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Abstract Modal Kleene algebras are Kleene algebras with forward and backward modal
operators, defined via domain and codomain operations. They provide a concise and con-
venient algebraic framework that subsumes various popular calculi and allows treating
quite a number of areas. We survey the basic theory and some prominent applications.
These include, on the system semantics side, wlp and wp calculus, PDL (Propositional
Dynamic Logic), predicate transformer semantics, temporal logics and termination anal-
ysis of rewrite systems and state transition systems. On the derivation side we apply the
framework to game analysis and greedy-like algorithms.

1 Introduction

Kleene algebras are fundamental structures in computer science, with applica-
tions ranging from program development and analysis to rewriting theory and
concurrency control. Initially conceived as algebras of regular events [30], they
have since been extended in several directions. The first direction includes omega
algebra, which is a Kleene algebra with an additional operator for infinite it-
eration [8], demonic refinement algebra [56] and lazy Kleene algebra [35]. The
second direction adds tests to Kleene algebra [31]. This allows, among others,
reasoning about regular programs. Most of these extensions offer a nice balance
between expressive and algorithmic power. The equational theory of Kleene al-
gebra, for instance, can be decided by automata. The third direction is modal in
spirit. Here Kleene algebra is combined with Boolean algebra in a module-based
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approach [19], the scalar product modelling the application of a modal opera-
tor to a state. This yields a calculus similar to certain algebraic approaches to
propositional dynamic logics.

The fourth direction we treat here reconciles the modal and the relational
approaches to reasoning about programs and state transition systems in the form
of Kleene algebra with domain [11]. The three simple equational domain axioms
open a new door: they allow the definition of modal operators semantically via
abstract image and preimage operations. But still in many cases expressions that
mention modalities can be reduced to pure Kleene algebra with tests. This pre-
serves the algorithmic complexity of the latter but also provides a very symmetric
approach to reasoning about actions and propositions or transitions and states.
Compared with relation algebra, modal Kleene algebra does not need the full
power of a complete atomic Boolean algebra as the carrier set, of full additivity
of sequential composition, of a converse operation and of residuation.

We survey modal Kleene algebra both from the theoretical and the practical
point of view. On the theoretical side, we review the main concepts and the
most important facets of a calculus. Modal Kleene algebras are mathematically
quite simple: for actions, they provide only the regular operations of addition,
multiplication and reflexive transitive closure; propositions are modelled by a
Boolean algebra. Their combination via modalities makes the approach expressive
enough for a wide variety of applications. We also try to point out that the
algebraic approach to modal reasoning provides some advantages over a logical
one. Algebra in general is particularly suited for structuring and abstracting.
Here, structure is imposed via symmetries and dualities, for instance in terms
of Galois connections. Abstraction is provided, for instance, by lifting modal
expressions to the algebras of modal operators, which are again algebraically well-
behaved. This often allows a very brief and concise point-free style of reasoning.
We will also see that by exploiting modal correspondences, switching between
relational and modal reasoning can be very simple in modal Kleene algebra. Often
there is a one-to-one translation between modal and relational proofs. This is
interesting in particular when relational reasoning is visualized by diagrams [17].

On the practical side, we show that modal Kleene algebra may serve both
as an abstract program semantics and as a unifying tool that subsumes many
popular program calculi and hence admits cross-theory reasoning. Here, we show
that both the weakest liberal precondition semantics and the weakest precondition
semantics and hence both partial and total program correctness can be modelled.
We also show how predicate transformer algebras with convenient properties are
induced. In the field of calculi, we present subsumption and completeness results
for (propositional) Hoare logic, propositional dynamic logic and temporal logics.
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In the field of system development we show applications to reasoning about
greedy algorithms, to modelling termination conditions, to game analysis and
in reconstructing a considerable part of the theory of abstract rewriting in a
simple and convenient way. Since we do not consider equational rewriting but its
non-symmetric extension [51], our results are immediately relevant to concurrent
systems that interact via commutation or semi-commutation properties.

Many of the results presented here have appeared elsewhere, and we just quote
the original papers which should be consulted for full details. Although the aim of
this survey is to form an overall picture of the usefulness of modal Kleene algebra,
we do not claim completeness. For instance, an approach to pointer analysis based
on Kleene algebra [18], though highly relevant, is not treated.

Modal Kleene algebra is a quite recent development. Although the core of the
theory seems now well understood and the examples outlined below point out its
universality and practical relevance, still many questions are open. In particular,
as far as applications are concerned, we feel that we have so far only scratched
the surface.

The remainder of this text is organised as follows. Section 2 introduces modal
semirings. Section 3 shows game analysis as a first application of modal semir-
ings. Section 4 extends modal semirings to Kleene algebra with domain and to
modal Kleene algebra. Section 5 relates the approach to propositional dynamic
logic and its relatives. Section 6 shows how partial and total correctness of regu-
lar programs can be modelled. Section 7 lifts modal Kleene algebra to predicate
transformer algebra. Section 8 relates the approach with temporal logics. Section
9 reconstructs various results from the area of termination analysis, including
properties of abstract rewrite systems. Section 10 discusses connections to modal
correspondence theory. Section 11 develops a generic greedy-like algorithm. Sec-
tion 12 summarises the applications and points out further directions for the
approach.

2 Domain Semirings and Modalities

2.1 Test Semirings and Domain

A semiring is a structure (K, +,-,0,1) such that (K,+,0) is a commutative
monoid, (K-, 1) is a monoid, multiplication distributes over addition from the
left and right, and zero is a left and right annihilator, i.e., a0 = 0 = Oa for all
a € K (the operation symbol - is omitted here and in the sequel). The semiring
is idempotent if it satisfies a + a = a for all a € K. Every idempotent semiring
K has a natural ordering < defined for all a,b € K by a < biff a+b = 0. It
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induces a semilattice with 4+ as join and 0 as the least element; addition and
multiplication are isotone with respect to the natural ordering.
In many contexts the semiring operations can be interpreted as follows:

+ <« choice,

-« sequential composition,

0 <« abortion,

1 <« identity,

< <« increase in information or in choices.

Programs and state transition systems can be described in a bipartite world
in which propositions describe sets of states and actions or events model state
transitions. Propositions live in a Boolean algebra and actions in an idempotent
semiring with the operations interpreted as above. Test operators embed the
proposition space into the action space. To model regular programs, an additional
operation of iteration or reflexive transitive closure is required; the corresponding
extension of idempotent semirings to Kleene algebras is described in Section 4.

Finally, propositions and actions are connected by modal operators that map
actions and propositions to propositions. To prepare this modal view, let semiring
element a describe an action or abstract program and p describe a proposition
or assertion, also called a test. Then pa describes a restricted program that acts
like @ when the initial state satisfies p and aborts otherwise. Symmetrically, ap
describes a restriction of @ in its possible final states. We introduce an abstract
domain operator that assigns to a the test that describes precisely its enabling
states. In combination with restriction, the domain operation yields an abstract
preimage operation. This provides the semantic basis of modalities.

Let us now axiomatise the corresponding notions. A Boolean algebra is a
complemented distributive lattice. By overloading, we usually write + and - also
for the Boolean join and meet operation and use 0 and 1 for the least and the
greatest elements. The symbol — denotes the operation of complementation. We
will consistently use the letters a,b,c,... for semiring elements and p,q,r,...
for Boolean elements. We will freely use the concepts and laws associated with
Boolean algebra, including relative complement p — ¢ = p M —¢ and implication
p—q="p+q.

A test semiring is a two-sorted structure (K test(K)), where K is an idem-
potent semiring and test(K) C K is a Boolean algebra embedded into K such
that the operations of test(K) coincide with the restricted operations of K. In
particular, p < 1 for all p € test(K). In general, test(K) is only a subalgebra of
the subalgebra of all elements below 1 in K.

A semiring with domain [11] (a "-semiring) is a structure (K,"), where K is
an idempotent semiring such that the domain operation ™: K — test(K) satisfies
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for all a,b € K and p € test(K)

a<Taa, (d1)
"(pa) <p. (d2)

Let us explain these axioms. As in the algebra of relations, multiplication with
a test from the left or right means domain or range restriction, respectively. Now
first, since "fa < 1 by "a € test(K), isotonicity of multiplication shows that the
first axiom can be strengthened to an equality expressing that restriction to the
full domain is no restriction at all. The second axiom means that after restriction
the remaining domain must satisfy the restricting test.

To further explain (d1) and (d2) we note that their conjunction is equivalent
to each of

o <p<a<pa, (1lp)
o <p<s —pa<0, (gla)

which constitute elimination laws for domain. (llp) says that "a is the least left
preserver of a. (gla) says that —"a is the greatest left annihilator of a. Both
properties obviously characterize domain in set-theoretic relations.

Because of (llp), domain is uniquely characterised by the two domain axioms.
Moreover, if test(K) is complete then a domain operation always exists. If test(K)
is not complete, this need not be the case.

A prominent example of a domain semiring is the algebra REL of binary
relations over some set. There, the domain operation is given by "R = R; R N
I, where I is the identity relation, R~ is the converse of R and ; is relational
composition.

Further important domain semirings are the algebra PAT of path sets in a
directed graph (see e.g. [34]) and Kleene’s original algebra of formal languages,
the latter ones being not very interesting, because its test algebra is discrete, i.e.,
consists of 0 and 1 only.

Many natural properties follow from the axioms. Domain preserves arbitrary
existing suprema [37]; in particular, it is strict ("a = 0 < a = 0), additive
("(a+b) ="Ta+"b) and isotone (a < b = "Ta < ). Moreover, it is stable on tests
("p = p) and satisfies the import/export law ("(pa) = pTa). See [11] for further
information.

2.2 Modal Semirings

A domain semiring is called modal if additionally it satisfies

Ta"™) < (ab). (d3)
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This axiom serves to make composition of multimodal operators below well-
behaved. In a modal semiring, domain is local:

"(ab) = "(a"D).

Without (d3), only the inequality "(ab) < (a") holds. The additional axiom (d3)
guarantees that the domain of ab is independent from the inner structure of b or
its codomain; information about the domain of b in interaction with a suffices.

A codomain operation " can easily be defined as a domain operation in the
opposite semiring, where, as usual in algebra, opposition just swaps the order of
multiplication. We call a semiring K with local domain and codomain a modal
semiring.

In a modal semiring K, we can introduce forward and backward diamonds by
modelling their standard semantics as abstract preimage and image operations:

la)p = "(ap), (alp = (pa)’, (1)

for all « € K and p € test(K).

The definition implies that the diamonds are strict additive mappings on the
algebra of tests. Hence they are operators a la Jénsson and Tarski [27], and
structures with such operators are called modal algebras in [22].

Duality with respect to opposition transforms forward diamonds into back-
ward diamonds and vice versa. It follows that they satisfy an exchange law, a
weak analogue of the relational Schroder law. For all @ € K and p, ¢ € test(K),

la)p < —q < (alg < —p. (2)

De Morgan duality turns diamonds into boxes and vice versa:

def
=|a)=p, lalp = —(a|-p.

It follows that diamonds and boxes are lower and upper adjoints of Galois con-
nections:

la)p < q < p < lalg, (alp < q & p <lalg, (3)
for all @ € K and p,q € test(K). The Galois connections are useful as theorem
generators and the dualities as theorem transformers. A Galois-based treatment

of modal operators has also been given in [55].
The above-mentioned import/export law entails

p(la)q) = |pa)q, p ({alq) = (aplq. (4)



MobpAL KLEENE ALGEBRA AND APPLICATIONS 99
The modal axiom (d3) implies

lab)p = |a)|b)p,  (ablp = (bl{alp, (5)
|ablp = |a]|b]p, [ablp = [b][alp.

Thus multiplication acts covariantly on forward modalities and contravariantly
on backward ones. In the sequel, when the direction of diamonds and boxes does
not matter, we will use the notation (a) and [a]. For a test p we have

(p)a = pq, pla=p —q. (6)

Hence, (1) = [1] is the identity function on tests. Moreover, (0)p = 0 and [0]p = 1.

Diamonds (boxes) commute with all existing suprema (infima) of the test
algebra. These and further properties are implied by the Galois connections.
They include cancellation laws and isotonicity and antitonicity properties for
modalities. Of particular interest are the following demodalisation laws that follow
from the domain elimination law (gla) and its dual for codomain.

la)p < q & —qap <0, (alp < ¢ & pa—g <0. (7)
Finally, diamond is disjunctive and box is antidisjunctive:

{(a+b)p = (a)p + (b)p, [a+blp = ([a]p)([b]p). (8)

To set up the connection to relational algebra, we define a modal semiring with
converse to be a modal semiring K with an additional operation -~ : K — K
that is an involution, distributes over addition, is the identity on tests and is
contravariant with respect to multiplication. One can show (see again [11]) that
over a modal semiring with converse the axioms (d1) and (d2) imply the Galois
connection

la”)p < q < p < d]q. (9)

Therefore in a modal semiring with converse ~ we have

la”) = (al, "] = [al. (10)

3 Two-Player Game Analysis

3.1 Introduction

To illustrate what we can already achieve with modal semirings, we take up part
of the analysis of two-player games in [3,47]. Such a game is given by a set of
positions with a binary relation describing the admissible moves. A position is
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terminal if it does not have a successor under the move relation. The two players
take turns. A player whose turn it is but who is in a terminal position has lost the
game. There are no special assumptions about positions and moves; in particular,
the move relation need not be Noetherian.

The aim is to characterize positions that mean guaranteed win (under optimal
play) or guaranteed loss (even under optimal play) and to compute a winning
strategy if possible. We do not focus particularly on computing a winning strategy,
which will nevertheless come as a byproduct from an algorithm for iteratively
computing the winning and losing positions. The following conditions are obvious:

— Every terminal position is a losing position.

— A position is a losing position iff all moves from it lead to winning positions
(for the opponent).

— A position is a winning position iff at least one move from it leads to a losing
position (for the opponent).

We abstract from the relational case and represent the move relation as an
element a of a modal semiring. Moreover, we want to represent terminal, winning
and losing positions by semiring tests ¢, w and [. We obtain ¢ from a as t = —a,
whereas w and [ are yet to be determined. To this end we rewrite the above
informal conditions into modal notation:

t<1,
I =|a] w, (11)
w=|a)l. (12)

Conditions (11) and (12) are mutually recursive. Separating them by substi-
tution yields
[ = la]|a)l, w = la) |a]w.

What kind of solutions do these recursive equations have?

3.2 Existence of Solutions: Fixpoints of Dual Functions

We define the functions

def

fp) = ldla)p,  g(p) = la)|a]p.
By the properties of diamonds and boxes, both functions are isotone. We now
assume that in the underlying modal semiring K the sublattice test(K) is com-

plete. Then, by the Knaster/Tarski fixpoint theorem, f and g each have both
a least and a greatest fixpoint. To investigate their relation we recall that two
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functions h,k : M — M on a Boolean lattice (M, <) are (de Morgan) duals if
for all x € M
h(z) = —k(—x).

If the least fixpoints uy, . and the greatest fixpoints vy, vy exist then p, = -y

and p = —wp (see e.g. [42]). From this it is immediate that pp, g and z o
—(pp U ) = v My form a partition of the lattice, i.e.,

pr Mg = ppMz = Nz = 1,
pn U pg Uz =T,

where L and T are the least and greatest elements. Likewise, v, v and = (v, U
Vi) = pp Mg form a partition of the lattice.

By definition, the functions |a) and |a] are duals, and a quick calculation
shows that the above functions f and g are duals as well. The set of positions is
to be partitioned into winning, losing and tie positions. By the above observation
there are two possible choices: either [ = py as the set of losing positions and
w = [y as the set of winning positions, or [ = vy and w = v,.

In [3] it is shown that the first of these choices is the adequate one. The
remainder v;Iv, = vy, represents the set of tie positions, i.e., the set of positions
from which under optimal play of both opponents none will reach a winning or
losing position. Note that a tie position has to start at least one infinite path in
the game graph; if the set of positions is finite, this path necessarily has to be
cyclic.

One has to ensure that the (separately found) solutions [ = py and w = g,
also satisfy the original mutual recursion

[ = |alw w = |a)l

(which need not be the case for arbitrary fixpoints of f and g). This can be done
by the rolling rule (see again [42]) of fixpoint calculus.

3.3 Iterative Computation of Win/Lose

We now want to obtain an algorithm for actually computing the winning and
losing positions. For this we remember Kleene’s fixpoint theorem, the proof of
which shows that for an isotone function h : M — M on a complete lattice
(M, <) one has

sup {h'(L) :i € IN} < pp.

So let us consider the first steps of the fixpoint iteration for p; and p,. In
the semiring setting we have | = 0; moreover, let ¢ = —'a again be the set of
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terminal positions.

71(0) = |a] [a) 0 = |a] 0 g'(0) = [a) |a]0 = |a) ¢
— o= = Ja) (/1(0))
£2(0) = F(F(0)) = £(0) ¢2(0) = g(g(0)) = g(|a) 1)
— la]a)t = |a] (4(0)) — Ja) [a] |ay £ = a) (F2(0))
£44(0) = |a] (4°(0)) g1 (0) = lay (f1+(0))

This can be explained informally as follows. The set f1(0) of losing positions of
“order 1”7 is the set ¢ of terminal positions. The set ¢g'(0) of winning positions
of “order 1”7 consists of all immediate predecessors of . The set f7(0) of losing
positions of “order i41” consists of the positions whose successors are all winning
positions of “order 7", and the set ¢g"™'(0) of winning positions of “order i + 1”
consists of the positions that have at least one losing position of “order ¢+ 1”7 as
a Successor.
Hence the fixpoint iteration describes the following algorithm.

1. Start with the terminal positions marked as losing positions.
2. Traverse the game graph backwards and adapt the markings according to the
above equations.

But what about termination of the algorithm? And under which circumstances
does it really reach the least fixpoints | = puy and w = p,?7 Obviously, for an
infinite set of positions there will always be games for which the algorithm doesn’t
terminate. So we now restrict our attention to games with finitely many positions.
This can abstractly be reflected by considering only modal semirings K in which
all chains in test(K') are finite. Then all isotone functions are also continuous,
and the fixpoint iteration yields the desired result when it gets stationary at
a fixpoint. Recording in every iteration step which moves lead into winning or
losing positions yields all possible winning strategies.

The basic fixpoint iteration algorithm reads as follows:

r:=0;

{invr < f(r) Nr<pus}
while (f(r) # 1)

do r:= f(r);

od {r =}

The least fixpoint p, = w of the second function g then results as w = |a) [.
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3.4 Efficiency Improvement

Let us now use this example to show that the algebra of modal semirings is also
very useful in formal transformation of a basic algorithm into more efficient (but
much less understandable) versions.

The main technique employed here is that of formal differentiation or strength
reduction (see e.g. [43]), where expensive recomputation of a quantity in every
step of an iteration is replaced by computation of the increments between the
values of that quantity. By their many distributive laws, modal semirings are an
ideal setting for this technique.

In the algorithm above, we first introduce an auxiliary variable s that always
has the value f(r) and is incremented correspondingly:

r:=0;s:= f(0);
{invs=f(r) Ar<sAr<pus}

while (s # 1)
do (r, s):= (s, f(5));
od {7" = [Lf}

Because of r < s we have s =7+ (s —r) and s # 1 < s —1r # 0. (This only
needs isotonicity of f.) To simplify the assignment s := f(s) we have to consider
the special form of f. We obtain

f(s) = f(r+(s—r)) =la]la) (r+ (s — 7))
= lal (|a) r + la) (s — 7). (%)

Now we set u = |a) r and examine |a] (u + x) for arbitrary x:
0] (u+ ) = ~(am(u + 7)) = ~{a—u-w) = a—u] 2.

If we now carry the part a—u in a variable m, the assignment s := f(s) becomes
s :=|m]x with x = |a) (s — r). Our new invariant reads

{invs=f(r) Ar<sAr<ps Nu=|a)r AN m=au}
This is established by the initialisation
u:=0;m:=a;

How to maintain it?
The calculation (%) shows that after the assignment r := s variable u has to
have the new value u + x, so m needs the new value

a=(u+ x) = a—u—x = m-x
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This yields

r:=0;s:= f(0);

u:=0;m:=a;

{invs=f(r) A\r<sAr<pur Nu=|a)r AN m=au}

while (s — 7 # 0)

do letz=la)(s—r)
in (r, s, u, m) =

od {r=py Nu=pe}

(s, |m]z, u+z, m—x) ;

The simultaneous assignment can be sequentialised from left to right.
Our final improvement results from examining the expression involving m,

namely |m|z = ="(m —z). Since we need n ' 1 —a anyway, it makes sense to
compute n and ='n simultaneously.

For this we maintain a new variable d that always contains ="m. It is initialised
to ="a and is incrementally adjusted using a vector of out-degrees. Then, for each
position p € z and every predecessor ¢ of p under m,

1. decrease ¢’s outdegree by 1 and remove the edge from ¢ to p;
2. if the outdegree of ¢ becomes 0 that way, add ¢ to d.

Again, the corresponding program can be calculated algebraically.

4 Modal Kleene Algebras

While modal semirings suffice for some applications, others require an explicit
notion of iteration. This is provided by extending idempotent semirings to Kleene
algebras.

A Kleene algebra [30] is a structure (K,*) such that K is an idempotent
semiring and the star * satisfies, for a, b, c € K, the unfold and induction laws

1+aa* <a”, (%-1)
l+a"a<a*, (%-2)
b+ac<c=a"b<c, (%-3)
b+ca<c=ba* <ec. (x-4)

Therefore, a* is the least pre-fixpoint and the least fixpoint of the mappings
Ax.ax +b and Ax.xa+b. The star is isotone with respect to the natural ordering.
Two important consequences of these axioms are the laws

ba < ac = b*a < ac’, ab < ca = ab* < c*a. (13)
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A Kleene algebra with tests (KAT) is a test semiring (K, test(K)) such that
K is a Kleene algebra [31]. For all p € test(K) we have that p* = 1.

In a KAT one can model the (angelic) abstract semantics of regular programs
as follows:
LY
skip |
alb ¥ a+b

def
a;b = ab

abort

if pthenaelseb o pa + —pb

assert p L if pthenskipelseabort = p

while pdoa & (pa)*—p
The definition of assert p via if thenelse is the usual one from assertion macro
packages in programming languages like C or Jawva; algebraically it simplifies to
p alone.

A Kleene algebra with domain (codomain), briefly "-(7-)Kleene algebra is a
KAT in which the underlying test semiring is a domain (codomain) semiring.
Finally, a modal Kleene algebra (MKA) is a KAT in which the underlying test
semiring is modal.

Examples of MKAs are again REL and PAT.

Using the star induction axioms, one can show the following induction prin-
ciple for the diamond operator (cf. [11]):

la)p+q<p = la")g <p. (14)

Having now defined our setting, we will tie it in with various other calculi and
present a number of applications.

5 Kleene Modules and PDL

Most previous algebraic approaches to modelling programs or state transition
systems show an asymmetric treatment of propositions and actions. On the one
hand, propositional dynamic logic (PDL) [23] and its algebraic relatives dynamic
algebras [29,40,46] and test algebras [40,46,54] are proposition-based. Dynamic
algebra has only modalities, test algebra also has propositions. Most axioma-
tisations do not even contain explicit axioms for actions: their algebra is only
implicitly induced via the definitions of the modalities. On the other hand, KAT
has both actions and propositions, but, complementarily to dynamic algebra,
it lacks modalities, i.e., the possibility to combine actions and propositions into
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new propositions. Therefore, reasoning about actions in dynamic algebra and test
algebra and about propositions in KAT is indirect and restricted.

These rather artificial asymmetries and limitations have already been ques-
tioned by Pratt [46], but persisted for several decades. They are overcome in MKA
in a very smooth and simple way Therefore MKA provides an algebraic alternative
to PDL that supports both proposition- and action-based reasoning and admits
both tests and modalities. In a more abstract sense, MKA reconciles relational
and modal reasoning about programs. However, the defining axioms of MKA are
quite different from and more economic than those of dynamic algebra and test
algebra. We will now briefly describe the precise relation between MKA and PDL
and its algebraic relatives. This can best be done by introducing an additional
intermediate structure which we call a Kleene module. Kleene modules are on the
one hand straightforward adaptations of the standard modules of algebra that
allow us to introduce modal operators via scalar products. On the other hand,
the coupling between actions and propositions in Kleene modules is not as tight
as in modal Kleene algebra.

5.1 Definition of Kleene Modules

Kleene modules are natural variants of the usual modules from algebra [26], where
the ring is replaced by a Kleene algebra and the Abelian group by a Boolean
algebra. Certain variants of Kleene modules have already been studied in [5,32].

A Kleene left-module (K, B,:) consists of a Kleene algebra K, a Boolean
algebra B and the left scalar product :, a mapping of type K x B — B, such
that for all a,b € K and p,q € B,

a:(p+q)=a:p+a:q, (km1)
(a+b):p=a:p+b:p, (km2)
(ab):p=a:(b:p), (km3)
1:p=np, (km4)
0:p=0, (kmb)
gta:p<p=a:q<p. (km6)

As usual, we do not distinguish between the Boolean and Kleenean zeros and
ones. In accordance with the relation-algebraic tradition, we also call the scalar
products of Kleene modules Peirce products.

Axioms of the form (km1)—(km4) also occur in algebra. For rings, an analogue
of (kmb) is redundant, while for semirings — in absence of inverses — it is
independent. Axiom (km6) is beyond ring theory. It is the star induction rule
(%-3) with the semiring product replaced by the Peirce product and the sorts of
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elements adjusted, i.e., b and c replaced by Boolean elements; it also corresponds
to (14).

Analogously to the situation for domain and codomain we define Kleene right-
modules as Kleene left-modules on the opposite semiring. A Kleene bimodule is a
Kleene left-module that is also a Kleene right-module. We will henceforth consider
only Kleene left-modules.

5.2 Calculus of Kleene Modules

The relation between Kleene left-modules and modal Kleene algebra is straight-
forward.

Proposition 5.1 Let K be a modal Kleene algebra. Setting a:p = |a)p, the
structure (K, test(K),:) is a Kleene left-module.

The left-module axioms and also the right-module axioms are easily seen to be
theorems of modal Kleene algebra. Hence, these axioms yield further properties
of MKA in a well-structured way.

We first present some further properties that do not mention the star. The
scalar product is right-strict, i.e., a:0 = 0, and left- and right-isotone. Hence, it
is subconjunctive, a: (pq) < (a:p)(a:q), and satisfies

a:p—a:q<a:(p—q).
The following Peirced variants of the star unfold laws (x-1) and (*-2) hold.
p+a:(a®:p)=a*:p, p+a*:(a:p)=a":p. (15)

Therefore, of course, these do not have to be explicitly added to the module
axioms. Finally, the module axiom (km6), which is a quasi-identity, is equivalent
to the identity

a:p—p<a:(a:p—p). (16)
This identity appears in PDL (cf. [23]), but also in axiomatisations of temporal

logics as an induction law. In [19], we present various additional properties that
all translate easily to theorems of PDL.

5.3 Relatives of Kleene Modules

We now position the Kleene modules within the context of Kleene algebra with
domain and algebraic variants of propositional dynamic logic.

First, the class of dynamic algebras [46] can be obtained as a variant of Kleene
modules by requiring, instead of a Kleene algebra, an absolutely free algebra of
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Kleenean signature (without 0 and 1), by removing (km4) and (km5), by adding
right-strictness and the star unfold law of (15) and by replacing (km6) by (16).
Consequently, the algebra of actions is implicitly axiomatised in dynamic algebra.
We call a dynamic algebra or Kleene module extensional if

Vp.(a:p<b:p)=a<b. (17)

This property is independent of the module axioms. The relation induced by the
left-hand side of this quasi-identity is a precongruence on Kleene modules. It can
also be interpreted as a notion of observational equivalence. Intuitively, it is a
point-wise measurement of the behaviour of actions. In the extensional case, the
action is completely determined by its observations.

The following Theorem shows that Kleene modules subsume dynamic algebras
and yield an exact representation of equational reasoning about Kripke frames.

Theorem 5.2

1. Every Kleene module is a dynamic algebra.
2. The equational theories of extensional Kleene modules and extensional dy-
namic algebras coincide.

Second, there are two extensions of dynamic algebras that also include tests.
In Pratt’s variant, the test axiom p?:q = pq is added to the axioms of dynamic
algebra, where 7 models an embedding of tests into actions. Again, therefore, the
Kleene algebra remains implicit.

Hollenberg [25] has given a variant of test algebra that explicitly uses the
Kleene algebra axioms and also the embedding operator 7. This test algebra sub-
sumes Pratt’s variant. The connection between these approaches is made precise
in the following theorem.

Theorem 5.3

1. Every modal Kleene algebra is a Pratt test algebra.
2. The classes of modal Kleene algebras and Hollenberg test algebras coincide.

We see two decisive advantages of modal Kleene algebra over test algebra.
First, it inherits from KAT the notational economy of leaving the embedding ?
is omitted. Second, it is it axiomatically more economy. It is defined via three
axioms, whereas Hollenberg’s test algebra has eight. On the other hand, it follows
from results for Hollenberg’s test algebra that the equational theory of extensional
modal Kleene algebra is EXPTIME-complete.

For further technical details as well as further discussion of related work we
refer to [19)].
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6 Modelling Program Correctness

6.1 Partial Correctness and wlp

We now return to the Kleene semantics of simple while programs introduced in
Section 4. As is well known, partial program correctness can be modelled using
the weakest liberal precondition wlp(a, q¢) = |a] ¢. Then a Hoare triple {p} a {q}
is valid if p < |a] q.

Kozen has shown that already in KAT one can formulate validity of {p} a {q}
as pa—q = 0, which by (gla) is equivalent to (a|p < ¢ and hence to the above
definition of validity by the Galois connection (3). Although this allows prov-
ing soundness of the rules of propositional Hoare logic, i.e., Hoare logic without
the assignment rule, the MKA formulation leads to still simpler and readable
encodings of Hoare triples and rules and also to more concise soundness proofs.
Moreover, in contrast to KAT, the MKA formulation also admits a simple, fully
algebraic proof of relative completeness of propositional Hoare logic [37].

Example 6.1 As an example consider the while-rule:

{p A g} a{q}

{q} while pdoa {-p A q}

Its translation into MKA reads

(al (pg) < q = ((pa)*—p|lq < —pg. (18)

Now the soundness proof of this rule proceeds as follows:

(al (pg) < g & (palqg < g
= ((pa)lg<q
= p(((pa)la) < —pg
& ((pa)*-plg < —pg
The first step uses the definition of diamond twice, the second one induction (14),

the third one isotonicity, the fourth one import/export (4). An even shorter proof
is possible in predicate transformer algebra (see Section 7). O

The result of encoding Hoare rules and showing that they are theorems of
modal Kleene algebra can be expressed as follows.

Theorem 6.2 Propositional Hoare logic is sound with respect to the modal Kleene
algebra semantics.
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Of course, this is not surprising, since MKA subsumes KAT. However, the proof
is more succinct. In fact, the specialised syntax of Hoare logic could easily be
abandoned in favour of the simple and more universal algebraic calculus of modal
Kleene algebra.

The demodalisation rules of modal Kleene algebra that arise as generalisations
of (llp) and (gla) also yield a simple translation of the modal encoding of Hoare
rules into KAT. The resulting formulas have a special shape and their validity
can be decided by automata in PSPACE [9]. Thus the gain of expressiveness and
flexibility introduced by MKA does not compromise the algorithmic complexity
of KAT.

Using the MKA encoding of the weakest liberal precondition semantics for
Hoare logic, one can carry out an entirely algebraic and fully formal relative
completeness proof of propositional Hoare logic. This proof (see again [37]) is by
far shorter than the standard textbook proofs that are based on set theory and
usually leave many assumptions implicit.

Theorem 6.3 Propositional Hoare logic is relatively complete for the partial cor-
rectness semantics of reqular programs in modal Kleene algebra.

6.2 Total Correctness and wp

For modelling total correctness, an MKA element a now receives the follow-
ing interpretation: it abstractly represents a set of terminating computation
paths, while its domain "a represents the set of starting states of these com-
putations [13,14]. Under this interpretation, the weakest precondition is given
by
def -
wp(a,q) = "a wlp(a,q),

the refinement relation by
cCa & Ta<TeATac<a.

This entails the following properties of the non-iterative angelic programming
constructs:

wp(a,0) = 0,
wp(a,1) = Ta,
wp(abort, q) = 0,

wp(if 7 then a else b,q) = rwp(a,q) + —rwp(b,q),

)

)

)
wp(skip, q; = q,

,q) = wp(a, q)wlp(b, ¢) + wlp(a, ¢)wp(b, q).

The corresponding demonic programming constructs can be defined as follows:



MobpAL KLEENE ALGEBRA AND APPLICATIONS 111

— Demonic join (choice): a Ub L (a+0).

— Demonic composition: ash & ([a]®) ab.

A demonic redefinition of loop is also possible, see [13,14] for details. These defi-
nitions imply the following properties that can all be shown by concise algebraic
calculation. First, demonic refinement is the natural order associated with de-
monic choice, i.e., a C b < aldb = b Hence we have an upper semilattice
(which is even complete if the underlying MKA is). Second, o distributes through
L in both arguments and hence is C-isotone in both arguments. Third, demonic
composition is associative.

The above semantics is “fully demonic” in that one cannot model programs
in which for certain states both termination and nontermination are possible.
We show how approaches that solve this problem (e.g. [4,6,15,39,44]) can be
represented in modal Kleene algebra.

The basic idea is to model a program as a pair consisting of a transition
relation between states and a set of states from which no divergence is possible.

We again abstract to a modal Kleene algebra K and let the elements of K
represent transition behaviour of programs, regardless of termination. Programs
are then modelled by pairs (a,p) with @ € K describing the state transition
behaviour and p € test(K) characterizing the states with guaranteed termination.

The essential program constructors are the following:

— Demonic composition: (a,p)s(b, q) o (ab, p (|a]q)).

— Demonic choice: (a,p) [] (b, q) def (a+b, pq).

— Angelic choice: (a,p) || (b, q) def (a+b, p+q).

Then o is associative, has left annihilator (0,0), neutral element (1,1) and dis-
tributes through []. Both choices are idempotent and associative and distribute
over each other. The refinement order is

(a,p) 3 (b,a) E (a,p) [ (b,g) = (b,q) & a<bAp>q.

Both choice operators are isotone w.r.t. 1.

In Parnas’s approach [44], the pairs (a, p) need to satisfy the restriction p <
Ta; it allows distinguishing the “must-termination” given by p from the “may-
termination” given by "a. However, it excludes “miraculous” program behaviour.
Then there is no neutral element w.r.t. [|, since the obvious candidate (0, 1)
does not satisfy the restriction. So we do not have a full semiring structure. In
Nelson’s approach [39] this restriction is dropped, allowing miraculous programs
like the pair fail = (0,1) that is guaranteed to terminate for all input states
but at the same time never yields any output state. Now one obtains almost a
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semiring except that fail is only a left zero w.r.t. composition. This structure can
be extended to a weaker form of modal Kleene algebra; the details are the subject
of a forthcoming paper [38].

As an example for the use of the MKA laws in this setting, we prove asso-
ciativity of composition. It is immediate that it suffices to consider the second
components of the pairs, for which we calculate:

plal(g[blr) = p(|alg) (al[tlr) = p(|alg) (lablr).

The first step uses conjunctivity of |a], the second one locality. The proofs of the
other properties mentioned are slightly longer but again entirely straightforward
calculations using the laws of modal Kleene algebra.

7 Beyond PDL: Predicate Transformer Algebras

Assume a test semiring (K, +,,0,1). A predicate transformer is a function f :
test(K) — test(K). It is disjunctive if f(p+q) = f(p)+ f(¢) and conjunctive if
f(pq) = f(p)f(q). It is strict if f(0) = 0. Finally, id is the identity transformer
and o denotes function composition.

Let P be the set of all predicate transformers, M the set of isotone and D

the set of strict and disjunctive ones. Under the pointwise ordering f < g &

Vp.f(p) < g(p), P forms a lattice where the supremum f + ¢ and infimum
fMgof fand g are the standard pointwise liftings of + and -. We will also use
the pointwise liftings of — and — to the operator level. The least element of P
(and M, D) is the constant 0-valued function 0(p). The structure (D, +, 0,0, id)
is an idempotent semiring. In fact, in its left argument o even preserves arbitrary
existing suprema and infima.

If test(K) is a complete Boolean algebra then P is a complete lattice with D
as a complete sublattice. Hence we can extend D by a star operation via a least
fixpoint definition:

5 def .
7= pg.id+ fog,

where g is the least-fixpoint operator. Now D satisfies the Kleene algebra axioms
except the second star induction law (x-4). Only the subalgebra of universally
disjunctive predicate transformers is a full Kleene algebra.

Many properties of modal operators can now be presented much more suc-
cinctly. First, the test-level Galois connections (3) can be lifted to operators
f,g :test(K) — test(K):

la)f < g f<]alg, (alf < g e f <|dg, (19)
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for all a € K. From this we get the cancellation and shunting laws

la)a] < (1) <[alla),  (alla] < (1) < |a){al, (20)
fla) <g e f<glal  fla] <g& f<gla) (21)

Semiring expressions inside of operators can be decomposed by the laws

{a+b)=(a)+ ), lab)=la)[b),  (ab] = (bl(al,
la+b] =[a]T1[b],  |ab] = [a][b],  [ab] = [b][al.

The decomposition with respect to multiplication is covariant for forward modal-
ities and contravariant for backward modalities. This results from the symmetry
between domain and codomain via opposition. The decomposition can be used
to transform expressions into normal form and to reason entirely at the level of
modal algebra in the sense of [22].

Diamonds are isotone, i.e., a < b implies (a) < (b). Dually, boxes are antitone,
i.e., a < b implies [b] < [al.

In the case of an MKA, the algebras of operators can be extended to KAs
because of the following unfold and induction laws at the operator level (cf. [11]).

1) + la)]a®) < la®), 1) + |a™)|a) < a”), (22)
fHlayg<g=la")f <y (23)

Setting f = g = (1) we obtain, from the analogue of this for the backward
diamond,
(al < (1) = (a’| < (1). (24)

These laws for the “inner star” induce an “outer star”|a)* that coincides with
|a*) and turns the algebra of boxes into a left weak Kleene algebra. Analogous
laws hold for the backward modal operators.

Next we give lifted versions of the commutation properties (13). The first of
these becomes, for the forward diamond,

0)f < fle) = [b)f < fle*); (25)

it is easily shown using (23). The second one lifts only for the case where f is a
diamond:
(al[b) < le)(al = (a]|b*) < |c"}al. (26)

This is established by shunting the two occurrences of (a| in the conclusion of
this implication to the respective other side of the inequation using (19) and (21)
and then again using (23).
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The restriction on the second semicommutation laws entails that not all de-
sirable properties can be shown in a pointfree manner. We demonstrate this with
the soundness proof for the while-rule of the propositional Hoare calculus. Proof
obligation (18) translates into

(palf < f = (=pl{(pa)*|f < (=plf.

For a diamond f, but not generally, this follows by neutrality of (1), (26) and
isotonicity.

8 Beside PDL: Temporal Logic

While propositional dynamic logic contains explicit statements for actions or pro-
grams and therefore allows one to compare different programs, temporal logics
reason about runs of one particular program at a time. This is particularly inter-
esting for the analysis of concurrent programs and reactive systems, which need
not terminate. Originally, temporal logics used Prior’s future tense modality G
with the reading “at all future states including the present one”, F with the read-
ing “at some future state including the present one” and X with the reading “at
the next state”. Later, the binary operator U was added with the reading p Ugq
as “p until ¢”, i.e., “q will eventually be true and till then p will be true”. This
system is also known as propositional linear temporal logic.

It is well known that these temporal operators can be defined in PDL, whence
also in MKA. For abstract program a,

X =la), (27)
F=la"), (28)
G = |a"], (29)
pU = |[(pa)*). (30)

Of course, X, F and G can also be defined in Kleene modules, whereas U requires
a product of a test and an action which cannot be expressed there. It is obvious
that, interpreted over traces, these operators have the desired semantics. It follows
immediately that F = 1U that G = =F— and that — by the unfold laws for the
Kleene star — the following unfold laws for eventually and until hold:

F=11) + XF, (31)
pU=[1) +(lp) N X(pL)). (32)

Manna and Pnueli [33] have axiomatized linear temporal logic (LTL). More re-
cently, von Karger [55] has derived these axioms as theorems in a much leaner
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formalism called temporal algebra that defines modal operators by Galois con-
nections similar to ours over a complete Boolean algebra and uses the Theorem
of Knaster and Tarski to model iteration via fixpoints on this algebra. The re-
construction by von Karger also provides a nice modular presentation of the LTL
axioms. Some of them are general laws of modal logic. They therefore hold a
fortiori in MKA. Some further axioms, like the above until law, are fixpoint prop-
erties and hence hold not only for von Karger’s calculus, but also for the more
general case of MKA. In particular, all the laws that do not involve U even hold
in Kleene modules. A particular instance of such a law is

|a*)(p = lalp) < [a”)(p — [a”]p), (33)

which can be obtained by dualising the induction law (16).

There is, however, a series of LTL axioms that depend on the particular struc-
ture of models and the way that temporal formulas are interpreted over runs of a
program. Also here, we can immediately generalise von Karger’s reconstruction
to MKA. Von Karger shows, for instance, that some further LTL axioms are im-
plied in models that satisfy a confluence property. We will discuss this kind of
property extensively in Section 9.5. Some further axioms are implied in models in
which every state has precisely one successor state. This can be expressed using
the well-known properties of being a partial function or simple (or deterministic)
and being total or entire (cf. [20]). This can be expressed in MKA as

{alla) < (1), (1) < la){al. (34)

The element a is a map if it is simple and entire. For maps, in particular, |a) = |a],
which is a direct translation of the LTL axiom —X = X-, and |a)l = 1. A
co-simplicity property is also imposed on backward modalities, whereas this is
not the case for entirety. Just in contrast, the model of linear temporal logic is
assumed to be a discrete linear ordering with a left but with no right endpoint.
It remains to model the initial state.

Intuitively, a test p characterises the initial states of element a if it is contained
in the complement of the codomain of a, i.e., p < —(a|1 = [a|0. Dually, as we have
seen in Section 3.1, p characterises the terminal states of a if it is contained in
the complement of the domain of a, i.e., p < =|a)1l = |a|0. Terminality, however,
is of no further interest here. Let now init be the greatest such element, i.e.,

init, < [a]0.
This initiality test is important for modelling validity of a temporal implication
pDqasint, -p <gq.
Von Karger’s completeness result for propositional linear temporal logic can
then easily be generalised to modal Kleene algebra.
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Theorem 8.1 Modal Kleene algebra has the basic axioms of Manna and Pnueli
for propositional linear temporal logic as theorems. The additional conditions for
linearity of models and validity of temporal implication can be expressed in modal
Kleene algebra.

Von Karger also sketches a completeness result for computational tree logic; we
conjecture that this can also be generalised to MKA.

9 Termination Analysis

9.1 Termination in Modal Kleene Algebra

We now deal with the question whether a transition system admits infinite tran-
sition paths. To this end we abstract a notion of termination for modal semirings
from set-theoretic relations.

According to the standard definition, a relation R on a set A is well-founded
iff every non-empty subset of A has an R-minimal element. In a "- semiring
S, the minimal part of p € test(S) w.r.t. some a € K can algebraically be
characterized as p— (a|p, i.e., as the set of points that have no a-predecessor in p.
So, by contraposition, the well-foundedness condition holds iff for all p € test(K)
one has p — (alp < 0 = p < 0. Using Boolean algebra we therefore obtain the
following abstract characterization of well-foundedness and its dual, Noethericity.

Let S be a modal semiring. An element a € S is well-founded if for all p €
test(S),

p<{alp=p<0, (35)

An element a € S is Noetherian if for all p € test(S5),
p<la)yp=p<O0. (36)

Similar definitions in related structures have been given in [1,16,22]. By de Morgan
duality, a is Noetherian iff, for all p € test(K),

lalp <p=1<p. (37)

It is easy to prove some of the well-known properties of well-founded and
Noetherian relations in modal Kleene algebra [11]. First, 0 is the only Noetherian
test. Second, the property of being Noetherian is downward closed. Third, every
Noetherian element is irreflexive and non-dense, provided it is non-trivial. Fourth,
an element is Noetherian iff its transitive closure is, but no reflexive transitive
closure is Noetherian. Finally, Noethericity of a sum implies Noethericity of its
components, whereas the converse direction does not hold in general. We will
later present commutativity conditions that enforce this converse implication.
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9.2 Termination via Lob’s Formula

We now investigate two alternative equational characterisations of Noethericity.
The first one uses the star. The second one is without the star. It holds for the
special case of a transitive Kleenean element a, i.e., when aa < a.

Let K be a "-semiring. Consider the equations

a) < la)"(|1) — |a)), (38)
< la)([1) = [a)). (39)

The equation (39) is a translation of Léb’s formula from modal logic (cf. [7]) which
expresses well-foundedness in Kripke structures. We say that a is pre-Lobian if it
satisfies (38). We say that a is Lobian if it satisfies (39).

In the relational model, Lob’s formula states that a is transitive and that
there are no infinite a-chains. We will now relate Lob’s formula and Noethericity.

Theorem 9.1 Assume a modal Kleene algebra.

1. Every Lobian and every pre-Lobian element is Noetherian.
2. Fvery Noetherian element is pre-Lobian.
3. Fvery transitive and Noetherian element is Lobian.

As an example, we prove property 2. Proofs of the other two properties can
be found in [12].

Proof. Let K be an MKA and let a € K. Let f = |a) and g(p) = p — f(p).
Let a be pre-Lobian, which is equivalent to f — fTg < ]0). Assume p < f(p),
ie,p— f(p) <0,ie., g(p) <0. We must show that p < 0. We calculate

p < flp) = f(p) = f7(0) = f(p) — fT9(p) =

The second step uses strictness of diamonds. The third step uses the assumption
on g. The fourth step uses the assumption that a is pre-Lobian.

Let a be Noetherian. Then a is pre-Lobian if we can show that f — ftg <
f(f = fTg). We calculate

f—ﬁny—ng

F() = 179)
ﬂm (I1) + f)g)
fn) - @+f+D
F( )
f =

1)—g)—f'g
).

IN
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The first step uses the definition of f*. The second step uses the identity f(p) —
f(q) < f(p — q) which holds for every additive mapping on a Boolean algebra.
The fifth step uses the Boolean identity p — (¢ +r) = (p — q¢) — r. The last step
uses isotonicity and the fact that |1) —g =|1) — (|1) — f) < f. This follows from
the Boolean identities p — (p — q) = pg < q. O

Properties 1. and 3. already hold in "-semirings. A closer analysis of the proof
shows that in 3. it suffices to assume that a is weakly transitive, i.e,

laa) < |a). (40)

This is a much weaker requirement than transitivity aa < a. To see this, view the
Kleene elements again as sets of computation paths. If a consists of paths with
exactly two states each (i.e., is isomorphic to a binary relation on states) then aa
consists of paths with exactly three states, and so aa < a holds only if aa = 0.
But a is still weakly transitive if it is transitive considered as a binary relation.

The calculational translation between the Lob-formula and our definition of
Noethericity is quite interesting for the correspondence theory of modal logic
(see also Section 10). In this view, our property of Noethericity expresses a frame
property, which is part of semantics, whereas the Lob formula stands for a modal
formula, which is part of syntax. In modal semirings, we are able to express syntax
and semantics in one and the same formalism. Moreover, while the traditional
proof of the correspondence uses model-theoretic semantic arguments based on
infinite chains, the algebraic proof is entirely calculational and avoids infinity.
This can be quite beneficial for mechanisation.

9.3 Termination via Infinite Iteration

Cohen has extended Kleene algebra with an “ operator for modelling infinite

iteration [8]; he has also shown applications in concurrency control. In [53], this
algebra has been used for calculating proofs of theorems from abstract rewriting
that use simple termination assumptions.

Dually to the Kleene star, the omega operator is defined as a greatest post-
fixpoint. An w-algebra is a structure (K,w) where K is a Kleene algebra and

a” < aa”, (41)
c<ac+b=c<a’+a"h, (42)

for all a,b,c € K. Hence, a“ is also the greatest fixpoint of Ax.ax.

Like in Section 7, for an MKA K it seems interesting to lift (41) and (42) to
operator algebras, similar to the laws (22), and (23) for the star. This is very
simple for (41): for a € K,

|a¥) < |a)|a”). (43)
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However, there is no law corresponding to (23) and (42). The proof of (23) uses
(llp) and works, since the star occurs at the left-hand sides of inequalities. There
is no similar law that allows us to handle an omega that occurs at right-hand
sides of inequalities. But instead, one can axiomatise the greatest fixpoint v|a) of
la) for a € K by

vla) <la)via), (44)
p<layp+q=p<vla) +la%)q. (45)

If test(K) is complete then, by the Knaster-Tarski theorem, v|a) always exists,
since |a) is isotone. Then one can use a weaker axiomatisation (see [22]) from
which (45) follows by greatest fixpoint fusion.

The test v|a) measures potential infinity, whereas a* measures actual infin-
ity.It even turns out (see the end of this section) that v|a) is more suitable for
termination analysis than a“.

Since |a)p = —|a]—p, existence of v|a) also implies existence of the least fix-
point pla| of |a], since pla] = —w|a). In the modal p-calculus, pla] is known
as the halting predicate (see, e.g., [23]). With the help of v|a) we can rephrase
Noethericity more concisely as

v|a) = 0. (46)

As an immediate consequence of this we obtain
Corollary 9.2 Define, for fized q € test(K) and a € K, the function f :

test(K) — test(K) by f(p) = q+ |a)p. If v|a) exists and a is Noetherian then f
has the unique fizpoint |a*)q.

A notion of guaranteed termination can easily be defined in w-algebra as the
absence of infinite iteration. We call a w-Noetherian if a* < 0.

We now study how Noethericity and w-Noethericity relate. Analogously to
(17) we call a "-Kleene algebra K extensional if

la) < |b) = a <b (47)

holds for all a,b € K. Note that the language model is not extensional. The
following lemma shows that the relation between Noethericity and w-Noethericity
does not depend on extensionality. This is somewhat surprising, since set-theoret-
ic relations are extensional and in the relational model the two notions coincide.

Lemma 9.3

1. Every Noetherian element of an w-algebra with domain is w-Noetherian.
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2. There is an w-algebra with domain with an w-Noetherian, but not Noetherian
element.

3. There is a non-extensional w-algebra with domain in which all w-Noetherian
elements are Noetherian.

4. There is an extensional w-algebra with domain in which all w-Noetherian el-
ements are Noetherian.

5. In every extensional omega algebra K with domain one can extend the dia-
mond algebra |K) to an omega algebra by setting |a)® = |a*).

For the proof see [12].
Thus w-algebra does not entirely capture the standard notion of termination.
We now study the exhaustive finite iteration of an element a € K, given by

exha & whileTadoa = a*—a. (48)

Then we can represent the set of points from which a terminal point can be
reached via a-steps as

(exha) = "(a*="a) = |a")—"a. (49)

Proposition 9.4 If a is Noetherian then "(exha) = 1, i.e., from every starting
point a terminal point can be reached.

For the proof see again [12]. This shows again that modal Kleene algebra is
more adequate for termination analysis than omega algebra. To see this, consider
the algebra LAN of formal languages which is both an omega algebra and an MKA
with complete test algebra test(LAN) = {0,1}. In LAN we have |[a)1l =Ta =1 #0
when a # 0 and hence a is Noetherian iff ¢ = 0. Moreover, distinguishing the
cases a = 0 and a # 0, easy calculations show that in LAN we have exha = —"a.
This mirrors the fact that by totality of concatenation a nonempty language
can be iterated indefinitely without reaching a terminal element. But we also
have a¥ = 0 whenever 1 a = 0. Therefore, unlike in the relational model,
a =0 % Mexha) = 1, while still v|ja) = 0 = T(exha) = 1. Hence, for
termination analysis in KAs more general than the relational model, the element
v|a) seems more adequate than a.

9.4 Additivity of Termination

It has been shown that many statements of abstract rewriting that depend on
termination assumptions can be proved in w-algebra [53], among them an ab-
stract variant of the Bachmair/Dershowitz well-founded union theorem [2], but
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also many of the so-called cooperation theorems. It seems that Kleene algebra
and w-algebra capture the regular fragment of abstract rewriting. However, many
other properties of abstract rewriting require context-free reasoning. We will show
in this and the following section that modal Kleene algebra provides ways of rea-
soning also in this larger fragment. Moreover, as we have seen in the previous
section, there is a gap between termination in w-algebra and in "-Kleene alge-
bra. Here, we provide a proof of the Bachmair/Dershowitz theorem in "-Kleene
algebra.

Consider a Kleene algebra K and a,b € K. We say that a semi-commutes
over b if ba < a®b* and that a quasi-commutes over b if ba < a(a + b)*. Semi-
commutation and quasi-commutation state conditions for permuting certain steps
to the left of others. In general, sequences with a-steps and b-steps can be split
into a “good” part with all a-steps occurring to the left of b-steps and into
a “bad” part where both kinds of steps are mixed. Semi-commutation implies
quasi-commutation; if a is Noetherian then the reverse implications holds as well
(see [53] for proofs).

One of the main results in this area is the Bachmair/Dershowitz well-founded
union theorem; it generalizes in the following way from relations to modal Kleene
algebra.

Theorem 9.5 Let K be an extensional modal Kleene algebra. For alla,b € K, let
a quasi-commute overb. Then a and b are Noetherian iff their sum is Noetherian.

The proof in modal Kleene algebra takes about one page of algebraic calcula-
tion, see [12]. This shows that modal Kleene algebra provides proofs for abstract
rewriting that are as simple as those in omega algebra. Note that the proofs in [2]
are rather informal, while also previous diagrammatic proofs (e.g. [21]) suppress
many elementary steps. In contrast, the algebraic proofs are complete, formal and
still simple. An extensive discussion of the relation between the proofs in omega
algebra and their diagrammatic counterparts can be found in [17]. In particular,
the algebraic proofs mirror precisely the diagrammatic ones. This also holds for
the modal proofs we present here.

9.5 Newman’s Lemma

We now turn from semi-commutation to commutation and confluence. For their
direct algebraic characterisation one either has to use converse at the element
level or a combination of forward and backward modalities at the operator level.
Since we do not have converse available, we have to choose the second alternative.

We say that b € K commutes over a € K if (b*||a*) < |a*)(b*|, and locally
commutes over a if (b|la) < |a*)(b*|. The more standard notions of confluence
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and local confluence are recovered by setting a = b. Newman’s Lemma, originally
stated for a single rewrite relation, says that a locally confluent and Noetherian
rewrite relation is even confluent. It has been generalised to two relations in [50]
for a theory of term-rewriting with non-symmetric relations that extends the
traditional equational case. The generalisation of the equational Church-Rosser
theorem is similar. While the Church-Rosser case has already been proved in
Kleene algebra in [52], it has been argued in [53] that a proof of Newman’s
lemma does not work in pure Kleene or omega algebra, since these structures
capture only the regular fragment of abstract rewriting while the standard proof
of Newman’s lemma requires context-free recursion in the centre of a formula
with left and right contexts.

In contrast to previous approaches [16,47], modal Kleene algebra allows a
calculational proof that mirrors precisely the previous diagrammatic one given in

[50).

Theorem 9.6 Let K be a modal Kleene algebra with complete test algebra. If
a + b s Noetherian and a and b locally commute then a and b commute.

Proof. (Sketch) The central idea of our proof is to use a generalised predicate (rc
stands for “restricted commutation”)

re(p, a,b) < (07[(p)la”) < |a®) (0.

rc(p, a,b) states that b commutes over a on all points characterized by the test
p. We use the notation (p) to enhance the symmetry of the formulation; this is
justified, since |p) = (p| for all tests p. Clearly, b commutes over a iff rc(1,a,b),
so that commutation can be retrieved as a special case. Then the predicate

r=sup{p|rc(p,a,b)}

characterizes the set of all points on which b commutes over a; it is contracted
by |a + b], so that, by the second form (37) of Noethericity, we are done. O

Again, the actual calculations take less than a page. For full details see [12].

Additionally, exhaustive iteration (48) and simplicity (34) can be used to
show uniqueness of term normal forms for confluent actions. In the proof, the
points in (exha)! represent term normal forms whereas uniqueness is expressed
by simplicity. A proof can be found in [12].

10 Modal Kleene Algebra and Correspondence Theory

An important part of modal logic is correspondence theory [7,45]. It studies trans-
lations between relational and modal characterisations of certain properties of the
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underlying Kripke frames. Usually, the correctness proofs for these translations

are done at the semantic level, frequently by pointwise arguments. In this section

we give some examples of purely algebraic translations in the calculus of MKA.
We start with the commutation formulas used in the previous section and

study diagrams of the type
c_.."".‘._‘d

In abstract relational algebra this is expressed as a’d < c¢d . In an extensional
MKA with converse, this can be translated into

a’b<cd < (a||b) < |e){d|. (50)

But even in non-extensional MKAs the formula (a||b) < |c){(d| is an adequate
formulation; it expresses that any two transition paths along a and b that emanate
from a common starting point can be joined by extending them by c¢ and d
transition paths, respectively.

In many modal logics, only forward or only backward modalities are available.
So it is interesting which type of formulas can be expressed using only one sort of
modality. For the above commutation property this is possible, resulting in the

Geach formula [7,45]:
Lemma 10.1 In general MKAs
(allb) < le)(d] < [b)|d] < |a]lc).
Hence, in extensional MKAs with converse
a’b<cd” < [b)ld] < l|a]c).

Proof. Starting from the right-hand side of (50) this is shown very concisely at
the operator level using the shunting rules (19) and (21):

(allb) < le)(d| = [b) <lalle){d] & [b)|d] < |a]lc).
0

Consequently, commutation and local commutation are equivalent to the fol-
lowing formulas:

|a)[b] < [b7]]a"), @) |6 < [b]]a”).
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However, these are much less intuitive than our original ones. But the proof of
Newman’s Lemma can be carried out in this unidirectional form as well.

Special cases of commutation type properties are determinacy or simplicity
(alla) < (1) and totality or entireness(1l) < |a)(a| (which is easily shown to be
equivalent to "a = 1) (see (34)).

Although the technique we have shown for translating modal validity is, of
course, generally applicable, e.g., to Lob’s formula, we refrain from treating fur-
ther examples in this survey.

11 Greedy-Like Algorithms

11.1 Looping for Optimality

We conclude this survey by applying the theory to another algorithm derivation
that ties in well with generalised confluence and exhaustive iteration.

A greedy algorithm solves an optimisation problems by proceeding in a step-
wise fashion without backtracking. At each step it has a set of choices from which
it always takes the one that seems best at the moment, i.e., it works locally with-
out lookahead to the global optimum that is to be found eventually. Instances of
this scheme are shortest path and minimum spanning tree problems in graphs, the
construction of Huffman codes and scheduling problems. Of course, the greedy
approach only works for certain types of problems: as is well-known from hiking
in the mountains, always choosing the steepest path will rarely lead to the high-
est summit of the whole area. The central correctness requirement for the greedy
scheme is that a local choice must not impair reaching the global optimum.

We now use modal Kleene algebra for deriving general conditions under which
a loop satisfies this principle. It turns out that local optimality is inessential; so we
study a more general class of loops that we call greedy-like. In [36] a relational
derivation was abstracted to modal Kleene algebra via the Geach formula (cf.
Lemma 101), whence avoiding backward modalities. While this corresponds to the
standard approach that a modal logician would take, modal Kleene algebra offers
the additional flexibility of simple combined reasoning with forward and backward
modalities via Galois connections. Then the development of greediness conditions
can be based again on commutation properties that, like in abstract rewriting,
immediately reflect the choices that are taken at each step of a run of a greedy-like
algorithm. Here, we briefly describe this commutation-based development.

We start with a specification element ¢ that represents a relation between
inputs and admissible outputs and an element ¢ that represents a comparison
relation on outputs capturing the notion of (global) optimality. The derivation
will exhibit the precise requirements on c.
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An element r improves t with respect to c if it always relates inputs to outputs
that are at least as good as those prescribed by ¢. If r and t are relations this
reads formally ¢r < ¢, which in MKA immediately translates into the predicate

imp(r,t,¢) & (t]|r) < ).

Since then 0 trivially improves ¢, we are interested in the greatest improvement.
In REL this always exists and is given by the residual ¢”\c. However, since we
want to avoid residuals, we will not make use of this representation.

An implementation of specification ¢ that always produces optimal solutions
then is an element r that refines and improves t. So we define

opt(r,t,c) <t A imp(r,t,c)

def

and want to calculate a sufficient criterion under which a loop w = while pdo s
with loop condition p € test(K) and body s € K satisfies opt(w,t,c), i.e.,
w < t, (51) imp(w,t,c), (52)

where we defer the treatment of (51) to the next section.

Spelling out the definitions in (52) results in (t||(ps)*—p) < |c). We abstract
a bit and try to answer the question when, for g € test(K) and a € K, we have
(t||a*q) < c. By the lifted semi-commutation property (26) in Section 7, this can
be established if

(tlla) < fe)(tl,  (53) {tl{q) < lc), (54)
since then by locality

(tlla*q) = (t[la")lq) < |} {tlq) < [c)e) = |eT).

If we now assume ¢ to be weakly transitive (40), which is reasonable for a com-
parison relation, we have |¢*) < |c) and can draw the desired conclusion.

How can we, in turn, establish (53) and (54), at least in our special case?
Translating back we get the proof obligations

(tllps) < le)(tl,  (55) {tl(=p) < o). (56)
Condition (55) means that every pass through the loop body s preserves the
possibility of obtaining a solution that is at least as good as all possible solutions

before; (56) means that upon loop termination no possible solution is better than
the termination value.

11.2 TIterating Through the Problem Domain

We now decompose the specification relation t into the exhaustive iteration of
an element e of a set of elementary steps between points in the problem domain.
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We admit arbitrary inputs as initial approximations but only terminal elements,
from which no further elementary steps are possible, as outputs. Therefore we
assume now that ¢ has the special shape (48)

= exhe = ¢*; =e = while "edoe. (57)

Such a problem structure is found, e.g., in matroids and greedoids [24,28] where
it is additionally assumed that t is a discrete strict-order and that all terminal
(or maximal) elements, the bases, have the same height (also known as rank or
dimension) in the associated Hasse diagram.

We try to calculate an implementation that traverses the problem domain
without backtracking. This suggests trying ps < e. Now, by isotonicity of the
star operation, proof obligation (51) can be fulfilled if additionally we can achieve
—p < ='e or, equivalently, "e < p. Sufficient conditions for these properties are

ps<e A T(ps)>Te. (58)

These are reasonable requirements, since they prevent that the iteration blocks
at a non-terminal element. They even imply "(ps) = Te.
Next, we tackle proof obligation (56), assuming (57). We calculate

{tl(=Te) <) &

tee

)

Step one employs shunting (19,21) and de Morgan duality. Step two uses (57).
Step three unfolds the star. Step four uses distributivity, locality, =Tee = 0,
idempotence of ="e and equality of backward and forward diamonds of a test.

So (56) is established if ¢ is weakly reflexive on terminal elements, i.e., if
(="e) < |c). This holds, in particular, if ¢ is fully reflexive, i.e., a pre-order. But
in some applications one may choose to leave ¢ partially reflexive. E.g., when
constructing a Huffman code, the non-terminal elements are proper forests, for
which a comparison relation is not given as easily as for the terminal elements,
which are single code trees.

As for proof obligation (55), it is a generic condition that has to be considered
individually in each case. Our derivation can be summed up as follows.

Theorem 11.1 Suppose that ¢ is weakly reflexive on —"e and weakly transitive,
and that t = exhe. Then

ps <e A "(ps) >Te A (t|lps) < |c)(t| = opt(while Tedos,t,c).
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So far we still have a general scheme that does not specifically mention greedi-
ness. But we can further refine s to choose in every step a locally optimal element.
To this end we need another pre-order [ and stipulate imp(s, e, ). This now pro-
vides a truly greedy algorithm, the correctness of which is already shown by
Theorem 111. It corresponds to Curtis’s “Best-Global” algorithm [10].

In [36] we provide a full reconstruction of Curtis’s classification of Greedy
algorithms [10] in the abstract setting of MKA, even using forward modalities only.
The reason for this is that converse enters the derivation only in the limited way
of general commutation properties which can be expressed by forward modalities
only, using the Geach formula of Lemma 101. The modal approach again leads
to considerably more concise proofs than the original relational/allegorical ones.

12 Conclusion

We have outlined the calculus of modal Kleene algebra and discussed several ap-
plications, most of them in the field of semantics, system calculi and development
of programs and algorithms. The proofs that are needed in these examples are
abstract, concise and entirely calculational.

Together with previous work [52,53], our case study in abstract rewriting,
for instance, shows that large parts of this theory can easily be reconstructed in
modal Kleene algebra. This is probably a novel idea. Other practical results, for
instance the soundness proof of propositional Hoare logic or the reconstruction
of temporal logics, are strongly based on previous work. Here, the main contribu-
tion is that modal Kleene algebra may serve as a convenient uniform framework.
Sometimes, however, it even yields a drastic cut with Occam’s razor: in the cases
of propositional dynamic logic and linear temporal logic we can significantly re-
duce the number of axioms.

Relational algebraists may claim that most of the results presented in this
paper could as well be treated in their formalism. While this is certainly true, since
relations form a special instance of MKA, we believe that modal Kleene algebra
still provides some advantages. It has fewer operations and it is algorithmically
more tractable.

This often leads to a more concise and readable notation. Finally, the lifting
to the modal operator algebras provides an additional level of abstraction that is
not present in relational algebra.

There is one particular application of modal Kleene algebra that has not
been discussed in this survey. Ehm has extended our approach to a calculus for
the analysis of pointer algorithms [18]. He has combined modal Kleene algebra
with techniques from fuzzy set theory to model the projection onto particular
substructures of a given pointer structure. The reachability analysis performed
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by pointer algorithms, however, works to a large extent in pure modal Kleene
algebra. Giving a full account of these results is beyond the scope of this paper.

So far, all our proofs are by paper and pencil. However, the simplicity of
these proofs makes them ideal candidates for mechanisation. Our case studies in
rewriting show that much less structure is needed for formalising proofs with a
proof assistant than with previous approaches (e.g. [41,48]). We expect similar
results when modal Kleene algebra is integrated into a formal method. Note that
a considerable part of formal reasoning with popular methods like Z [49] or B [1]
is essentially relational. In particular, Kleene algebra has strong connections to
automata-theoretic decision procedures.

The results presented in this paper establish modal Kleene algebra as a for-
malism for safe cross-theory reasoning and therefore interoperability between dif-
ferent calculi for program and system analysis, modal or relational. We have tried
to support this claim both from the syntactic and the semantic point of view. In
the future, we plan extensive case studies, among others in the areas of program
and protocol analysis. Due to its simplicity and flexibility, we believe that modal
Kleene algebra offers a considerable potential that deserves further exploration.
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Propose to an Englishman any principle, or any instrument,
however admirable, and you will observe that the whole effort
of the English mind is directed to find a difficulty, a defect or an
impossibility in it. If you speak to him of a machine for peeling
a potato, he will pronounce it impossible: if you peel a potato
with it before his eyes, he will declare it useless, because it will
not slice a pineapple.

Charles Babbage 1852
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