the form select(Deck, N, Hand, NewDeck). Here, Deck is the deck of cards, N is an integer > 0, and Hand is exactly N cards randomly selected from Deck. The Deck with Hand removed from it is returned in NewDeck.

(d) [12] Finally, write a predicate pokerscore/3, in which calls take the form pokerscore(Hand, WinType, Cards). Hand is a list of exactly 5 cards from the deck. WinType is an atom denoting a winning combination of cards (for example, 2_of_a_kind), and Cards are the cards from Hand comprising that combination. Each new instance of a winning combination is reported upon backtracking. The types of wins are as follows.

2 of a kind (eg. 2 hearts and 2 clubs)

3 of a kind (eg. 3 hearts, 3 clubs, 3 diamonds)

flush (5 cards of same suit)

full house (3 cards of one kind, 2 cards of another)

Note that one hand can count as many types of wins. For example, given a hand consisting of (2 clubs, 2 diamonds, 2 hearts, 3 clubs, 3 diamonds), backtracking will produce 4 different instances of ‘2 of a kind’, 1 instance of ‘3 of a kind’, and 1 ‘full house’. However, the program should not produce permutations of winning combinations (eg. 2 clubs + 2 diamonds, then 2 diamonds + 2 clubs).

Question 7 (cont)

Question 7 (cont)

Question 7 (cont)
*** result(happy_summer) :- end(exam), pass(exam). ***

