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Abstract. Fork algebras have interesting connections with Computing, Algebra and
Logic. This paper presents a survey of ideas and results about fork algebras, with special
emphasis on current developments and promising research lines.

1 Introduction

Fork algebras arose from programming considerations, aiming at a wide-spectrum
calculus for program derivation.

Fork algebras are a class of algebras obtained by expanding relation algebras
[13, 42, 57] with a new operator called fork. Relation algebras are a class of struc-
tures axiomatized by a finite set RAE of equations (thus a finitely based variety).
These equations axiomatize the behavior of operations +, · , –, 0, 1, ;, ˘ and 1

,
,

giving properties of structures whose domain is a set of binary relations (on some
base set A) closed under union, intersection, complement (relative to A × A),
the empty binary relation, the universal relation A × A, composition, transposi-
tion, and the identity relation, respectively. These structures are called algebras
of binary relations. Composition and transposition are defined set-theoretically
as follows:

R ;S = { 〈a, b〉 : (∃c ∈ A)(〈a, c〉 ∈ R ∧ 〈c, b〉 ∈ S) } , (1)
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R̆ = { 〈b, a〉 : 〈a, b〉 ∈ R } . (2)

If the base set A is closed under an injective binary function ?, we can then
define the operator fork (denoted by ∇) as follow:

R∇S = { 〈a, b ? c〉 : 〈a, b〉 ∈ R ∧ 〈a, c〉 ∈ S } . (3)

A graphical interpretation of fork is given in Fig. 1.
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Fig. 1. Fork of binary relations R and S.

The paper is conceptually divided in three parts dealing with previous, current
and future research, and assumes from the reader a nodding acquaintance with
fundamentals of logic and algebra as can be found in [13].

Previous Research. We will present results showing that the expressive power
of fork algebras encompasses that of different classical and non-classical logics.
This is very useful in software specification where different logics can be used
to specify different views of systems: these specifications can later be mapped
to relational specifications in the language of fork algebras. We will also present
results showing that every every structure satisfying the axiomatization of fork
algebras is isomorphic to a standard model, where the operations have their
intended standard meaning. This is known as representability. Representability is
important in that it implies the completeness of the axiomatization. Therefore,
valid properties that follow from a specification can be proved syntactically within
the equational calculus of fork algebras. We will finally analyze the suitability of
fork algebras as a wide-spectrum programming calculus.

Current Research. One way of giving semantics to diagrammatic notations is by
first assigning semantics to diagrams in the most natural logics for each kind of
diagram, and then translating these logical specifications to a (uniform) relational
algebraic framework. This enterprise sets two demands to be met. On the one
hand, one must define what are the logics required to assign formal semantics to
diagrams. On the other hand, one must interpret these logics to the relational
setting. We will show how to interpret first-order linear temporal logics [43] in an
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extension of the fork calculus. We are also using fork algebras in order to provide
a complete proof calculus for the specification language Alloy [38]. Another line
being pursued involves modal versions. Modal logics are convenient formalisms
for several purposes, modalities being simpler than quantifiers, but generally have
limited expressive power [12]. Arrow logic, for instance, is a modal logic intended
to deal with arrows (e.g., transitions) and can handle sequential composition, but
not parallelism. The addition of fork to arrow logic provides an extension where
one can deal with parallelism and synchronization [5, 6, 20].

Future Research. We will present some preliminary results on the automatic
verification of relational specifications. We will also discuss some logics related to
fork algebras and how to interpret several logics so that their translation allows
to reason across the different logics.

This paper is organized as follows. In Section 2 we briefly describe the evolu-
tion of fork algebras. Across Section 3 we present some results about fork algebras
obtained in the last few years, including results on the expressiveness and finite
axiomatizability of fork algebras, as well as their applications in program de-
velopment and software specification. In Section 4 we examine current research
being done, including work around the Argentum project, as well as some other
aspects of fork algebras, such as fork modal logics, and their motivations. Fi-
nally, in Section 5 we present our conclusions and discuss different open research
directions including verification of relational specifications, interpretablity of ap-
plied logics, relational semantics for component based software, as well as some
other prospects for algebras and logics related to fork algebras and their possible
applications.

2 On the Origin of Fork Algebras

Fork algebras have arisen with the goal of providing the foundation of a framework
for software specification, verification and derivation.1

In our view, specification languages — such as modern graphical notations
like UML [11] — must allow for a modular description of the various aspects that
comprise a system. These aspects include structural, dynamic and temporal prop-
erties. Distinct formalisms allow us to specify each one of these aspects, namely,
first-order classical logic for structural properties, propositional and first-order

1 In fact, fork algebras have originated from an algebraic calculus of problems and the attempts to
apply these ideas to program construction [19]. Some intuitive ideas of Pólya [53] were given precise
formulations using the idea of a problem as an input-output relation [59]. Operations on problems
allow the formulation of some problem-solving methods, but divide-and-conquer involves parallel
actions.
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dynamic logic for dynamic properties, and different temporal logics for temporal
properties. Some of the previously mentioned formalisms have complete deduc-
tive systems. Nevertheless, reasoning across formalisms may be rather difficult,
if not impossible. A possible approach to overcome this problem amounts to
finding a suitable amalgamating formalism: one that is expressive enough to in-
terpret the specification formalisms, with a simple semantics understandable by
non-mathematicians, and with a complete and simple deductive system. If by
“simple deductive system” we mean a complete equational calculus with finitely
many axioms, then the algebras of binary relations are not an adequate candi-
date, because they cannot be axiomatized with a finite number of equations [46].
Fortunately, as we will see in Section 3.2, fork algebras are a perfect candidate.

Notice that the definition of fork strongly depends on the function ?. Actu-
ally, the definition of fork evolved around the definition of the function ?. From
1990 (when the first class of fork algebras was introduced) until now, different
alternatives were explored with the aim of finding a framework which would sat-
isfy our needs. In the definition of the first class of fork algebras by Veloso and
Haeberer [65], function ? produced true set theoretical pairs, i.e., when applied to
values a and b, ?(a, b) returned the pair 〈a, b〉. Mikulás, Sain, Simon and Németi
showed in [45, 54] that this class of fork algebras was not finitely axiomatizable.2

Other classes of fork algebras were defined, in which ? was binary tree formation
or even concatenation of sequences, but these were shown to be non finitely ax-
iomatizable too. It was in [28] that the class of fork algebras to be used in this
paper came up. The only requirement placed on function ? was that it must be
injective. This was enough to prove in [29] that the newly defined class of fork
algebras was indeed axiomatized by a finite set of simple equations. This is the
axiomatization adopted nowadays.

3 The Development of Fork Algebras

In this section we analyze previous results about fork algebras. In Section 3.1
we present the classes of proper and abstract fork algebras, as well as some ex-
tensions. In Section 3.2 we show that the axioms for fork algebras presented in
Section 3.1 indeed fully characterize the class of proper fork algebras. In Section
3.3 we show that there are no superfluous axioms in the axiomatization proposed.
In Section 3.4 we analyze the expressive power of fork algebra terms and equa-
tions. In Section 3.5 we present results on the interpretability of different modal
and multimodal logics.

2 This was done by proving that a sufficiently complex theory of natural numbers can be interpreted
in the equational theory of these fork algebras, and thus leads to a non recursively enumerable
equational theory.
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3.1 Proper and Abstract Fork Algebras

It is a standard procedure in algebra to define classes of algebras by operating on
some previously defined classes. For instance, Boolean algebras can be defined as
the closure of the class of Set Boolean Algebras (those Boolean Algebras whose
elements are sets and the operations are the complement of a set, union of two
sets, etc.) under subalgebras, direct products and homomorphic images. We will
follow a similar procedure in order to define the class of proper fork algebras
(denoted by PFA). To define the class PFA, we will first define the class of Pre
Proper Fork Algebras, denoted by ?PFA.

First, given a relation ? ⊆ (U × U) × U , we can use it to define a binary
operation on binary relations on the set U , namely, the induced fork operation ?,
defined by:

S?T = { 〈x, z〉 ∈ U × U : ∃z′, z′′ ∈ U s.t. xSz′ ∧ xT z′′ ∧ 〈z′, z′′〉?z } .

A graphical interpretation of the fork operation ? induced by a function3

? : U × U → U is given in Fig. 2.
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Fig. 2. The operator fork.

We can now define the pre proper fork algebras as two-sorted structures.

Definition 1. A pre proper fork algebra on the domains P and U is a (two-
sorted) algebraic structure 〈P,U,∪,∩, –, ∅, V, ◦ , Id,^ , ∇ , ? 〉 such that:

1. 〈P,∪,∩, –, ∅, V, ◦ , Id,^ 〉 is an algebra of binary relations on the set U ,
2. ? : U × U → U is a binary function that is injective on the restriction of its

domain to V ,
3. P is closed under the fork operation ∇ induced by ?,

Notice that, in Def. 1 (2), V is a binary relation on U , and thus the restriction
of U × U to V is adequate. Proper fork algebras are obtained as reducts (by
forgetting some operations and domains) of pre proper fork algebras.

3 When ? is a function, we have S?T = { 〈x, ? (z′, z”)〉 ∈ U × U : xSz′ ∧ xT z” }.
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Definition 2. We define the class of proper fork algebras as Rd?PFA, where Rd
takes reducts to the similarity type 〈 ∪,∩, –, ∅, V, ◦ , Id,^ , ∇ 〉.

Notice that proper fork algebras are obtained from pre proper fork algebras
by forgetting the domain U and the function ?. The function ? performs the role
of pairing, encoding pairs of objects into single objects. It is important to bear
in mind that there are ? functions which are distinct from set-theoretical pair
formation: ?(x, y) differs from the ordered pair 〈x, y〉 (i.e., { x, { x, y } }).

Simple examples of these algebras are the square pre proper fork algebras and
square proper fork algebras: those with universal relation V = U ×U and U 6= ∅.

Given a PFA A with base UA, it is possible to single out those elements (if any)
that do not represent pairs. Notice that the term 1∇1 stands for the binary re-
lation { 〈x, y〉 ∈ UA : ∀u, v ∈ UA (y 6= ?(u, v)) }. Thus, the term Ran

(
1∇1

)
char-

acterizes those elements in the base that are not pairs. In what follows we will
denote by 1

,
U the term Ran

(
1∇1

)
, and by U1 the term 1

,
U ;1. We will call the

elements from the base in the domain of 1
,
U urelements , and will denote the set

of urelements of a fork algebra A by UrelA. Under the previous definitions, the
equation

1;1
,
U ;1 = 1 (4)

is valid in a proper fork algebra A only in case UrelA is nonempty.
Given a pair of binary relations, the operation called cross (and denoted by

⊗) performs a kind of parallel product. A graphic representation of cross is given
in Fig. 3. Its set theoretical definition is given by

R ⊗ S = { 〈?(x, y), ?(w, z)〉 : xRw ∧ ySz } .

-

-

x

?

y

w ∈ R(x)

z ∈ S(y)

⊗ ?

R

S

Fig. 3. The operator cross.

It is not difficult to check that cross is definable from the other relational
operators with the use of fork. It is a simple exercise to show that if V is the
greatest relation in a proper fork algebra, then

R ⊗ S = ((Id∇V )^◦R)∇((V ∇Id)^◦S).
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Much as relation algebras are abstract versions of algebras of binary relations,
proper fork algebras also have their abstract counterparts, forming the class of
abstract fork algebras (AFA).

Definition 3. An abstract fork algebra is an algebraic structure

〈A, + , · , –, 0, 1, ; , 1
,
, ,̆ ∇ 〉,

where

1. the reduct 〈A, + , · , –, 0, 1, ; , 1
,
,˘〉 is a relation algebra,

2. for all r, s, t, q ∈ A,

r∇s = (r ; (1
,
∇1)) · (s ; (1∇1

,
)) , (Ax. 1)

(r∇s) ; t̆∇q = (r ; t̆) · (s ; q̆) , (Ax. 2)

(1
,
∇1)̆ ∇(1∇1

,
)̆ ≤ 1

,
. (Ax. 3)

Thus, the abstract fork algebras are axiomatized by the set FAE extending
the set RAE of relation-algebra equations by the above three fork axioms.

From the abstract definition of fork induced by the axioms in Def. 3, it is
possible to define cross by the equation

R⊗S = ((1
,
∇1)̆ ;R) ∇ ((1∇1

,
)̆ ;S) . (5)

The terms (1
,
∇1)̆ and (1∇1

,
)̆ deserve special attention, we call them π

and ρ respectively, and they are quasi-projections.4 When interpreted in a proper
fork algebra, these terms behave as projections, projecting components from pairs
constructed with an injective function ?. Figure 4 illustrates the meaning of these
relations. They will allow us to cope in further sections with the lack of variables
over individuals in the language of abstract fork algebras.

Notice that under the previous definitions of π and ρ, (5) can be spelled in a
simpler form as follows:

R⊗S = (π ;R) ∇ (ρ ;S) .

Also, the above axioms Ax. 1 and Ax. 3 can be written as follows:

r∇s = (r ; π̆) · (s ; ρ̆) , (6)

4 We see that the axiom Ax. 2 yields functionality (π̆ ;π ≤ 1
,

and ρ̆ ;ρ ≤ 1
,
) and π̆ ;ρ = 1, whereas

axioms Ax. 1 and Ax. 3 yield joint injectivity ((π ;π̆)·(ρ ; ρ̆) ≤ 1
,
).
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Fig. 4. The projections π and ρ.

π∇ρ ≤ 1
,

. (7)

Abstract fork algebra arithmetic is quite rich. As examples of derived proper-
ties, we mention monotonicity of ∇ and ⊗ , annihilation of ∇ and ⊗ by 0, and
distributions

(r+s)∇t = (r∇t)+(s∇t), (8)

(r∇s) ·(t∇q) = (r ·t)∇(s ·q), (9)

(r∇s);(t⊗q) = (r ;t)∇(s ;q), (10)

(r⊗s)̆ = r̆⊗ s̆ . (11)

as well as interdefinabilities

r∇s = 2 ;(r⊗s), (12)

r ·s = (r∇s); 2̆ , (13)

where 2 = 1
,
∇1

,
is the duplication constant.

Also, the algebraic structure of abstract fork algebras is parallel to that of
relation algebras [39]: an abstract fork algebra A is simple iff its relational reduct
Ar is simple (a simple algebra is one with no proper homomorphic image5) and
every abstract fork algebra is isomorphic to a subdirect product of simple homo-
morphic images6. As a consequence, a fork algebra equation holds in all abstract
fork algebras iff it holds in all simple fork algebras.

3.2 Finite Axiomatizability

We will now show that the axioms for fork algebras given in Section 3.1 indeed
fully characterize the class of proper fork algebras.

5 The square proper fork algebras are simple.
6 These properties follow from the following construction (due essentially to axiom (1), as rewritten

above): each homomorphic image of the relational reduct of a fork algebra can be expanded to a
fork algebra.
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We will establish that every abstract fork algebra is isomorphic to a proper
fork algebra, by relying on the representability of abstract relation algebras with
quasi-projections by proper algebras of binary relations [58] as well as on a simple
construction of pairing based on pair of relations.

Given an abstract fork algebra A = 〈A, + , · , –, 0, 1, ; , 1
,
, ,̆ ∇ 〉, we know that

its relational reduct Ar = 〈A, + , · , –, 0, 1, ; , 1
,
,˘〉 is a relation algebra where

the defined terms π and ρ are quasi-projections (cf. 3.1). The representability of
quasiprojective abstract relation algebras yields an isomorphism h : A → P of the
relational reduct Ar onto an algebra of binary relations P = 〈P,∪,∩, –, ∅, V, ◦ , Id,
^〉 on set U . We now use the relations h(π) and h(ρ) in P to define the pairing
relation ? ⊆ (U × U) × U by 〈〈x, y〉 , z〉 ∈ ? iff 〈z, x〉 ∈ h(π) and 〈z, y〉 ∈ h(ρ).
We can now see that the restriction of the relation ? to V is an injective function
(thus the expansion P? = 〈P,∪,∩, –, ∅, V, ◦ , Id,^ , ? 〉 is a PFA) and h(r∇s) =
h(r)?h(s) (and thus bijection h : A → P becomes an isomorphism of abstract
fork algebra A onto the PFA P?).

We thus have the representability of fork algebras: abstract by proper ones.

Theorem 1. Every abstract fork algebra is isomorphic to a proper fork algebra.

This representation theorem has some interesting methodological consequences.

1. On the intuitive side, the objects of abstract fork algebras can be regarded as
relations of input-output pairs.

2. On the technical side, proper and abstract fork algebras have the same ab-
stract properties, which yields the completeness of the fork algebra equational
axiomatization FAE (in Section 3.1) with respect to proper fork algebras.
Also, a fork algebra equation holds in all proper fork algebras iff it can be
derived from the set FAE by equational reasoning.

Theorem 2. Let E ∪ {e} be a set of fork algebra equations. Then,

E |=PFA e ⇐⇒ E `FAE e .

3.3 Independence of the Axioms

If we use the language of fork algebras as a specification language, then avoiding
superfluous axioms helps keeping this formalism easier to handle. In [24, 62] we
proved that all the axioms are independent, that is, removing any axiom yields
a strictly larger class of algebras.
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3.4 Expressiveness of the Fork Algebra Terms and Equations

We have seen in Section 3.2 the representability theorem stating that AFA =
I[PFA]. As a consequence, proper and abstract fork algebras have the same prop-
erties (expressible in their common abstract language). The caveat is “expressible
in the abstract language of AFA”. In this language we treat relations as opaque
objects: without considering their input-output pairs or their individual compo-
nents. This has some methodological advantages for program derivation. But,
are we not losing expressive power? For reasoning (about programs and specifi-
cations), it is important to have adequate power for expressing their properties.
The expressiveness results will show that the fork algebra terms can express first-
order properties: for each first-order formula we can effectively construct a closed
(variable-free) fork algebra term with the same extension. Moreover, first-order
derivations correspond to equational derivations from the fork algebra equational
axiomatization FAE (in Section 3.1).

We will now analyze the expressive power of fork algebras. We will show that
properties expressed by fist-order formulas can also be expressed with fork alge-
braic terms and that fork algebra equations can express all first-order sentences.

To convert fist-order formulas to fork algebraic terms, we have the Boolean
apparatus for the sentential connectives and we can view the existential quantifier
as a search, which can be expressed by composite projection terms [33, 65].

An appropriate framework for these considerations is the so-called elementary
theory of (simple) fork relations. It is based on the idea of describing relations
by means of their extensions, much in the spirit of Tarski’s elementary theory of
relations [57]. Recall that in a square pre proper fork algebra, we can describe
each operation on binary relations by its set of input-output pairs (cf. (1), (2)
and (3) in Section 1).

Definition 4. The elementary theory of simple fork relations (SFR, for short)
is the two-sorted theory

– with similarity type ΣE consisting of three subtypes
• ΣU , consisting of a sort U and an operation ? : U × U → U ,
• ΣR, consisting of a sort R and the fork algebra operations on sort R,
• Σ[ ], consisting of sorts U and R and a ternary relation [ ] (u [ r ] z is

intended to mean that the pair 〈u, z〉 of U-objects belongs to the R-object
r)

– and axioms
• stating that the operation ? : U × U → U is injective,
• defining the symbols in 〈 + , · , –, 0, 1, ; , 1

,
, ,̆ ∇ 〉 by their [ ]-extensions,

much as (1), (2) and (3) in Section 1. For instance, ∀u∀zu[1]z and u[1
,
]z ↔

u = z define 1 (as U × U) and 1
,

(as Id).
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• extensionality expressing that R-objects with the same [ ]-extension are
equal.

Each square pre proper fork algebra is a model of SFR (where [ ] is ∈).
Actually, in view of extensionality, these are the only models of SFR, up to
isomorphism. Also, the theory SFR ⊆ LE is a common conservative extension7

of the following two theories:

– the theory BIO ⊆ LU of binary injective operation ? : U × U → U ,
– the theory Th(PFAs) ⊆ LR of square proper fork algebras, ? : U × U → U .

We will use this remark later on.8 We wish to convert each first-order formula
to a fork algebraic term, with the same extension. For this purpose, we code the
free variables.9 The code of set v := {vi1 , vi2 , . . . , vin} is Kn(v) := (vi1 ? (vi2 . . . ?
vin) . . . ).10 We thus have fork algebraic terms to extract

– a variable vij : e(v, vij) (composed of projections),
– the code of a subset u ⊆ v: E(v, u) (consisting of projections and ∇ ’s).

We will convert a first-order formula θ, with set w of m > 0 free variables, to
a fork algebraic term I(θ), having extension Km(w), i.e.,

SFR ` Km(w) = z → (θ ↔ z [ I(θ) ] z) .

We define this translation as follows

[=] I(u = v) := 2;2̆,
[?] I(w = u ? v) := E ;Ĕ, with E := E({u, v, w}, {u, v}),
[¬] I(¬θ) := I(θ) ·1

,
,

[∧] I(ψ ∧ θ) := (Eψ ;I(ψ);(Eψ )̆ ) · (Eθ ;I(ψ);(Eθ )̆ ) ·1
,
, where terms Eψ and Eθ

are defined by Eψ := E(w, freevars(ψ)) and Eθ := E(w, freevars(θ)),
[∃] I(∃uθ) := (Eθ )̆ ;I(θ);Eθ, where Eθ := E(freevars(θ), w).11

We thus have the expressiveness of fork algebra terms.

7 A theory Γ ′ ⊆ L′ is a conservative extension of a theory Γ ⊆ L (noted Γ
L

v Γ ′

L′ or Γ v Γ ′) when
both prove the same sentences of the smaller language (Γ ′ ` τ iff Γ ` τ , for every sentence of
L ⊆ L′). A useful sufficient condition for conservativeness is model expandability: every model of
the smaller theory Γ ⊆ L can be expanded to a model of the larger theory Γ ′ ⊆ L′. Extensions by
definitions are conservative.

8 We have BIO
LU

v SFR
LE

w Th(PFAs)
LR

.
9 The extension of a fork algebraic term is a binary relation, while that of a formula is an n-ary

relation.
10 One may regard this code as an assignment.
11 This is the case when u ∈ w, otherwise, we set I(∃uθ) := I(θ).
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Lemma 1. For every first-order formula θ of LU , with set w of m > 0 free
variables, I(θ) is a closed term of LR, such that SFR ` Km(w) = z → (θ ↔
z [ I(θ) ] z).

We have translated each first-order formula to a closed fork algebraic term,
from which we can recover the extension of the formula. The converse translation
is simpler: each closed fork algebraic term t of LR can be converted to a first-order
formula η(t) of LU with two free variables u and z, so that SFR ` u [ t ] z ↔ η(t)
(cf. also 4.3 in Section 4).

We still have two points to deal with:

1. The operation ? : U × U → U may fail to be part of our repertoire.12

2. We usually also have (other) predicates and functions.

We will now examine these two issues, beginning with thefirstone.Given a
domain of individuals, we may view it as a sort D and create sort U consist-
ing of the trees with leaves in D, under operation ? : U × U → U . We thus
have an injection j : D → U mapping D to the urelements of U (denoted by
j[D , Ur(U )]).13 We can then translate each formula ϕ of LD , with set x of m
free variables, to a formula ϕU of LU , with set u of m free variables, so that
j[D , Ur(U )] ` j(x) = u → (ϕ ↔ ϕU).14

Now, we can compose both translations.

Proposition 1. For every first-order formula ϕ of LD , with set x of m > 0 free
variables, we can construct a closed term t(ϕ) of LR, such that

SFR ∪ j[D , Ur(U )] ` Kmj(x) = z → (ϕ ↔ z [ t(ϕ) ] z) .

We have translated each first-order formula (with free variables) to a closed
fork algebraic term, from which we can recover the extension of the formula. Let
us now extend the translation to first-order sentences. Formula ϕ is translated to
a closed term t(ϕ) on R so that ϕ is equivalent to z [ t(ϕ) ] z. So, it is natural
to translate ∀xϕ to the equation t(ϕ) = 1

,
. Also, ∃xϕ is translated to t(ϕ) 6= 0,

which is equivalent to 1;t(ϕ);1 = 1, for simple algebras.
We translate each first-order sentence σ to an equation tσ = 1

,
as follows.

[∀] t∀xϕ := t(ϕ),
[¬] t¬σ := ( 1;tσ ;1 )·1

,
,

[∧] tσ∧τ := tσ ·tτ .

12 We may regard the objects of sort U as structured by ?: binary trees, rather than mere individuals.
13 We have a conservative extension SFR v SFR ∪ j[D , Ur(U )].
14 The set of urelements is definable (cf. Section 3.1).
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We thus have the expressiveness of fork algebra equations.

Lemma 2. For every first-order sentence σ of LD , we can construct a closed
term tσ of LR, such that SFR ∪ j[D , Ur(U )] ` σ ↔ tσ = 1

,
.

We can now examine the other issue mentioned before: the repertoires of
predicates and functions. We can transfer predicates and functions, using the
connections j, from D to U , and [ ], from U to R. For each m-ary predicate p on
D , we define an m-ary predicate pU := j[p] over U , and for each m-ary predicate
q on U , we introduce a constant cq on R. We can define m-ary predicate pU on
U by

pU(u) ↔ (∃x : D) [p(x) ∧ j(x) = u] .

Similarly, for n-ary function f on D we can define n-ary function fU on U by

fU (u) = u ↔ (∃x, x : D) [f(x) = x ∧ j(x) = u ∧ j(x) = u] .

We can introduce constant cq on R by

u [ cq ] v ↔ u = v ∧ (∃u : U ) [q(u) ∧ Km(u) = u]

and similarly for n-ary function g on U we can introduce constant cg on R by

u [ cg ] v ↔ (∃u : U ) [g(u) = v ∧ Km(u) = u] .

Now, we can compose both transfers to transfer each symbol s on D to a
constant s∗ := csU

on R. We can also extend the above translations.
Given repertoires P and F of predicates and functions on D , we can construct

corresponding repertoires P∗ and F ∗ of constants on R. We can also extend
theory SFR to SFR∗[P ,F ] by adding the set Eq[F ∗] ⊆ LR[P∗,F ∗] of equations
expressing the functionality, and arity, of each constant c∗ ∈ F ∗. We add the
translation of (∀x : D)(∃!y : D)[f(x) = y]. This construction gives SFR∗[P, F ]
as a common conservative extension of SFR ⊆ LE and the theory Th(PFAs) ∪
Eq[F ∗] ⊆ LR[P ∗, F ∗]. We have

SFR

LE

v SFR∗[P, F ] w
Th(PFAs) ∪ Eq[F ∗]

LR[P ∗, F ∗]
.

We thus have the overall expressiveness of fork algebra terms and equations.

Proposition 2. Given repertoires P and F of predicates and functions on D,
consider corresponding repertoires P∗ and F ∗ of constants on R.
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1. For every first-order formula ϕ of LD [P ,F ], with set x of m > 0 free vari-
ables, we can effectively construct a closed term tϕ of LR[P∗,F ∗], such that
SFR∗[P ,F ] ` Kmj(x) = z → (ϕ ↔ z [ tϕ ] z).

2. For every first-order sentence τ of LD [P, F ], we can effectively construct a
variable-free equation ε(τ) of LR[P∗,F ∗], such that SFR∗[P ,F ] ` τ ↔ ε(τ).

We can now put together the observations about our constructions and con-
servativeness. We can see that the theory SFR∗[P ,F ] is a conservative extension
of the set of the validities Th(∅) ⊆ LD[P, F ] and the theory Th(PFAs)∪Eq[F ∗] ⊆
LR[P ∗, F ∗].15

Thus, given a set of sentences Σ ∪ {τ} of LD[P, F ], we have a set of variable-
free equations ε(Σ)∪ε(τ)} of LR[P ∗, F ∗], such that Σ ` τ iff Th(PFAs)∪Eq[F ∗]∪
ε(Σ) ` ε(τ).

We thus have the adequacy of fork algebra equations.

Theorem 3. Given repertoires P and F of predicates and functions on D, con-
sider corresponding repertoires P ∗ and F ∗ of constants on R.

1. For every set of sentences Σ ∪ {τ} of LD[P, F ], we have a set of variable-free
equations ε(Σ) ∪ {ε(τ)} of LR[P ∗, F ∗], such that

Σ ` τ ⇐⇒ FAE ∪ Eq[F ∗] ∪ ε(Σ) ` ε(τ) .

2. In the case without functions (F = ∅), for a set of sentences Σ ∪ {τ} in
LD[P, ∅], the set of variable-free equations ε(Σ) ∪ ε(τ) is in LR[P ∗, ∅], and

Σ ` τ ⇐⇒ FAE ∪ ε(Σ) ` ε(τ) .

3.5 Interpretability of Non-Classical Logics to Fork Algebras

In Section 3.4 we proved that the expressive power of the fork algebra equation
encompasses that of classical first-order logic. In this section we will extend this
result to other logics. We will show that specifications written in logics such as
propositional or first-order dynamic logic and other modal logics can be fully
captured within (extensions of) the calculus of fork algebras. Much the same as
in Section 3.4 we defined mapping I translating classical first-order formulas to
fork terms, in this section given a logic L, we will define a mapping TL translating
formulas from L to fork algebra terms in such a way that validity of a formula
α in L reduces to proving equationally some equation involving TL(α). In the
remaining parts of this section we will introduce the logics to be translated as
well as the mappings, the interpretability theorems and pointers to their proofs.

15 We have Th(∅)
LD [P,F ]

v SFR∗[P, F ] w Th(PFAs)∪Eq[F∗]
LR[P∗,F∗]

.
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Interpretability of Propositional Modal Logics In this section we show that
a broad class of propositional modal logics (including the multimodal proposi-
tional dynamic logic) can be interpreted in the equational calculus of fork alge-
bras. This interpretability enables us to develop a fork-algebraic formalization of
these logics and, as a consequence, to simulate nonclassical means of reasoning
with equational theories of fork algebras. The idea of relational formalization of
logical systems has been originated in Orlowska ([47]) and developed further in
Orlowska ([48–50]). Examples of relational formalisms for applied logics can also
be found in Buszkowski and Orlowska ([15]), Demri and Orlowska ([18]), Demri
et al. ([17]), Herment and Orlowska ([37]).

The standard semantics of nonclassical logics is usually defined in terms of
frames (Kripke [40, 41]), that is, relational systems F = 〈W,R 〉 consisting of a
set W of states and an accessibility relation R on W . Models are obtained from
frames by adding a valuation for the set P of propositional variables. Thus, a
model is a triple M = 〈W,R, V 〉, where V : P → 2W . We can extend V to a
function M[α] that assigns to a formula α the set of states where the formula
holds.

The interpretability of a nonclassical logic in fork algebras is established by
means of a provability preserving translation of formulas of the logic into fork
algebra equations. Under that translation both formulas, formerly understood as
sets of states, and accessibility relations receive a uniform representation as rela-
tions. The propositional connectives are transformed into relational operations.
The constraints on accessibility relations are translated into relational equations.
The major advantage of relational formalization is that it provides a uniform
framework for representation of a broad class of applied logics and enables us to
apply an equational proof theory to these logics.

The inductive definition of satisfiability describes the truth conditions depend-
ing on the complexity of formulas. For atomic formulas (propositional variables)
we have:

(at) (M, w) |= p iff w ∈ V (p) for any propositional variable p.

For formulas built with extensional operators such as classical negation, dis-
junction, conjunction or implication, their satisfiability at a possible world is
completely determined by satisfiability of their subformulas at that world:

(¬) (M, w) |= ¬α iff not (M, w) |= α
(∨) (M, w) |= α ∨ β iff (M, w) |= α or (M, w) |= β
(∧) (M, w) |= α ∧ β iff (M, w) |= α and (M, w) |= β
(→) (M, w) |= α → β iff (M, w) |= ¬α ∨ β.



196 Marcelo F. Frias, Paulo A. S. Veloso, and Gabriel A. Baum

For formulas defined from modal operators, as [R] (necessity) and 〈R〉 (pos-
sibility), we have

([R]) (M, w) |= [R]α iff for all u ∈ W, (w, u) ∈ R implies (M, u) |= A
(〈R〉) (M, w) |= 〈R〉α iff there is an u ∈ W s.t. (w, u) ∈ R and (M, u) |= A.

For the sake of simplicity, we use the same symbol for the relational constant R
that appears in modal operators and the accessibility relation which is denoted
by this constant.

Before defining the mapping TM , we define the mapping T ′
M by:

(var) T ′
M(pi) = Pi, where pi is a propositional variable and Pi is a relational

variable,
(neg) T ′

M(¬α) = 1
,
U ;T ′

M(α),
(and) T ′

M(α ∧ β) = T ′
M(α) ·T ′

M(β),
(or) T ′

M(α ∨ β) = T ′
M(α)+T ′

M(β),
(〈R〉) T ′

M(〈R〉α) = R ;T ′
M(α).

([R]) T ′
M([R]α) = T ′

M(¬ 〈R〉 ¬α).

For the sake of simplicity we assume that the constant R from the modal
language is translated into a constant from the language of fork algebras that
is denoted by the same symbol. We finally define the mapping TM by TM(α) =
T ′

M(α)+U1.
Under the previous definitions, the following theorem is proved in [30].

Theorem 4. Given a set of modal formulas Ψ ∪ {ϕ },

Ψ |= ϕ ⇐⇒ {TM(ψ) = 1 : ψ ∈ Ψ } `AFA TM(ϕ) = 1 .

Notice that in the previous theorem there is no mention made about the
modal logic being interpreted. If some properties of the accessibility relation are
required, then we add these properties as equations to be used along derivations.

Interpretability of Propositional Dynamic Logic Propositional dynamic
logic [34] is considered as a programming logic, i.e., a logic suitable for asserting
and proving properties of programs. Dynamic logic is a modal logic whose modal
operators are determined by programs understood as binary relations in a set
of computation states. The following definitions provide a formal description of
propositional dynamic logic.

Definition 5. Let us consider a set P0 of atomic programs, and a set F0 of
atomic dynamic formulas. From these sets we construct the sets F of dynamic
formulas and P of compound programs. F and P are the smallest sets satisfying
the following conditions:
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1. true ∈ F ; false ∈ F ; F0 ⊆ F ,
2. if p ∈ F and q ∈ F then ¬p ∈ F and (p ∨ q) ∈ F ,
3. if p ∈ F and α ∈ P then 〈α〉 p ∈ F ,
4. P0 ⊆ P ,
5. if α ∈ P and β ∈ P then (α ∪ β) ∈ P , (α; β) ∈ P and α∗ ∈ P ,
6. if p ∈ F then p? ∈ P .

Definition 6. A structure is a triple D = (W, τ, δ) where W is a set of states,
τ assigns subsets of W to atomic formulas, and δ assigns subsets of W × W to
atomic programs. The mappings τ and δ are extended inductively to determine
the meaning of compound formulas and programs as follows:
τ(true) = W,
τ(false) = ∅,

τ(¬p) = τ(p),
τ(p ∨ q) = τ(p) ∪ τ(q),
τ(〈α〉 p) = {s ∈ W : ∃t ((s, t) ∈ δ(α) ∧ t ∈ τ(p))},
δ(α; β) = {(s, t) : ∃u ((s, u) ∈ δ(α) ∧ (u, t) ∈ δ(β))},
δ(α ∪ β) = δ(α) ∪ δ(β),
δ(p?) = {(s, s) : s ∈ τ(p)},
δ(α∗) = δ(α)∗ =
{(s, t) : ∃k, s0, s1, . . . , sk(s0 = s ∧ sk = t ∧ (∀1 ≤ i ≤ k)(si−1, si) ∈ δ(α))}.

The presence of the Kleene star operator in the language of dynamic logic
requires to expand fork algebras in order to obtain the interpretability result.

Definition 7. A closure AFA (CAFA for short), is a structure 〈A, ∗ 〉 such that
A is an AFA, and ∗ satisfies the equations

1. R∗ = 1
,
+R ;R∗,

2. R∗ ;S ;1 ≤ S ;1+R∗ ;(S ;1·R ;S ;1).

In order to show the validity of the second equation, let us analyze its meaning.
The second-order formula

∀R∀S∀x∃y((xR∗y ∧ y ∈ S) → (x ∈ S ∨ ∃z(xR∗z ∧ z 6∈ S ∧ ∃w(zRw ∧ w ∈ S))))

expresses that if a finite path exists in the graph induced by R, which connects
x with an element y ∈ S, then, either x is already in S, or from x we can reach
an object outside S which is next to an object in S. This is a desirable property
of the operation ∗. Keeping in mind that right-ideal relations represent sets, it is
easy to see that equation 2 in Def. 7 is equivalent to this second-order formula.

We define the mappings TDL and TP , mapping formulas and programs, as
follows.
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Definition 8. In order to define mappings TDL and TP from dynamic logic for-
mulas and compound programs, respectively, onto closure fork algebra with urele-
ments terms, we first define recursively the mappings T ′

DL and TP by:
T ′

DL(pi) = Pi, (pi an atomic formula.)
T ′

DL(true) = U1,
T ′

DL(false) = 0,

T ′
DL(¬p) = 1

,
U ;T ′

DL(p),
T ′

DL(p ∨ q) = T ′
DL(p)+T ′

DL(q),
T ′

DL(〈R〉 p) = TP (R);T ′
DL(p),

TP (Ri) = Ri, (Ri an atomic program.)
TP (R ∪ S) = TP (R)+TP (S),
TP (R ;S) = TP (R);TP (S),
TP (R∗) = TP (R)∗,
TP (p?) = T ′

DL(p) ·1
,
U.

Next, we define the mapping TDL by TDL(α) = T ′
DL(α)+U1.

Using the mappings TDL and TP , in [30] the following theorem is proved.

Theorem 5. Given a dynamic formula ϕ, we have

|=DL ϕ ⇐⇒ `CAFA TDL(ϕ) .

Interpretability of First-Order Dynamic Logic Dynamic logic has become
a very useful tool in Computer Science, with direct applications in system specifi-
cation. Here we show how to interpret first-order dynamic logic in an extension of
the relational calculus of fork algebras. This allows us to: (a) incorporate the fea-
tures of dynamic logic in a relational framework, and, (b) provide an equational
calculus for reasoning in first-order dynamic logic.

Along this section we will assume a fixed (but arbitrary) finite signature Σ =
〈 s, A, F, P 〉, where s is a sort, A = { a1, . . . , an } are the primitive action symbols,
F = { f1, . . . , fk } are the function symbols, and P = { p1, . . . , pm } are the atomic
predicate symbols. We will work in the monosorted case for simplicity, but the
whole development extends straightforwardly to the manysorted case.

Definition 9. The sets of programs and formulas on Σ are the smallest sets
Prg(Σ) and For(Σ) satisfying:

1. a ∈ Prg(Σ) for all a ∈ A.
2. If r, s ∈ Prg(Σ), then { r∗, r ∪ s, r ;s } ⊆ Prg(Σ).
3. If α ∈ For(Σ), then α? ∈ Prg(Σ), and is called a test program.
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4. The set of classical first-order atomic formulas on the signature Σ is contained
in For(Σ).

5. If α, β ∈ For(Σ) and x is a variable, then {¬α, α ∨ β, (∃x) α } ⊆ For(Σ).
6. If α ∈ For(Σ) and p ∈ Prg(Σ), then 〈p〉α ∈ For(Σ).

As is standard in dynamic logic, states are valuations of the (state) variables.
The set of states will be denoted by S. In the remaining part of this section we
will assume a fixed (but arbitrary) structure S = 〈 s,mS 〉, where s is the carrier
of the structure and mS is the meaning function. The meaning function operates
on functions and predicates as is standard in classical first-order logic. Given an
action symbol a ∈ A, mS(a) ⊆ S × S. Given a term t denoting an object from s
and a state ν, mν(t) denotes the value of t in the state ν. When S is fixed, we
will use just m instead of mS . The semantics of complex actions and formulas is
given in the next definition. The notation S, ν |=DL α, is to be read “the formula
α is satisfied in the structure S by the state ν”. When S is clear from the context,
we will use the notation ν |=DL α with the same meaning.

Definition 10. The semantics of programs and formulas is given as follows.

1. If a ∈ A, then m(a) is already defined.
2. If a = b∗, with b ∈ Prg(Σ), then m(a) is the reflexive-transitive closure of the

binary relation m(b).
3. If a = b∪ c, with b, c ∈ Prg(Σ), then m(a) is the union of the binary relations

m(b) and m(c).
4. If a = b ;c, with b, c ∈ Prg(Σ), then m(a) is the composition of the binary

relations m(b) and m(c).
5. If a = α? with α ∈ For(Σ), then m(a) = { 〈ν, ν〉 : ν |=DL α }.
6. If ϕ = p(t1, . . . , tn) with p ∈ P , ν |=DL ϕ if 〈mν(t1), . . . ,mν(tn)〉 ∈ m(p).
7. If ϕ = ¬α, then ν |=DL ϕ if ν 6|=DL α.
8. If ϕ = α ∨ β, then ν |=DL ϕ if ν |=DL α or ν |=DL β.
9. If ϕ = (∃x)α, then ν |=DL ϕ if there exists a ∈ s such that ν[a/x] |=DL α.

10. If ϕ = 〈p〉α, then ν |=DL ϕ if there exists a state ν ′ such that 〈ν, ν ′〉 ∈ m(p)
and ν ′ |=DL α.

In order to prove interpretability of first-order dynamic logic, we will need a
more expressive class of algebras. We will define the class of omega closure fork
algebras by extending CAFA with a new operator called choice, and a new equa-
tional proof rule. Because the theory of first-order dynamic logic is not recursively
enumerable, CAFA with its recursively enumerable theory cannot be the target of
the interpretation. In order to overcome this restriction, in Def. 11 we will define
the calculus ω-CCFA by extending the the calculus for CAFA with an appropriate
infinitary equational inference rule. In order to give a better understanding of
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the semantics of the calculus, in Def. 13 we define the class of proper closure
fork algebras. In Thm. 6 we present a representation theorem showing that every
model of ω-CCFA is isomorphic to some proper closure fork algebra.

Definition 11. We define the calculus ω-CCFA by adding the following axioms
and inference rules to the calculus of CAFA.

x¦ ;1;x̆¦ ≤ 1
,
, (Ax. 4)

x̆¦ ;1;x¦ ≤ 1
,
, (Ax. 5)

1; (x ·x¦) ;1 = 1;x ;1. (Ax. 6)

The inference rules for the calculus ω-CCFA are those of equational logic (see
for instance [14, p. 94]) plus the following inference rule:

` 1
,
≤ y xi ≤ y ` xi+1 ≤ y (i ∈ IN)

` x∗ ≤ y

Definition 12. A model of the identities provable in ω-CCFA will be called an
omega closure fork algebra. The class of omega closure fork algebras is denoted
by ω-CFA.

Once the abstract algebras are defined, we will define the standard models
and present the representation theorem, whose proof is given in [27].

Definition 13. A Proper Closure Fork Algebra is a structure 〈A, ¦, ∗ 〉 where A

is a proper fork algebra, ∗ is reflexive-transitive closure, and ¦ is defined by the
formula

x¦ ⊆ x and |x¦| = 1 ⇐⇒ x 6= ∅ .

Notice that x¦ denotes an arbitrary pair in x. That is why x¦ is called a choice
operator.

Theorem 6. Given A ∈ ω-CFA, there exists B ∈ PCFA such that A is isomor-
phic to B.

Given a subsequence, τ , of σ, of length k, by Πσ,τ we denote the term

δσ(vτ(1))∇ · · · ∇δσ(vτ(k)) .
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This term, given an object storing values for the variables whose indices occur in
σ, builds an object storing values for the variables occurring in τ . Let τ and σ be
disjoint and with Length(τ) = l1 and Length(σ) = l2. Let a = a1 ? · · · ? al1 and
b = b1 ? · · · ? bl2 encode the values for the variables whose indices occur in τ and
σ, respectively. Mergeτ,σ, from the input a ? b, builds the encoding for the values
of those variables whose indices occur either in τ or σ.

Definition 14. The functions Mσ and Tσ are mutually defined by

1. Mσ(a) = (Πσ,σa
;a ∇ Πσ,σ−σa

) ;Mergeσa,σ−σa
, for each a ∈ A,

2. Mσ(R∗) = Mσ(R)∗,
3. Mσ(R ∪ S) = Mσ(R)+Mσ(S),
4. Mσ(R ;S) = Mσ(R);Mσ(S),
5. Mσ(α?) = Tσ(α) ·1

,
,

6. Tσ(p(t1, . . . , tn)) = (δσ(t1)∇ · · · ∇δσ(tn)) ;p,
7. Tσ(¬α) = Tσ(α),
8. Tσ(α ∨ β) = Tσ(α)+Tσ(β),
9. Tσ ((∃vi) α) = ∆σ,i ;Tσ⊕i(α),

10. Tσ (〈p〉α) = Mσ(p);Tσ(α).

As usual, a formula α will be called a sentence if it does not contain any free
occurrences of variables. The next theorem states the interpretability of presen-
tations of theories from DL as equational theories in ω-CCFA. A detailed proof is
given in [27].

Theorem 7. Let Γ ∪ {ϕ } be a set of sentences. Then,

Γ |=DL ϕ ⇐⇒
{

T〈〉(γ) = 1 : γ ∈ Γ
}
`ω-CCFA T〈〉(ϕ) = 1 .

3.6 Fork Algebras in Program Derivation

As a consequence of Thm. 1, the first-order theories of AFA and PFA are the
same, and thus a natural semantics can be attributed to first-order formulas over
abstract relations in terms of binary relations. This is a very important property
in a calculus for program construction. The equivalence between the first-order
theories of PFA and AFA guarantees that any first-order property valid for proper
fork algebras can be proved syntactically from the axioms describing abstract fork
algebras. This has a direct application in program construction. Let us consider
an intermediate step in a derivation of an algorithm from a relational specification
S0. The derivation has a shape

S0, S1, . . . , Sk,
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where for all i, 1 ≤ i ≤ k, Si is obtained from S0, . . . , Si−1 by means of the
derivation rules. If Sk is still not the algorithm we are looking for, then further
steps must be performed. If resorting to thinking about binary relations shows
that a valid first-order property allows Sk to evolve to a new expression E (which
is closer to the intended algorithm), then the representation theorem guarantees
that a syntactic proof Sk, Sk+1, . . . , E exists, allowing us to reach the formula E
from Sk. This shows that the heuristics arising from considering concrete binary
relations can be employed throughout the process of program derivation using the
rules and axioms of the calculus for abstract fork algebras. Another important
property stems from the fact that only a finite number of axioms are necessary
for describing the class of abstract fork algebras. Thus, the syntactic proofs men-
tioned above can be more easily performed with the assistance of a computer
system.

Regarding the expressiveness of fork algebras, it was proved in Section 3.4 that
first-order theories can be interpreted as equational theories in fork algebras. The-
orem 3 shows that a wide class of problems (at least those that can be described
in first-order logic) can be specified in the equational calculus of fork algebras.
Moreover, the abstract relational specification can be obtained algorithmically
from the first-order specification by using the mapping I.

A Methodology for Program Construction In this section we present the
outlines of a methodology for program construction based on fork algebras using
generic algorithms (program schemes).

The starting point of the methodology is a formal specification of the problem
to be solved. In this case, we will use first-order logic with equality because it is
a simple formal language that is taught in most computer science courses.

Once a first-order specification of a problem is given, a relational specification
must be obtained. In order to obtain this specification, we can proceed in one
of the following two ways. Applying Thm. 3, from a first-order specification ϕ
and using the mapping I we will obtain a relational term I(ϕ) that captures
the meaning of problem P . Unfortunately, the term resulting from applying the
mapping I is not always very adequate with respect to the process of program
derivation. The second method consists of reducing the first-order formula ϕ into
an equation eϕ using the set-theoretical definition of the relational operators.

Once a relational specification is obtained, we will choose a design strategy
that will guide the process of deriving an algorithm from this specification. In
programming in general, examples of design strategies include case analysis, triv-
ialization, divide-and-conquer, backtracking, and many more [1, 10, 52, 55, 56]. In
the methodology presented here, the first-order language of fork algebras will be
used to express such design strategies (recall that from Thm. 1 and the discussion
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following it, formulas from the first-order theory of fork algebras have a standard
semantics in terms of concrete binary relations). A trivial example of a design
strategy is case analysis (C A). A problem is said to be solved using this strategy
if the domain of the problem can be partitioned, let us say, in k parts D1, . . . , Dk,
and we find k algorithms A1, . . . , Ak such that Ai solves the given problem when
its domain is restricted to the part Di. This can be more simply and formally
stated by the following formula over relations:

C A(R,R1, . . . , Rk) ⇐⇒
∧

1≤i<j≤k

Dom (Ri) ·Dom (Rj) = 0 ∧ R =
k∑

i=1

Ri . (14)

Formula (14) is to be read as follows:

‘Problem R is solved by case-analysis using problems R1, . . . , Rk’.

Notice that (14) provides the means to solve problem R, that is, given an input
a for R there is to find Ri such that a ∈ Dom (Ri) and then compute Ri(a).

Other strategies, such as trivialization (a particular instance of case analysis
where one of the subproblems is assumed to be easy to solve), divide-and-conquer,
or backtracking have been formalized in this way.

Each strategy comes with an associated explanation about how to construct
a program solving the original problem.

Notice that strategies are in general formulas of the form

Strat(R,X1, . . . , Xn) ⇐⇒ Strat Definition(R,X1, . . . , Xn), (15)

where Strat is a (n + 1)-ary predicate symbol, and Strat Definition is a formula
on the relational variables R, X1, . . . , Xn, involving previously defined strategies.
Deriving an algorithm A for solving a problem P whose relational specification
is S(P1, . . . , Pk) using a strategy defined as in (15), consists of finding relational
terms T1(P1, . . . , Pk), . . . , Tn(P1, . . . , Pk) such that

Theory(D1), . . . , Theory(Dm), S(P1, . . . , Pk) `AFA

Strat Definition(P, T1(P1, . . . , Pk), . . . , Tn(P1, . . . , Pk)). (16)

In (16), Theory(D1), . . . , Theory(Dm) are relational specifications of the do-
mains of the problem [7–9], and the symbol `AFA denotes first-order logic entail-
ment under the theory of AFA.

The algorithms characterized by the strategies are as a matter of fact fork al-
gebraic equations. Thus, in order to find terms T1(P1, . . . , Pk), . . . , Tn(P1, . . . , Pk)
we will resort to equational reasonings using the axioms of fork algebras, plus
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those equations describing the domains D1, . . . , Dm. The general strategy we will
use for deriving recursive algorithms will be Unfolding/Folding [16].

The terms T1(P1, . . . , Pk), . . . , Tn(P1, . . . , Pk) required in (16), and found as
described in the previous paragraph, are either algorithms if they are built with
algorithmic combinators, or can be considered as relational specifications of sim-
pler problems.

4 Current Research

4.1 The Argentum Project

The results presented in Sections 3.4 and 3.5 constitute the foundations of the
Argentum Project. Argentum is a CASE tool with relational foundations under
development by the group of Relational Methods, at the department of computer
science of the University of Buenos Aires. Rather than using a single monolithic
language for software specification, it uses different logics for modeling different
views of systems. Thus, a system specification becomes a collection of theories
coming from different logics. Using the interpretability results for these logics,
the theories are translated to a uniform (regarding the language) relational spec-
ification. Once a relational specification is obtained, different tools such as model
checkers or theorem provers can be applied in order to verify the relational spec-
ification. For a graphical description of Argentum, see Fig. 5. UML diagrams
located at the top of Fig. 5 are mapped to specifications in different logics. No-
tice that more than one arrow can leave from a single diagram. This is because one
diagram can contain information of different nature. For instance, a class-diagram
contains structural information that can be specified in classical first-order logic.
It can also contain behavioral information as pre and post conditions of methods,
that can be captured using dynamic logic. The theory presentations holding this
information are located at the spheres. Notice that several arrows can target the
same sphere. This is because information of a similar nature can appear scat-
tered through the diagrams. The arrows originating at the spheres map logical
specifications to a relational specification (located in the box targeted by the
arrows). The homogeneous specification can later be analyzed using tools (the
lower boxes) which can be plugged into Argentum.

The mappings from the spheres to the fork calculus have been implemented
for classical first-order logic and first-order dynamic logic. Also have been im-
plemented a theorem prover for first-order dynamic logic as an extension of the
theorem prover PVS [51], and a model checker for relational specifications.



Fork Algebras: Past, Present and Future 205

Fig. 5. Architecture of Argentum

4.2 Interpretability of First-Order Temporal Logics

This section presents validity-preserving mappings translating first-order formu-
las from the temporal logic LTL to the language of omega closure fork algebras.
An essential property of the translation is that states in traces are modeled in
the same way the state is modeled in the translation of classical first-order logic
and first-order dynamic logic.

In the remaining part of this section we will present the syntax and semantics
of the first-order linear time temporal logic LTL, as well as the mapping and the
interpretability theorem.

The logic FOLTL is defined over sets of variables {vk}k∈K. Terms are built as in
classical first-order logic. The set of well-formed terms is denoted by TerFOLTL.

Definition 15. We define the set ForFOLTL of the FOLTL well-formed formu-
las on the first-order signature Σ as the smallest set F satisfying:

– If pi (i ∈ I) is an n-ary atomic predicate and t1, . . . , tn ∈ TerFOLTL, then
p(t1, . . . , tn) ∈ F ,

– If α, β ∈ F and vk (k ∈ K) is a variable, then

{¬α, α ∨ β,⊕α, αUβ, (∃vk)α, (∀vk)α } ⊆ F .
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Definition 16. Given a signature Σ = 〈 s, {fj}j∈J , {pi}i∈I 〉, a Σ-structure is a
structure A =

〈
sA, {fA

j }j∈J , {pAi }i∈I

〉
such that:

– sA is a nonempty set.
– if fj (j ∈ J ) is an n-ary function symbol, then fA

j : (sA)n → sA.
– if pi (i ∈ I) is an n-ary predicate symbol, then pAi ⊆ (sA)n.

Given a signature Σ, we will assume a fixed (but arbitrary) Σ-structure A.
The semantics of FOLTL formulas is defined over a Kripke structure K of the
form 〈A, St, St0, T 〉, where St is the set of states (valuations of the variables on
sA), St0 ⊆ St is the set of initial states, and T ⊆ St×St is the transition relation.
The transition relation T is assumed to be complete; that is, every state has at
least one successor.

Given a Kripke structure K, the set of paths of K is denoted by ∆K . A path
s ∈ ∆K is an infinite sequence s0, s1, . . . such that si ∈ St and (si, si+1) ∈ T
for all i ≥ 0. We denote by si the suffix of s starting at position i. Similarly, we
denote by si the i-th state in the path s. A vi–variant of a state s (i ∈ K) is a
state ŝ that agrees with s in the value of the state variables vj (j ∈ K, j 6= i).
This concept generalizes to traces as follows. A trace π̂ = ŝ0, ŝ1, . . . , ŝn, . . . is a
vi–variant of a trace π = s0, s1, . . . , sn, . . . if ŝj is a vi–variant of sj for all j ≥ 0.

The semantics of terms agrees with the semantics of terms in classical first-
order logic. In the next definition we present the satisfiability relation for FOLTL
formulas.

Definition 17. Given a Kripke structure K = 〈A, St, St0, T 〉, formulas α, β ∈
ForFOLTL, and s ∈ ∆K, the semantics of a FOLTL formula is defined recursively
as follows:

– K, s |=FOLTL pi(t1, . . . , tn) iff (V (t1)(s0), . . . , V (tn)(s0)) ∈ pAi ,
– K, s |=FOLTL ¬α iff K, s 6|= α,
– K, s |=FOLTL α ∨ β iff K, s |= α or K, s |= β,
– K, s |=FOLTL ⊕α iff K, s1 |= α,
– K, s |=FOLTL αUβ iff there exists i ≥ 0 such that K, si |= β, and for all j

(0 ≤ j < i), K, sj |= α,
– K, s |=FOLTL (∃vj)α iff K, ŝ |= α, for some ŝ, a vj–variant of s.

A formula is satisfied in a Kripke structure K if it is satisfied along a path
s0, s1, . . . ∈ ∆K such that s0 ∈ St0. A formula is valid in a Kripke structure K if
it is satisfied along all paths s0, s1, . . . ∈ ∆K such that s0 ∈ St0.

Defining the translation for a first-order temporal language with function
symbols {fj}j∈J and atomic proposition symbols {pi}i∈I , requires extending the
language of closure fork algebras with new constants St, T, St0, tr, and families
of constants {Fj}j∈J , {Pi}i∈I and {Vk}k∈K.
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There are two usual ways to represent sets as binary relations: using partial
identities (i.e., relations contained in the identity relation), or using right-ideal
relations. Right-ideal relations relate each element in their domain to every el-
ement in the universe. Thus, the range provides no information. A right-ideal
relation can be used to model the set provided by its domain.

In the following paragraphs we will present axioms characterizing the meaning
of the added constants. The partial identity St will model the set St. Similarly,
relation St0 is a partial identity modeling the set St0. Relation T models the
accessibility relation T . Relation tr models the set of traces. The constants Fj

(j ∈ J ) model the meaning of the function symbols. Similarly, relations Pi (i ∈ I)
will model the meaning of predicate symbols.

St = 1
,
U⊗ · · · ⊗1

,
U (|K| times), (17)

St0 ≤ St, (18)

Dom (T) = St, (19)

Formula (17) establishes that the states are built as k-tuples of urelements. For-
mula (18) establishes that S0 is a subset of the set of states. Formula (19) estab-
lishes that T is a total (and therefore complete) relation on the set of states.

For each function symbol f , with arity n, we add the equations:

F̆ ;F ≤ 1
,
U, (20)

(1
,
U⊗ · · · ⊗1

,
U

︸ ︷︷ ︸

n times

);F = F. (21)

Equation (20) establishes that F is a functional relation, and (21) establishes that
F expects a n tuple as input and produces an urelement as output.

For each predicate symbol P , with arity n, we add the equation:

(1
,
U⊗ · · · ⊗1

,
U

︸ ︷︷ ︸

n times

);P ;1 = P. (22)

Formula (22) establishes that P a right-ideal relation, therefore representing
a set. P represents the set of n tuples that satisfy predicate P .

Since the semantics of temporal formulas is defined in terms of traces, we will
model the notion of trace in a fork algebra. Given a fork algebra A, we model
traces in A with elements from UA as the ones described by Fig. 6. The next
definition provides a relational characterization of traces.
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?

¡¡ @@
s0 ?

¡¡ @@
s1 ?

¡¡
...

s2 ?

¡¡
...

sn

Fig. 6. Infinite right degenerate trees pattern.

The relation tr, characterizing the traces (paths) in a closure fork algebra is
defined by the following equations:

tr ≤ 1
,
, (23)

π̆ ;tr ;π = St, (24)

tr ≤ St⊗tr, (25)

tr ;ρ = Ran (π∇ (T⊗ρ)) ;ρ ;tr. (26)

Formula (23) states that tr is a partial identity (a set). Formula (24) (together
with (17)) establishes that states in a trace are k-tuples of urelements. Finally,
Formulas (25) and (26) establish that traces are infinite, T -related, sequences.

The relations Vi allow us to build the vi–variants of a trace. They are defined
as follows:

Vi = νX





Repn,i

⊗
X

;tr



 ,

where ν is the largest fixed point operator, and Repn,i denotes the binary relation
that, when provided with a state a1?· · ·?ai?· · ·?an, returns all the states obtained
by substituting the value of ai. For instance, for n = 3,

Rep3,1 = U1U ⊗ (1
,
⊗ 1

,
) ,

Rep3,2 = 1
,
⊗ (U1U ⊗ 1

,
) ,

Rep3,3 = 1
,
⊗ (1

,
⊗ U1U) .

A simple proof by induction on n (that essentially uses the monotonicity of
T (X)) shows that Vi is a lower bound of the chain 1, T (1), . . . , T n(1), . . . . If we
add the rule

y ≤ T j
i (1) ` y ≤ T j+1

i (1) (V arRulei)
` y ≤ Vi

then Vi is indeed the largest lower bound (the infimum) of the chain.
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Definition 18. We define the calculus ω-CCFA
′ as the extension of ω-CCFA ob-

tained by adding equations (17)–(26) as axioms, and the rules VarRule i (1 ≤ i ≤
k).

Terms are translated as in classical first-order logic. In Def. 19 we present a
translation of FOLTL formulas to fork terms.

Definition 19. We define the translation TFOLTL : ForFOLTL(Σ) → AFATerms,
mapping formulas from FOLTL to terms in fork algebras, as follows:

TFOLTL(pi(t1, . . . , tn)) = π ; (δFOLTL(t1)∇ · · · ∇δFOLTL(tn)) ;Pi

TFOLTL(¬α) = tr ;TFOLTL(α)
TFOLTL(α ∨ β) = TFOLTL(α)+TFOLTL(β)
TFOLTL(⊕α) = ρ ;TFOLTL(α)
TFOLTL(αUβ) = (Dom (TFOLTL(α)) ;ρ)∗ ;TFOLTL(β)
TFOLTL ((∃vi) α) = Vi ;TFOLTL (α)

The next theorem presents the interpretability result for the logic LTL. It
shows that it is possible to replace semantic reasoning in LTL by equational
reasoning in ω-CCFA

′.

Theorem 8. Let α ∈ ForFOLTL(Σ). Then,

|=FOLTL α ⇐⇒ `ω-CCFA
′ Dom (π ;St0) ;tr ;TFOLTL(α) = Dom (π ;St0) ;tr ;1 .

4.3 Fork and Arrow Logics

We will now outline some ideas of a current research connecting fork algebras and
modal logics. As mentioned in Section 1, modal logics are convenient formalisms
for several purposes, modalities being simpler than quantifiers, but generally have
limited expressive power [12]. Arrow logic, for instance, is a modal logic intended
to deal with arrows (e.g., transitions) and can handle sequential composition, but
not parallelism [44].

In the sequel, we will indicate how the addition of fork to arrow logic provides
an extension where one can deal with parallelism and synchronization [5, 6, 20].
We will use a notation close to that of the present paper, rather than the more
traditional one in modal circles.

Arrow logic amounts to a modal version of relation algebras [44, 12]. We will
first outline the basic ideas of arrow logic (AL, for short).

The formulas of AL are built from a set P of propositional symbols, as follows:
α ::= p | 1

,
| α′ | α′ ·α′′ | ᾰ′ | α′ ;α′′.16 Other symbols can be defined, such as the

duals –̆ and ;17.

16 A more traditional notation uses ιδ and ⊗ for 1
,

and .̆
17 We define α–̆ := ᾰ and β ;γ := β ;γ.
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The semantics of AL is given by frames and models. A square arrow frame
is given by a square set S (of states): S = U × U .18 A square arrow model M

consists of a square arrow frame and a valuation V : P → 2S (assigning to each
propositional letter in P a set of of states).

Now, satisfaction at a state s = 〈a, b〉 ∈ S is defined inductively as usual. For
instance, some clauses are

[p] (M, 〈a, b〉) |= p iff 〈a, b〉 ∈ V (p),
[1

,
] (M, 〈a, b〉) |= 1

,
iff a = b,

[̆ ] (M, 〈a, b〉) |= ᾰ iff (M, 〈b, a〉) |= α,
[ ; ] (M, 〈a, b〉) |= β ;γ iff, for some c ∈ U , (M, 〈a, c〉) |= β and (M, 〈c, b〉) |= γ.

If we use M[α] for the set { s ∈ S : (M, s) |= α } of states defined by formula
α, we see that we have an algebra of relations.19 We have a clear correspondence
between relation algebra equations and AL formulas.

Fork arrow logic (FAL, for short) extends AL by fork ∇ . The formulas of FAL
are built as before, adding the clause α ::= α′∇α′′. We introduce the projections

pi := (1
,
∇1)̆ and rho := (1∇1

,
)̆ , as well as the dual ∇ by β∇γ := β∇γ.

The semantics of FAL is given by the appropriate frames and models. A square
fork arrow frame F consists of a square arrow frame and an injective function
? : U × U → U . A square fork arrow model M consists of a square fork arrow
frame F and a valuation V : P → 2S.

Now, satisfaction at a state s = 〈a, b〉 ∈ S is defined by extending the previous
definition by the following clause:

[∇ ] (M, 〈a, b〉) |= β∇γ iff, for some c, d ∈ U , (M, 〈a, c〉) |= β, (M, 〈c, d〉) |= γ
and c ? d = b.

We can axiomatize FAL by a normal modal system [12], consisting of

– the FAL versions of the fork arrow logic equations,
– distribution axioms for the dual modalities (e.g., α∇(β → γ) → (α∇β) →

(α∇γ)),
– necessitation rules for the dual modalities (e.g., from β infer β∇γ)).

This axiom system is sound and complete [5] and it axiomatizes squares in
FAL [20].

We can internalize the above FAL semantics in first-order logic by considering
a set P of binary predicates corresponding to the propositional letters in P , as
well as a binary operation ?. We then have similar FAL models M and first-order

18 A general arrow frame is a structure 〈S, ; , 1
,
,˘〉.

19 We have, e.g., M[1
,
] = Id, M[ᾰ] = (M[α])^ and M[β ;γ] = M[β]◦M[γ].
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structures T (with pT = V (p)) corresponding to each other. We define the square
fork arrow translation Qz

u, for a pair of variables u and z, simulating the above
inductive definition of satisfaction. For instance, some clauses are as follows.

[p] Qz
u(p) := p(u, z),

[1
,
] Qz

u(1
,
) := u = z,

[ ; ] Qz
u(β ;γ) := ∃v(Qv

u(β) ∧ Qz
v(γ)), where v is a new variable,

[∇ ] Qz
u(β∇γ) := ∃v∃w(Qv

u(β) ∧ Qw
u (γ) ∧ v ? w = z), where v and w are new

variables.

We can also define a reverse translation Rz
u, from first-order formulas to FAL

formulas, much as before (cf. Section 3.4.). We can then see the expressiveness of
FAL formulas [20].

1. For similar FAL model M and first-order structure T,
(a) for every FAL formula α: (M, 〈a, b〉) |= α iff T |= Qz

u(α) [u/a, z/b], i.e. we
have equal defined relations M[α] = T[Qz

u(α)],
(b) for every first-order formula ϕ: T |= ϕ [u/a, z/b] iff (M, 〈a, b〉) |= Rz

u(ϕ),
i.e. we have equal defined relations T[ϕ] = M[Rz

u(ϕ)].
2. For every FAL formula α: `FAL α ↔ Rz

u(Q
z
u(α)).

3. For every first-order formula ϕ: Inj(?) ` ϕ ↔ Qz
u(R

z
u(ϕ)).

5 Conclusions and Further Research Directions

In this paper we have presented an overview of research done in the past within the
field of fork algebras. We also devote special attention to the description of current
research, as well as mention in the remaining of this section some future research
lines. Hopefully, this paper will serve as a reference for researchers interested in
fork algebras, and for those already working on fork algebras and looking for new
research lines within the field.

Automatic Analysis of Relational Specifications We have started some
foundational research and tool development to this end. A promising research
direction is bounded model-checking of relational specifications. The bounds are
necessary because the theory of fork algebras is undecidable. There are two ap-
proaches that we are studying. One consists on verifying specifications using
proper fork algebras, and the other uses abstract fork algebras.

Verification using proper fork algebras requires bounds on the cardinality of
the set of urelements. Notice that urelements are used in modeling user defined
objects, while splitting elements are used in order to cope with the lack of vari-
ables over individuals in the language of fork algebras. Verifying that an assertion
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follows from a specification involving relational constants C1, . . . , Ck, amounts to
finding binary relations R1, . . . , Rk such that the assignment C1 := R1, . . . , Ck :=
Rk satisfies the specification, but refutes the assertion. Generating all possible
k-tuples of relations is usually unfeasible, and therefore the verification prob-
lem consists on generating as few valuations as possible, while making sure that
counterexamples are not incorrectly overlooked. Different strategies can be im-
plemented in order to reduce the number of valuations that have to be generated,
and this is an important research area.

Verification using abstract fork algebras attempts to solve the same problem.
The difference is that R1, . . . , Rk rather than being binary relations, are elements
from an abstract fork algebra. The added complexity, in this case, is that inter-
esting fork algebras are infinite. This can be solved by adding a new bound on the
depth of pairing. The advantage is that the new method is strictly more expres-
sive than checking with concrete relations. This follows from the fact that there
are finite and representable relation algebras that are representable on infinite
sets. Therefore, for some problems about infinite relations, as for instance dense
linear orders, properties can be verified in small, finite, abstract fork algebras.

Formalization of Component Based Software Development Interfaces,
services, components and connectors are concepts that have a clear relational con-
tent. Services can be seen as the building blocks for component based software.
We can model services as relations for which we provide relational specifications.
Services can be appropriately conjoined in order to obtain a relational formal-
ization of components. Components are related using connectors. In a relational
setting, connectors can be modeled with terms built with projections, allowing
us to connect services from two or more components.

Fork Algebras, Allegories and Situation Theory Another research line
concerns connections of fork algebras with other theories, e.g., Allegory and Sit-
uation Theory. In both cases, one can notice connections with relation algebras,
which suggests investigating the introduction of fork in such contexts. Allegories
[22] appear as generalizations of categories, motivated by relaxing the functional
morphisms of the latter to relational arrows. Situation Theory [3] was introduced
to handle information, in general, and information flow in Channel Theory [2].
Here, the flow of information through a channel suggests input-output pairs, also
the operations and axioms on channels remind one of algebras of relations. It is
quite natural to consider fork to model parallel flows and synchronization.
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60. Veloso, P. A. S., Is fork set-theoretical?, Bulletin of the Section of Logic vol. 26, No. 1 (1997),

University of Lódź, pp. 20–30.
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