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Improved lower bounds on the size of the smallest
solution to a graph colouring problem, with an

application to relation algebra
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Abstract. Let G = (V,E) be a graph and let C be a finite set of colours. An edge
C-colouring of G is a function λ : E → C. If G is symmetric and λ(x, y) = λ(y, x), for
all (x, y) ∈ E, then we say that λ is a symmetric edge C-colouring.
Let n be a natural number and let Cn = {f, ci : i < n} be a set of n+ 1 colours. Using a
probabilistic construction and an application of the Local Lemma we prove that there is a
complete irreflexive graph Gn with at least two nodes and a symmetric edge Cn-colouring
λn of Gn such that for any edge (x, y) of Gn and any β, γ ∈ Cn,

f ∈ {λn(x, y), β, γ} ⇐⇒ ∃z ∈ Gn (β = λn(x, z) ∧ γ = λn(y, z))

Moreover, such a graph exists of size
(
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provided k is large enough so that
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Equivalently, for k satisfying this inequality, the symmetric integral relation algebra with
n + 1 diversity atoms one of which is flexible but where all inflexible diversity triangles
are forbidden has a representation over a base of size

(
3k−4

k

)
.

This significantly reduces the size of the smallest known edge-labelled graph satisfying
these conditions.

1 Introduction and Preliminaries

We consider a certain combinatorial problem that arises in the study of representations of
relation algebras but we present it here as a graph edge-colouring problem. Many of the familiar
edge-colouring problems ask for graphs whose edges are coloured in such a way as to avoid
specified structures, for example the Ramsay number R(c0, c1, . . . , cn−1) is one more than the
size of the largest complete irreflexive graph where each undirected edge has one of n colours
and there is no complete subgraph of size ci whose edges all have the i’th colour (for i < n). We
are asked to find a graph, as large as possible, satisfying some universally quantified constraints.

The problem we consider here is typical of another class of problems, where we seek graphs
satisfying specified universal-existential conditions; if such graphs exist then we want to know
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whether a finite graph satisfying the conditions exists and if so we would like bounds on the
smallest possible size. Model theorists have considered this kind of problem for some time now
and have succeeded in proving, for example, that for finite m, a Km free graph G and a sequence
of partial isomorphisms of G may be extended to a finite Km-free graph in which the partial
isomorphisms are induced by automorphisms [5]. Applications of this include a proof that finite
relation algebras have finite relativized representations [2], that various fragments of modal logic
have the finite model property (e.g. [8]); however the finite models given by these results tend
to be large. The techniques employed in this paper allow us to reduce the upper bound on the
smallest solution, at least for one rather specific problem of this kind.

Consider the following graph problem: find the smallest triangle-free symmetric graph G =
(V,E) where for all x, y ∈ V with (x, y) 6∈ E there is w ∈ V with (x,w) ∈ E, (w, y) 6∈ E
and there is z ∈ V with (x, z), (z, y) ∈ E. A solution, given in [1], has vertices consisting of
the ten three-element subsets of a set of size five and with an edge between such subsets iff
their intersection has at most one element (see section 6 below). We will consider a family
of generalisations of this problem to edge coloured graphs where for all vertices x, y and any
consistent choice of colours, witness nodes, like w, z above, must exist with edges labelled by
the chosen colours (see definition 2). Alm et. al. devized probabilistic constructions of edge
coloured graphs to solve these edge colouring problems, but their solutions are rather large.
Here we apply the Local Lemma to significantly reduce the upper bound on the size of the
smallest solution.

Definition 1 (Labelled Graph). A labelled graph (G,λ) consists of a graph G with vertices
V (G) and edges E(G) ⊆ V (G) × V (G), and a function λ : E(G) → C, for some set C of
colours. We say that (G,λ) is a symmetric labelled graph if G is symmetric and if (x, y) ∈
E(G)⇒ λ(x, y) = λ(y, x) (and we may say that the labelling λ is symmetric).

Next we define our edge colouring problems. The graphs we use here are all complete (either
reflexive or irreflexive), whereas the labelled graphs mentioned in the abstract were not assumed
to be complete. The discrepancy is resolved later by introducing a special colour (f) that can
be thought of as the colour of ”non edges”.

Definition 2 (Edge Colouring Problems). We define three edge colouring problems: (i)
symmetric labellings of irreflexive complete graphs, (ii) directed labellings of irreflexive complete
graphs and (iii) directed labellings of reflexive complete graphs. An instance (C, T ) of the first
problem consists of a finite set C of colours and a set T ⊆ C3 of consistent triangles closed
under permutations, i.e. if (c1, c2, c3) ∈ T then (c2, c1, c3), (c3, c1, c2) ∈ T . A solution (G,λ) of
(C, T ) is a complete symmetric irreflexive labelled graph (G,λ) such that

{(λ(x, y), λ(y, z), λ(x, z)) : (x, y), (y, z), (x, z) ∈ E(G)} = T (2)

and for all (x, y) ∈ E(G)

(c1, c2, λ(x, y)) ∈ T ⇒ ∃z ∈ G (λ(x, z) = c1 ∧ λ(z, y) = c2). (3)

The set T tells us which triangles are permitted in a solution, the conditions above imply that
permitted triangles are also obligatory, as Roger Maddux once put it. If property 3 holds for a
certain edge (x, y) we say that (x, y) is witnessed. In model-theoretic terms, (2) says that (G,λ)
is universal over T and (3) says that (G,λ) is 3-homogeneous, i.e. for any partial isomorphism
p of (G,λ) of size strictly less than 3 and any x ∈ G there is a partial isomorphism p+ extending
p and with x included in its domain.
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An instance (C,^, T ) of the directed irreflexive edge colouring problem is defined similarly,
but here ^ : C → C is any function such that (c^)^ = c (all c ∈ C) and T has to be closed
under Peircean Transforms, i.e. (c1, c2, c3) ∈ T ⇒ (c2, c

^
3 , c

^
1 ), (c3, c

^
2 , c1) ∈ T . A solution is

a complete irreflexive labelled graph (G,λ) (but the labelling λ is not necessarily symmetric)
satisfying (2), (3) and in addition, for all (x, y) ∈ E(G) we have

λ(x, y) = (λ(y, x))^. (4)

Finally, an instance (C, Id,^, T ) of the reflexive directed edge colouring problem has as an
argument a specified subset Id ⊆ C. As before, T must be closed under Peircean Transforms,
also for all c ∈ C there is a unique st(c) ∈ Id such that (st(c), c, c) ∈ T and (c1, c2, c3) ∈ T ⇒
st(c1) = st(c3). A solution (G,λ) is a directed reflexive complete graph satisfying (2), (3), (4)
and in addition, for all x, y ∈ G we have λ(x, y) ∈ Id ⇐⇒ x = y.

For each of the three problems above, if there is a solution we may also wish to know the
size of the smallest solution.

2 Equivalence with Representations of Relation Algebras

Solutions to these problems are related to representations of certain finite relation algebras, as
we explain in outline next. The reader who is more interested in graph colouring problems than
relation algebra might prefer to skip to the next section. Further references on relation algebras
include [9, 7, 10].

Definition 3. A relation algebra A = (A, 0, 1,−,+, 1′,^, ; ) consists of a set A, constants
0, 1, 1′ ∈ A, unary functions −,^ and binary functions +, ; on A, satisfying certain equational
axioms [7, definition 3.8], which state that (A, 0, 1,−,+) is a boolean algebra (A, 1′,^, ; ) is an
involuted monoid, the operators ^, ; are normal and additive, and the algebra obeys the Peircean
law. A representation h of A is a map h : A→ ℘(X ×X) (some base set X) such that h(0) =
∅, h(−a) = h(1) \ h(a), h(a + b) = h(a) ∪ h(b), h(1′) = IdX , h(a^) = {(x, y) : (y, x) ∈ h(a)}
and h(a; b) = {(x, y) : ∃z ∈ X, (x, z) ∈ h(a), (z, y) ∈ h(b)}, for all a, b ∈ A. The representation
problem for finite relation algebras is to determine whether an arbitrary finite relation algebra
is representable or not.

An atom of A is a minimal non-zero element with respect to the boolean ordering a ≤ b ⇐⇒
a+ b = b. A relation algebra is integral if the identity 1′ is itself an atom. A is atomic if every
non-zero element of A is above some atom.

Observe that every finite relation algebra is atomic.

Theorem 1. The following decision problems are undecidable: the reflexive directed edge colour-
ing problem and the irreflexive directed edge colouring problem.

Proof. The representation problem for finite relation algebras is known to be undecidable [6,
theorem 8]. We reduce that problem to the reflexive directed edge colouring problem. Given a
finite relation algebra A = (A, 0, 1,−,+, 1′,^, ; ) let C be the set of atoms of A, let Id be the set
of atoms below the identity 1′, let ^ be obtained from the converse operator on A by restriction
to C (it is easy to check that the converse of an atom is an atom and if an atom is below the
identity then it is self-converse), and let T = {(a, b, c) : a, b, c ∈ C, a; b ≥ c} (it follows from the
relation algebra axioms that T is closed under Peircean Transforms). The map that sends A to
(C, Id,^, T ) can be shown to be a reduction, in fact every solution to (C, Id,^, T ) determines a
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representation of A and every representation of A determines a solution to (C, Id,^, T ). Hence
the first decision problem in the theorem is undecidable.

There is a reduction of the reflexive directed edge colouring problem to the irreflexive one.
An instance (C, Id,^, T ) of the reflexive directed edge colouring problem is mapped to (C \
Id,^, T ∩ (C \ Id)3). Obviously if (C, Id,^, T ) is a yes instance, say (G,λ) is a solution, then
by restricting λ to irreflexive edges of G we get a solution of (C \ Id,^, T ∩ (C \ Id)3), so
the latter is a yes-instance. Conversely, if (C \ Id,^, T ∩ (C \ Id)3) has an irreflexive solution
(G,λ) then let G+ be the reflexive closure of G and extend λ to the labelling λ+ of G+ by
letting λ+(x, x) = e ⇐⇒ ∃y ∈ G e = st(λ(x, y)) (the identity condition on instances of the
reflexive problem ensures that e is uniquely determined). Now check that (G+, λ+) is a solution
to (C, Id,^, T ).

It is not known whether the symmetric edge colouring problem is decidable, although there is
a known finite symmetric relation algebra (due to Maddux) which is representable but has no
representation over a finite base [7, § 11.4(2)]. It is also not known if the problem of determining
whether a finite relation algebra has a representation over a finite base is decidable, hence if
we modify our edge colouring problems so that solutions are additionally required to be finite,
then we do not know whether the finite edge colouring problems are decidable, though it seems
unlikely.

Although the representation problem for finite relation algebras is undecidable, there are
certain cases where finite relation algebras are known to have representations. An example of
such a case is where the integral relation algebra A has a flexible atom f, an atom that is
consistent in any non-identity triangle — for all non-identity atoms a, b of A we have a; b ≥ f.
Given an arbitrary finite integral relation algebra with a flexible atom f it is fairly easy to
construct an infinite representation in a set-by-step manner, using f as the default label (see
[7, exercise 11.4(1)]). Hence if (C, T ) is an instance of the irreflexive symmetric edge colouring
problem and there is a flexible colour f ∈ C such that for all a, b ∈ C we have (a, b, f) ∈ T ,
then (C, T ) is a yes-instance (similarly if (C,^, T ) is an instance of the irreflexive directed edge
colouring problem such that there is a flexible colour f ∈ C then (C,^, T ) is a yes-instance).
However, it is not known if every finite integral relation algebra with a flexible atom has a
representation over a finite base (see [7, problem 21(21)]), This problem remains unsolved, but
it is hoped that the techniques used here may eventually be used to help solve it.

3 The colouring problem Mn

We now focus on a special case of the symmetric edge colouring problem. Let n ≥ 1, and let our
colours be C = {f, c0, . . . , cn−1}. Let Mn = (C, T ), where T = C3 \ {(ci, cj , ck) : i, j, k < n},
i.e. T is the set of triangles in which at least one edge is f. A solution (G,λ) to Mn is a 3-
homogeneous complete symmetric irreflexive labelled graph in which triangles involving f are
allowed, but no other triangles.

Existing results

It was shown in [1] that finite solutions for Mn exist for all n ≥ 1 using probabilistic methods
and gave a bound for their size. In particular they proved the following theorem.

Theorem 2. Given n ≥ 1, if k is large enough such that
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ρ(n, k) ·H(k) < 1 (5)

where

ρ(n, k) = n2(1− 1
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H(k) =
1

2

(
3k − 4

k

)2

(7)

then there exists a graph with
(
3k−4
k

)
vertices which is a solution for Mn.

The result of this paper is to provide a bound in the same form as above but replacing H(k)
with a function that takes much lower values for any given k, thus obtaining a lower upper
bound on the minimum size of a solution for Mn.

4 The main result

Theorem 3. Given n ≥ 1, if k is large enough such that

ρ(n, k) · L(k) < 1 (8)

where

L(k) = e

(
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(
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))2
)

(9)

(here e is the base of the natural logarithm) then there exists a graph with
(
3k−4
k

)
verticies which

is a solution for Mn.

5 The local lemma

To prove this result we will follow a similar procedure to the proof given in [1] but employ a
result from probabilistic graph theory, the local lemma, to reduce the bound.

The Local Lemma [4] lets us assert that given a set of events there is a positive probability
that none of these occur if they each occur with low enough probability and are sufficiently
independent.

Definition 4. Given events {A1, . . . , An} in a probability space, the dependency graph is the
symmetric graph with vertices {A1, . . . , An} and where there is an edge between Ai, Aj if Ai is
dependent on Aj.

Lemma 1 (The Local Lemma — Symmetric Version). Let {A1, . . . , An} be events in a
probability space having a dependency graph with maximum degree d. Suppose that

P (Ai) <
1

e(d+ 1)

for all i ∈ 1, . . . , n. Then P (A1 ∩ . . . ∩ An) > 0 (the probability that none of the events happen
is non-zero).

There are more general versions of the lemma, this one is the simplest to apply.

Proof. See [3, Theorem 13.14].
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6 Sketch of proof of theorem 2

To prove theorem 3 we will first have to review the proof Alm et al. gave of theorem 2 in [1].
Let n ≥ 1 and k > 3. Let Vk = [3k − 4]k denote the set of k-subsets of {1, . . . , 3k − 4}

and let Gk be the complete irreflexive graph with vertices Vk. Define a random edge colouring
λk,n : E(G)→ {f, c0, . . . , cn−1} by

λk,n(X,Y ) =

{
uniform random choice from {c0, . . . , cn−1} if 0 ≤ |X ∩ Y | ≤ 1

f otherwise

for X 6= Y ∈ Vk. If |X ∩ Y | ≤ 1 we call (X,Y ) a randomly labelled edge.
Alm et al. showed that (Gk, λk,1) is a solution for M1 (n = 1 makes the colouring non-

random) when k ≥ 3. For n > 1 it is easy to see that (Gk, λk,n) will not contain forbidden
triangles since λk,n defines the same set of flexible edges as λk,1. We must check that there is a
non-zero probability that (2) and (3) hold. Since f is a flexible colour, for arbitrary colours c, d,
the triangle (f, c, d) is consistent. If (Gk, λk,n) satisfies (3) and λk,n(x, y) = f then there must
be z such that λk,n(x, z) = c and λk,n(z, y) = d, hence (2) holds too. So it suffices to prove that
there is a non-zero probability that (3) holds.

We say that an edge (X,Y ) fails to be witnessed if (3) fails on (X,Y ); failure occurs because
there are two colours c, d such that f ∈ {c, d, λk,n(X,Y )} but there is no Z with λ(X,Z) = c
and λ(Z, Y ) = d. Since the edges of Gk are mostly labelled by f it can be checked that if
(X,Y ) is a randomly labelled edge then it is very unlikely that (3) fails on such an edge. So we
concentrate instead on the case where λk,n(X,Y ) = f and there are i, j < n but there is no Z
such that λk,n(X,Z) = ci and λk,n(Z, Y ) = cj . Given X,Y, Z such that |X ∩ Z|, |Y ∩ Z| ≤ 1
(so |X ∩ Y | > 1), the probability that λk,n(X,Z) = ci and λk,n(Z, Y ) = cj is 1

n2 , so the
probablity that Z does not witness ci, cj is 1 − 1

n2 . The numbers of vertices Z such that
|X ∩ Z|, |Y ∩ Z| ≤ 1 is at least (k − 2)2, hence the probability that there is no Z such that

λ(X,Z) = ci and λ(Y,Z) = cj is at most (1− 1
n2 )(k−2)

2

. There are n inflexible colours, so the
probability that there are ci, cj such that there is no Z with λx,n(X,Z) = ci and λx,n(Y,Z) = cj
is at most n2(1− 1

n2 )(k−2)
2

= ρ(n, k). Thus, for any edge ε, the probability Pε that (3) fails at

ε is at most ρ(n, k). Since |Vk| =
(
3k−4
k

)
, the number of edges of Gk is at most 1

2

(
3k−4
k

)2
. Using

the union bound the probability that some edge of Gk fails to be witnessed is

P ≤ 1

2

(
3k − 4

k

)2

︸ ︷︷ ︸
=H(k)

. ρ(n, k) (10)

For a fixed n they show we can find k big enough such that P < 1 therefore Mn has a
solution of size |V | =

(
3k−4
k

)
.

7 Proof of theorem 3

Let n ≥ 1 and k ≥ 3. We will use the same labelled random graph, (Gk, λk,n), as in the proof
of theorem 2 and demonstrate that it will be a representation for Mn given that k is large
enough, but the bound on k will be lower than the one used in theorem 2. We will use the local
lemma to show that there is a non zero probability that all edges in Gk are witnessed, where
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in the proof of theorem 2 the more coarse union bound was used. We will use the probabilities
for edge witnessing shown in the sketch proof of theorem 2.

We will have to identify events and their dependencies. The events we wish to avoid are
edges failing to be witnessed, which happens with probability Pe ≤ ρ(n, k). The dependency
graph is a little trickier to work out (it is not Gk), if a randomly labelled edge is adjacent to
ε and also adjacent to ε′ then their may be a dependency between the witnessing of ε and the
witnessing of ε′, but if there is no randomly labelled edge adjacent to both ε and ε′ then the
two event must be independent.

Let Wx,y denote the randomly labelled edges adjacent to x or y, that is

Wx,y = {(x, z) : z ∈ Vk, λk,n(x, z) 6= f} ∪ {(z, y) : z ∈ Vk, λk,n(z, y) 6= f}. (11)

The witnessing of edges (x, y), (u, v) are independent events if

Wx,y ∩Wu,v = ∅.

Each vertex is adjacent to no more than(
2k − 4

k

)
︸ ︷︷ ︸
|X∩Y |=0 edges

+ k

(
2k − 5

k − 1

)
︸ ︷︷ ︸
|X∩Y |=1 edges

other vertices through randomly labelled edges. So each edge witnessing event is dependent
on no more than

D =

(
2

(
2k − 4

k

)
+ 2k

(
2k − 5

k − 1

))2

other edge witnessing events.
We can now apply the local lemma, where P (Ai) ≤ ρ(n, k) and maximum dependency

degree d ≤ D. The probability that no edges fail to be witnessed (no Ai’s happen) is greater
than 0 if

ρ(n, k) <
1

e(1 +D)
≤ 1

e(1 + d)
(12)

So, there is a solution (Gk, λk,n) for Mn if

e ·

(
1 +

(
2

(
2k − 4

k

)
+ 2k

(
2k − 5

k − 1

))2
)

︸ ︷︷ ︸
=L(K)

· ρ(n, k) < 1

ut

8 The new bound is significantly lower

Theorems 2 and 3 both give bounds upper bounds on the size of the smallest representation for
Mn. All that remains is to show that the bound of theorem 3 is significantly lower than that
of theorem 2. One simply needs to check that L(k) < H(k).
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This is clearly true if you look asymptotically

e

(
1 +

(
2

(
2k − 4

k

)
+ 2k

(
2k − 5

k − 1

))2
)
∈ O

((
2k − 4

k

)2
)

(
3k − 4

k

)2

/∈ O

((
2k − 4

k

)2
)

So there exists some K such that for all k ≥ K we have L(k) < H(k).
In fact it is clear from figure 1, that L(k) < H(k) for all k and an inspection of the

second graph in this figure shows that log10(H(k) ≈ 1.41× log10(L(k)), hence H(k) ≈ L(k)1.41.
Figure 2 shows the number of vertices in the smallest solution for Mn given by theorems 2
and 3. For each n < ω, let Alm(n) be the size of the smallest graph where theorem 2 proves a
non-zero probability and let M(n) be the size of the smallest graph where theorem 3 proves a
non-zero probability. By inspection of figure 2, we have log10(Alm(n)) ≈ 1.3× log10(M(n)), so
Alm(m) ≈M(n)1.3.
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Fig. 1. Logarithmic plots of L(k) and H(k). It follows that the new upper bound on the smallest
representation sizes obtained is asymptotically far lower than the previously attained results.
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Fig. 2. Logarithmic plot of the number of vertices in the smallest graph (Gk, λk,n) that has a non-zero
probability of being a solution for Mn according to theorems 2 and 3 for various values of n.
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2. H Andréka, I Hodkinson, and I Németi. Finite algebras of relations are representable on finite sets.
Journal of Symbolic Logic, 64:243–267, 1999.

3. A Bondy and U.S.R. Murty. Graph Theory (Graduate Texts in Mathematics). Springer, 2008.
4. P Erdös and L Lovász. Problems and results on 3-chromatic hypergraphs and some related questions.

Infinite and Finite Sets: to Paul Erdös on his 60th birthday. Colloquia mathematica Societatis János
Bolyai. North-Holland v.2, pp 609–627, 1975.

5. B. Herwig. Extending partial isomorphisms on finite structures. Combinatorica, 15:365–371, 1995.
6. R Hirsch and I Hodkinson. Representability is not decidable for finite relation algebras. Trans.

Amer. Math. Soc, 353, 1999.
7. R Hirsch and I Hodkinson. Relation Algebras by Games. volume 147 in Studies in Logic and the

Foundations of Mathematics North Holland, 2002.
8. I Hodkinson. Loosely guarded fragment of first-order logic has the finite model property. Studia

Logica, 70:205–240, 2002.
9. R Maddux. Introductory course on relation algebras, finite-dimensional cylindric algebras, and their

interconnections. pages 361–392. in Algebraic Logic, Colloquia Mathematica Societatis, 54, North
Holland, 1991.

10. R Maddux. Relation Algebras, volume 150 of Studies in Logic and the Foundations of Mathematics.
Elsevier, 2006.

Journal on Relational Methods in Computer Science, Vol. 2, 2013, pp. 18 - 26
Received by the editors February 07, 2013, and, in revised form, August 15, 2013.
Published on September 06, 2013.
c© Luke Dodd and Robin Hirsch, 2013.

Permission to copy for private and scientific use granted.
This article may be accessed via WWW at http://www.jormics.org.


