
 Winter 2013

1

COSC 2P93 Prolog Assignment #4

Due date: 12:00 noon Friday March 15
Lates: 12:00 noon Monday March 18, -25%; not accepted afterwards.
Hand in: Printouts of your programs and adequate examples of their execution. Electronic
submission of all source code and files. Drawings of best solutions.

Travelling Salesman Problem (TSP)

The TSP is a major research problem in computer science. It is an NP-complete problem, as no
polynomial algorithm is known for it. Given a map with cities, a tour is a path that starts at some
city A, visits all cities exactly once, and then finishes at the same city A. There is a total path
distance associated with a tour. The TSP problem is to find the tour with the smallest overall
distance.

You are to write a Prolog program that searches for as small a tour as possible. Here is some
advice on how to proceed:

a. You should represent the cities using an appropriate data structure in Prolog, eg.
 city(Name, Long, Lat). % Long and Lat are the X and Y coords on map

b. You might represent a tour as a permutation of city names. For example, if there are 5 cities,
then here is a tour: [1, 5, 2, 3, 4]. The start city is 1. You can measure the total distance of the
tour by summing the Euclidean distance between cities 1 and 5, then 5 and 2, 2 and 3, 3 and 4,
and finally, 4 and 1. (Look up the (X,Y) coordinates of each city using the data structure in (a)).

c. You will have to use some sort of search algorithm. Some options are:

(i) An exhaustive search will look at all permutations, and find the one(s) with the
smallest tour distance. It guarantees an optimal solution. However, it might take too long to run!

(ii) A random (blind) search looks at random permutations until some time limit (eg. total
tours tested) is reached, and reports the best tour found. It might not be optimal, but at least
you will get a solution in a reasonable amount of time.

(iii) A simple heuristic search is the “hill climber”. It is a little more sensible than the blind
search. It works as follows:

 BestTour = random permutation of cities

Repeat until (time limit expired): {
 NewTour = (Swap 2 cities in BestTour)
 If dist(NewTour) < dist(BestTour)
 Then BestTour = NewTour
 }
 Report the BestTour

d. Feel free to use the Sicstus “random” library. Look at the Sicstus manual for how to use
facilities in it.

e. Hand-draw your best solution(s). Compare it to “known” solutions (see next point). Hand-in
your drawings.

 Winter 2013

2

f. Test your program on 2 data sets (both available on 2P93 web site):

(1) A 4-by-4 square grid of cities. (see 2P93 web site)
(2) The Djibouti data set (from the following link...):

http://www.tsp.gatech.edu/world/countries.html

http://www.tsp.gatech.edu/world/countries.html

