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Abstract. Regularities in databases are directly useful for knowledge discovery and data
summarization. As a mathematical background, relational algebra helped for discovering
the main data structures and existing dependencies between the different attributes in a
relational database. Functional, difunctional and other kinds of dependencies in a rela-
tional database describe invariant regular structures that have been used intensively for
database decomposition, and for minimizing redundancy. In this paper, we explain why
“concepts” or “maximal rectangles” should be considered as the atomic regular structure
for decomposing a binary relation which can be useful for different applications. More
specifically, we have noticed experimentally, that “optimal concepts” contain pertinent
information about data that we have exploited positively for machine learning, dynamic
and incremental database organization, text summarization, data reduction, and even
for modeling human thinking. Operators on concepts need to be developed because of
their general usefulness in data and information engineering. In this paper, we propose
to work on a canonical decomposition of binary relations based on two operators f and
g, to model some important open problems, as for example on how to put in equation
the best optimal conceptual coverage of a binary relation. We first develop an algorithm
to find a conceptual coverage of a binary relation. We then exploit Riguet’s difunctional
relation to put in equation all isolated pairs in a binary relation. Using iteratively these
isolated pairs, we find several varieties of efficient solutions for the canonical decomposi-
tion problem.
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1 Introduction

Regular structures in databases played a major role for database decomposition,
and for discovering explicitly some form of knowledge embedded in data. In this
paper, we try to make a synthesis or state of art of some important regular
structures inside databases. We also ask several questions which have not specific
answers. The reason is that some problems are not yet solved. In this work, we
would like to invite other researchers to think about their solutions. We are more
concerned with the application of relational algebra in solving of some problems
in information engineering, than with proving new theorems related to relational
algebra. More specifically, we generalize the difunctional relation canonical de-
composition proposed in [7] to more general relations. For that purpose, we give
an approximate algorithm for the canonical relation decomposition and we exploit
Riguet’s difunctional relation for the same purpose.

Functional [3] and difunctional dependencies [7] represent some invariant
structures we could find in databases that are used for decomposing a database
into some sub-schemas for the purpose of minimizing redundancies. These de-
pendencies are general and do not depend on any particular database instance.
However, even after such decomposition, instances of database may contain hid-
den regularities, that we can only discover by looking to the lattice of concepts
[4, 11] embedded inside each specific instance. From this lattice [11], it is known
that we can extract some association rules. However, these rules are not general,
because if we change the database instance, the extracted knowledge from the
database may also change.

As an illustration, we use the main concepts for automatic text summariza-
tion. We first decompose the text into some elementary sub-texts: (sentences,
parts of sentences or sections). Second, we create a binary relation by indexing
each elementary piece of text by non empty words included in each elementary
sub-text. A possible tested approach for summarization is based on the main
concept of the text (i.e. associating the maximum of sentences to the maximum
of shared indexing words). In this paper we explain why the strength of this asso-
ciation is measured by the gain of the notion of “optimal concept”. By this way,
in [12], we have developed a system for generating different summaries each one
associated with a different optimal concept. Another important problem concerns
the design of good information filters in the search engines, each time we have to
search for web pages sharing specific indexing words. A possible modeling of this
problem is also to create a binary relation associating for each web page a list of
shared indexing words. A conceptual coverage of a binary relation, may be used
as a base for extracting the main web page references from the total space of web
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page references. By this way, the user will receive only different levels of clusters
of web pages in decreasing importance level.

In our work, after recalling some known regular structures in a database, we
present the conceptual decomposition technique. Among these regular structures,
we first define difunctional and functional dependencies and explain their appli-
cations. As a second kind and more general and diverse regularities, we define
maximal rectangles (or concepts) as the atomic information we may extract from
any binary relation. All these regular structures are now used for data mining. We
will explain this procedure in Section 6. In Section 4, we propose an approximate
algorithm for an approximate coverage of a binary relation with optimal concepts.
In Section 5, we give a solution to put in equation the coverage of some kind of
binary relations by a minimal number of concepts using Riguet’s difunctional
relation. Using difunctionality of relations as described by Riguet, we develop an
algorithm to find a canonical decomposition of some classes of binary relations.
We then explain that we need to generalize the solution of the problem for more
complex binary relations.

2 Definition of Regularities

We use relational algebra for formalizing the data space and regularities we may
discover embedded in these data. We assume that we are able to map our data into
a binary context (i.e. a subset of the Cartesian product of two sets: E the set of
objects and P the set of properties). This hypothesis is not too restrictive, because
we noticed that most databases may be considered as a binary relation after some
transformations. We also apply the proposed work on some available data from
the internet or documentary databases or tabular data that are available in most
of professional companies. For this kind of databases, we can directly obtain a
binary relation linking document (of a web page) references to indexing terms.
So all dependencies extracted between the terms of the documentary database
give additional information for users. For all these general cases, we always need
to extract regular associations between attributes to make the right decision in
case of similar situations. We also may exploit regularities to filter information,
to keep only a minimal data size. This kind of application is very useful for search
engines to only give few pertinent web page references corresponding to the user
query.

2.1 Functional Dependencies and Their Application

A functional dependency (fd) is the dependency most frequently used in practice,
since the development of Codd’s relational model [3]. Functional dependencies
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have been used to minimize redundancy and to normalize the relational database
schema. The universe U of a relational schema is composed of a set of attributes.
Each attribute A has a domain dom(A). An element of dom(A) is denoted by
a, b, etc. We use capital letters as A,B for single attribute, and X, Y for subsets
of attributes. The union of two subsets X and Y is written as XY . We also
make the difference between a single attribute A and the set {A}. A relation s
defined on the set of attributes A1,A2,...,An is a subset of the Cartesian product
dom(A1) × ... × dom(An). We say that s is an instance of the relational schema
S(U). A tuple is an element of s, called also a vector or a sequence of n values
associated with the n attributes. For example if t = (4, 2, 6) is a tuple of relation
s defined on the relational schema S(A,B, C) then t[AC] = (4, 6) while t[A] = 4.
Generally t[X] is the restriction of t to the subset of attributes X.

Definition 1 (Functional dependency). Let X and Y be two subsets of at-
tributes of the universal set U . We say that it exists a functional dependency (fd)
from X to Y if and only if, for any instance s of the relational schema S(U), if t1
and t2 are any two tuples of s, if t1[X] = t2[X] then t1[Y ] = t2[Y ]. We generally
use the notation X → Y .

Several properties of these dependencies have been defined by Codd, as fol-
lows:

– Reflexivity rule: If Y ⊆ X, then X → Y
– Augmentation rule: If X → Y then XZ → Y Z
– Transitivity: X → Y and Y → Z, then X → Z.
– If X → Y then X is by definition a key in the relational schema S[X ∪ Y ].

2.2 Difunctional Dependencies

Difunctional dependencies [7, 13] are a generalization of functional dependencies.
Let R be a binary relation. R is difunctional if and only if R ◦ R−1 ◦ R = R.
Where “◦” is the operator for relational composition, and R−1 is the inverse of
R. A difunctional is no more no less than the union of the Cartesian product of
several pairs of subsets which are disjoint in their domains and their codomains.
This general relational equation has been used intensively in software engineering
and proved to be a very frequent data structure specifying the link between inputs
and outputs. It has been ignored for a long time in data engineering. Its utility
has been shown by name correct?? Nlt Lethan and Jaoua between 1985 and 1992,
under different names (iso-dependencies or regular relations) [7].

Definition 2 (Difunctional dependencies). We say that there is a difunc-
tional dependency between X and Y , denoted by X ↔ Y , if and only if, for any
instance s of S(U), the binary relation R[X, Y ] defined by s[X, Y ] is difunctional.
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Example 1. Consider U = A,B, C, and s the following instance of S(U) in Ta-
ble 1. We can see that A ↔ B is true for s, because the binary relation R[A, B]
is difunctional; on the contrary B ↔ C is false.

Table 1. An instance of s(U)

A B C

2 3 5

2 4 5

3 3 5

3 4 8

Redundancy reduction. Consider a relational schema S(U) and any instance
s of S. Assume that for any s we associate a difunctional binary relation R[X,Y ]
(with X ∪ Y = U), which is the union of maximal rectangles whose projections
are disjoint. So:

R[X,Y ] = (A1 ×B1) ∪ (A2 ×B2) ∪ ... ∪ (Ai ×Bi) ∪ ... ∪ (An ×Bn)
with Ai ∩ Aj = Bi ∩Bj = φ, ∀i 6= j.

It is easy to see that we can reduce redundancy by decomposing R[X, Y ] into
two binary relations R1[X,C] and R2[C, Y ], where C is the attribute class. In
R1[X,C], for each element of the set Ai we associate the value i. In R2[C, Y ], for
each value j, we associate all elements of subset Bj.

This kind of decomposition is called “canonical decomposition”. Experimen-
tations on several databases have shown that we can save an important amount of
memory space by such a decomposition. Even when we don’t find difunctional de-
pendencies, we discovered that most of instances of a database contain a uniform
part which has a difunctional structure.

Even more general than functional dependencies and generalized to fuzzy
difunctional dependencies [13], this kind of dependency has not been directly
useful in database, because in most cases, attributes in databases do not have such
a uniform structure. But, the most important thing exhibited by a difunctional
relation is the notion of concept which is the maximal Cartesian product included
in a database, also called maximal rectangle, and rectangular binary relation
decomposition [1]. We will discuss this question in the next section.

2.3 Conceptual Dependencies

Definition 3. Let R be a binary relation defined on a set E. The relation A×B,
such that A ⊆ E and B ⊆ E, is called rectangular relation (or rectangle) of R [6,
14, 15]. A is the domain of this relation and B is its codomain (or its range).
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In Figure 1, we can see an example of a rectangular relation:
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Fig. 1. Rectangular relation RE with 12 pairs

Definition 4. From a memory storage space perspective, the gain which is asso-
ciated to a given rectangular relation RE = A × B is assessed by the following
heuristic function:

g(RE) = (‖ A ‖ × ‖ B ‖)− (‖ A ‖ + ‖ B ‖) (1)

where ‖ A ‖ denotes the cardinality of the set A.

Remark 1. This definition is introduced in [2]. We explain this formula by the
fact that a rectangular relation (or rectangle) associates ‖ A ‖ values to ‖ B ‖
values. So, when we cluster in one side all the values of A, and in the other side
all the values of B, we can replace ‖ A ‖ × ‖ B ‖ direct pairs of RE (Figure 1)
by ‖ A ‖ + ‖ B ‖ indirect pairs by using an intermediary element i also called
extra-symbol which links any element of A to any element of B as illustrated by
Figure 2.
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Fig. 2. A resumed rectangular representation of RE

Definition 5. A rectangle RE = A × B which contains an element (a,b) of a
binary relation R is said to be optimal if it realizes the maximal gain g(RE) among
all rectangles which contain (a,b).
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Remark 2. Searching for the optimal rectangle containing (a, b) is an NP-complete
problem [1, 5]. Several heuristics which are based on a branch and bound prin-
ciple have been implemented and applied for database decomposition [2], object
oriented system decomposition [6] and data mining [17].

Remark 3. Optimal rectangles have a particular meaning because it represents
the most important data associations. Several rectangles may be optimal, because
they realize the same maximal gain. So with respect to some equivalence relation,
we can assimilate the class of all rectangles with the same gain to only one
representative element.

Definition 6. [2] A rectangular relation (or rectangle) RE = A × B is said
degenerate if and only if ‖ A ‖= 1 (Figure 3a) or ‖ B ‖= 1 (Figure 3b).
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Fig. 3. Examples of degenerate rectangles

A concept is a maximal rectangle (i.e. a rectangle that cannot be extended
simultaneously in the domain and in the codomain). Assume that you have a
binary context R. We are always able to extract all concepts included in R.
Wille proved in [16], that this set of concepts is a complete lattice. This lattice
structure has been used intensively for knowledge extraction from data (i.e. de-
pendencies between attributes or association rules between the terms contained
in a documentary data base or in a single document). Importance of the notion
of concept has been discovered by the scientific groups working on graph theory.
Starting from 1990, we applied it to extract knowledge from data. Another group
on relational algebra discovered applications of concepts for software and data
decomposition [9], for machine learning [8], text summarization and several other
applications. Because of its simple and uniform structure, we believe more and
more that an atomic information is something like a directed pair of two subsets
(i.e. a complete bipartite sub-graph). So we assume that the data are composed
of a set of concepts.
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2.4 Gain of a Binary Relation

The gain in W (R) of binary relation R is given by:

W (R) = (
r

d× c
)× (r − (d + c)) (2)

Where:

– r is the cardinality of R (i.e. the number of pairs in R)
– d is the cardinality of the domain of R
– c is the cardinality of the range of R

Remark 4. The quantity r
d×c

provides a measure of the density of the relation
R. The quantity r − (d + c) is a measure describing how economical information
is represented. It is a logical extension of the corresponding definition from a
concept to a general relation. This definition will be used in the proposed heuristic
in Section 4.

2.5 Elementary Relation (noted PR)

If R is a finite binary relation (i.e., subset of E × F , where E is a set of objects
and F a set of properties) and (a, b) ∈ R, then the union of rectangles containing
(a, b) is the elementary relation PR (i.e. subset of R) given by:

PR = ΦR(a, b) = I(b.R−1) ◦R ◦ I(a.R) (3)

where:

– I is the identity relation.
– R−1 is the inverse relation of R (i.e. set of inverted pairs of R).
– “◦” refers to the relative product operator, where:

R ◦R′ = {(x, y)|∃z : (x, z) ∈ R ∧ (z, y) ∈ R′} (4)

Let A ⊆ E, then I(A) = {(a, a)|a ∈ A}.
PR is the sub-relation of R, pre-restricted by the antecedents of b (i.e. b.R−1),
and post-restricted by the set of images of a (i.e. a.R). In the next section, we
use such elementary relations PR to find the coverage of a relation by some
“minimal” number of optimal concepts. Note that the problem is NP-complete.
For that reason, we will only propose an approximate solution in Section 4, based
on a greedy method using the gain function W .
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3 Conceptual Binary Relation Coverage and Canonical
Decomposition

We may consider any binary relation R as the union of concepts. The problem is
that among the different possible combinations of concepts covering R, we have
to select the most economical ones in terms of memory. Finding the minimal
coverage of R is an NP-complete problem [5]. For that reason, in [1, 6], we used
some approximate algorithms to decompose huge binary relations based on the
function “gain” given in Definition 4. The problem of finding the optimal rectangle
with a maximum “gain” is also NP-complete [5]. For that reason, we think that in
the future, we should make more research investigations about formal properties
of such coverages to find better approximate methods. An open problem is to find
new efficient algorithms to update an initial conceptual coverage of some binary
relation R when we add or remove some pairs in R. These researches will have
an impact on conceptual data mining systems.

Assume that {A1×B1, A2×B2,...,Ap ×Bp} is some minimal coverage of the
binary relation R (i.e. R = A1 × B1 ∪ A2 × B2 ∪ ... ∪ Ap × Bp). If we define the
two following operators:

f(R) = A1 × {c1} ∪ A2 × {c2} ∪ ... ∪ Ap × {cp} (5)

g(R) = {c1} ×B1 ∪ {c2} ×B2 ∪ ... ∪ {cp} × Bp (6)

generally the number of pairs in R is much higher than the number of pairs
in f(R) ∪ g(R) , while R = f(R) ◦ g(R). Here {c1, c2, ..., cp} are extra-symbols
different from any element in the domain or range of R, which are created to
represent the different concepts in R. Another open problem is related to an
incremental conceptual binary relation transformation: the question is to find an
efficient method to calculate f(R ∪ {a, b}), g(R ∪ ({a, b}), f(R − {a, b}), g(R −
{a, b}) using only f(R) and g(R). The objective is to continue to update the
conceptual coverage of R using its minimal representation by the two relations
f(R) and g(R), by removing or adding the minimal number of extra-symbols.
Operators f and g might be defined automatically by some relational operator. It
is even interesting to give options for specific functions with interesting properties
we could use for mapping binary relations to their canonical forms. Using this
kind of decomposition in many experimental databases, we saved a huge amount
of memory space. In the following two sections, we first propose an approximate
solution (Section 4), and second the difunctional of Riguet (Section 5) for deriving
a coverage of a binary relation with optimal concepts.
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4 Approximate Algorithm for Canonical Decomposition

In this section we propose an approximate algorithm to find a set of optimal
rectangles that provides a coverage of a given relation R: an approximate solution
for a canonical decomposition of a binary relation. The algorithm is explained in
Figures 9 and 10. But here we explain the steps using the following relation R.
Let R be a finite binary relation between two sets as illustrated below in Figure 5:
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Fig. 4. An example of a binary relation R

– Step 1: Divide the relation R into disjoint sub-relations ,..., Here we have only
one sub-relation (also called elementary relation).

– Step 2: For each elementary relation PRi, search the optimal rectangle, which
includes an element of PRi.

If PRi is a rectangle, then it is an optimal rectangle containing (a, b), else check
if PRi contains other elements (X,Y ) in the form (a, Y ) or (X, b) by trying all
the images of a and all the antecedents of b (see Figure 6).

PR(1, 7) = ΦR(1, 7) = I(7.R−1) ◦R ◦ I(1.R)
So we search with an iterative way the optimal rectangles of PR (1, 7) which

successively contain the elements (1, 8), (1, 9), (1, 11), (2, 7), and (3, 7).

– First Iteration: from the five elementary relations of the above mentioned
elements select the first that gives a maximal gain W defined in Section 2.
As a matter of fact the relation with the maximum gain represents the best
compromise between density, and information economy.
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Fig. 5. Elementary relation ΦR(1,7) = PR(1, 7)

1. PR′
1,8 = ΦPR1,7(1, 8); W (PR′

1,8) = 0
2. PR′

1,9 = ΦPR1,7(1, 9); W (PR′
1,9) = 7/8 X Selected

3. PR′
1,11 = ΦPR1,7(1, 11); W (PR′

1,11) = 7/8
4. PR′

2,7 = ΦPR1,7(2, 7); W (PR′
2,7) = 0

5. PR′
3,7 = ΦPR1,7(3, 7); W (PR′

3,7) = 7/9

The selected elementary relation PR′
1,9 is not a rectangle, so the algorithm con-

tinues on the already selected elements i.e. (1,7) and (1,9) as shown in Figure 7.
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Fig. 6. Elementary relation PR′(1,9)

– Second Iteration: Search now the optimal rectangles of PR′
(1,9) that succes-

sively contain elements (1, 8), (1, 11), and (3, 9). This step provides three ele-
mentary relations:

1. PR′′
1,8 = ΦPR′1,9

(1, 8); W (PR′′
1,8) = −1

2. PR′′
1,11 = ΦPR′1,9

(1, 11); W (PR′′
1,11) = 7/8

3. PR′′
3,9 = ΦPR′1,9

(3, 9); W (PR′′
3,9) = 7/8 X Selected
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PR′′
3,9 is a rectangle, so it is an optimal one that contains element (1,7) of R.

The following Figures 8 and 9 illustrate the iterations of searching the optimal
rectangle.  

1 

2 

3 

�

7 

9 

11 

11

�

PR//(3,9)
)�

Fig. 7. Elementary relation PR′′(3,9)
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Fig. 8. The search tree for optimal concept

In bold you can see the selected elementary relation at each level of the search
tree. Each level is associated with an iteration in the proposed algorithm. The
proposed algorithm is polynomial (Figure 10 and 11). When we find an optimal
rectangle, we continue to search for a next optimal one containing another pair
not already selected. Here if we select the pair (6,12), we find at the first iteration
the concept: PR6,12 = 5, 6 × 11, 12. Then if we select the pair (4,10), we obtain
the concept: PR4,10 = 3, 4 × 9, 10. Finally, if we select the pair (2,8), we obtain
the concept: PR2,8 = 2, 1 × 7, 8. The selected coverage is composed of: {PR′′

3,9,
PR6,12, PR4,10, PR2,8}
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(int s, int  w)  Optimal_Rectangle (Relation R)  
Problem:  Determine the optimal rectangle of a binary relation R 
Inputs:     A binary relation R[][],  pair (s,w)  
Outputs:  The pair (s, w) containing an optimal rectangle in R. 
Begin 
Let R [m][n] be the binary relation of n keywords and m sentences. 
Emax = 0;// The maximum searched gain in R  (W(R)) initialized to 0 
For  s=0 to n-1 
     For w=0 to m-1 
         If R[s, w]! =0  
            Then PR=I(R.w) o R o I(s.R);  // calculating the elementary relation of 
(s,w) 
              E=economy (PR); 
                 If E>Emax 
                    Then  { Emax=E; 
                                Highest = PR;  // Highest is the concept of maximal gain 
                                

 
                 End if    
        End if 
    End for 
End for 
 If Highest is  not rectangle      // r != cd 

  
               //Optimal_Rectangle starting from  
              //relation Highest corresponding to the 
             //next level in the search tree 
  
End if 
End. 

 
 Fig. 9. Algorithm calculating an optimal rectangle in a binary relation R

Problem: Determine the economy of a binary relation 
Inputs:   A binary relation R  
Outputs:  The economy 
Begin 
Let R [m][n] be the binary relation of n keywords and m sentences. 
Let  r be the number of pairs in R. 
Let c  be the cardinality of domains of R. 
Let d be  the cardinality of co-domain of  R. 
Return (r/(c*d))*(r-(c+d)) 
End. 
 

Fig. 10. Economy of a binary relation calculus



230 Jaoua et al.

5 Relational Calculus for Conceptual Coverage
Extraction

5.1 Relational Calculus with the Difunctional of Riguet

Is it possible to find a specific coverage of a binary relation R by a minimal
number of concepts using relational methods? The answer is that this is possible
if each concept of the coverage contains at least one isolated pair in R. An isolated
element, by definition is an element which belongs to only one concept c in R.
In this case, concept c belongs to any conceptual coverage of R. Fortunately, in
[10] Khcherif, et al. proved that we can extract all existing isolated elements by
calculating the following difunctional Rd proposed by Riguet in 1995:

Rd = R ◦R−1 ◦R ∩R (7)

Here, R is the complement of R. From the domain Di of each rectangle of
Rd, we find a concept by using Galois connection operators f1 and f2, where
Si = f1(Di) gives the set of all common images of Di, Ni = f2(Si), calculates
all common antecedents of elements belonging to Si with respect to relation R.
The concept Ni × Si is included in R and belongs to any possible conceptual
coverage of R. In the following example in Figure 5, we can see how can we find
the conceptual coverage of R:

Relation R: 
 

 A B C D E 
1 1 0 0 1 0 
2 0 1 1 0 0 
3 1 0 0 1 0 
4 1 1 1 1 0 
5 1 0 0 0 1 
6 1 0 0 0 0 

 
 

Relation Rd: 
 

 A B C D E 
1 0 0 0 1 0 
2 0 1 1 0 0 
3 1 0 0 1 0 
4 0 0 0 0 0 
5 0 0 0 0 1 
6 1 0 0 0 0 

 

Fig. 11. Calculation of Rd
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Then from Rd, using Galois connection operators f1 and f2 on R, we find
the following conceptual coverage of R by concepts C1, C2, C3 and C4 where
C1 = {1, 3, 4} × {A,D}, C2 = {2, 4} × {B, C}, C3 = {5} × {A,E}, and C4 =
{1, 3, 4, 5, 6} × {A}.

5.2 An Open Problem

The relational calculus using the difunctional of Riguet gives the optimal coverage
of only some kind of binary relations. The reason is that not all concepts of a
binary relation contain isolated elements (i.e. some or all elements in R belong
to more than one concept). In that case, we can remove initial isolated elements,
from R, and then calculate R′d in the remaining relation R′. We reiterate this
last step until we find the coverage of R. The problem is that Rd may be empty.
In that case, the problem is to find by some other relational calculation the most
economical conceptual coverage of R.

6 Optimal Concepts and Applications

A machine learning system may be considered as a continual concepts reorganiza-
tion. What do we mean by the central ideas we have in computer “mind”? How
do we optimize storage space by continuously creating new symbols replacing
unorganized associations between existing symbols? Here we could define several
ways for associating new objects into the space of symbols. We generally asso-
ciate new objects with the central idea which optimizes the total space storage. So
learning may be considered as an optimization task, by looking for the maximum
of stability obtained by always giving a priority to the most economical concepts.
In the previous Sections 3 and 4, we have defined two operators f and g, to map
a binary relation R into its economical form (f(R), g(R)). But here we can notice
that f and g are not defined in the same direction. Because while f is associat-
ing with each element a of the domain of R to all the symbols representing all
concepts to which a belongs, g is associating with each symbol c representing a
concept C, all elements of the range of R belonging to the range of C.

7 Application of Canonical Decomposition for Text
Summarization and Improving Search Engines

The idea is to extract a summary from a document. For that purpose, we first
decide about how to decompose a text: into chapters or sections or sentences.
Then we may ask users if he/or she wants to get automatically a summary or
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extract association rules from the text. Assume that the user decides to consider
that a sentence is the atomic structure in the text that we are not allowed to
change or reduce. The proposed system already implemented in January 2004, will
first create a binary context R, where objects are sentence numbers (recognized by
their position in the text) and properties are words (each word is also recognized
by a position in a hash table). So by definition (i, j) belongs to R if and only if
word number j belongs to sentence number i or is very similar to another word in
sentence number i. If the word is empty we do not consider it. A table of empty
words is first consulted. Now, the crucial question about how to recognize that
two words are similar has been resolved with an approximate way. We assume
that two words are similar if they contain a longest common sub-sequence with
some relative size greater than some value p near to 1. Here, when we decrease the
value of p, we obtain more similar words and of course this has some impact on the
quality of the summary. As a next step, starting from the binary context R, we use
the method proposed in the previous section to find the optimal concept. Then
we select all sentences in the domain of this concept to generate a summary. If the
user would like more precision about the document, he/she may ask about the
next optimal concept, and obtain by the same way a complement of information.
We can repeat this until covering the entire document. We realized a system
for experimentation using many documents, and we are generally satisfied by
the selected sentences. We think that our system is suitable to provide several
improvements. This same method may be used for improving search engines, by
first selecting documents corresponding to the optimal concept.

8 Conclusion

Most of the research on relational methods in data mining should concentrate on
studying different properties of regular structures in binary relations. Algorithms
related to graph theory about incremental conceptual restructuring should also
be improved to use as a model for machine learning and classification. Properties
of operators f and g defined in Section 3 should be studied in depth in the future
to give fundamental bases for database organization, for improving the quality
of the current search engines by structuring information. An important question
is to find the canonical decomposition of f(R) and g(R). This generalization
needs to find different heuristics for economical decomposition, as for example
by associating a weight to extra-elements, very probably equal to the gain of
the concept they are representing. Canonical decomposition may be generalized
to fuzzy concepts, to deal with imprecision. In the future, we need to discover
some hidden invariant rules i.e. holding even if we change the database instance.
Relational studies must be investigated to find more efficiently the common asso-
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ciation rules of different data instances with incremental approaches. Cooperative
information retrieval and knowledge extraction need more and more studies about
regular structures using intersection, union or join merging operators [13]. The
question is now to study different kinds of interactions between these concepts
(i.e, operations as union, intersection, or composition). Also, assume that you
want to merge arriving concepts from different sides, how do we reorganize the
space of concepts? We should be able to organize it incrementally into a minimal
number of merged and transformed new concepts. If we assume that our data
is organized as a union of equally overlapped concepts, is there a mathematical
relational structure more general than difunctional relations? What are the main
categories of a uniform space of concepts? Finally, is it possible to consider that
thinking is a continual reorganization of regular structures into other optimized
regular concepts?
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