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Abstract. This paper is a survey of the theory of Goguen categories which establishes
a suitable categorical description of L-fuzzy relations, i.e., of relations taking values from
an arbitrary complete Brouwerian lattice L instead of the unit interval [0, 1] of the real
numbers. In particular, we concentrate on representability, the existence of crisp versions
of several categorical constructions, and operations derived from suitable binary functions
on the underlying lattice of scalar elements, i.e., on the abstract counterpart of L.

1 Introduction

In a wide variety of problems one has to treat uncertain or incomplete informa-
tion. Some kind of exact science is needed to describe and understand existing
methods and to develop new attempts. Especially in applications of computer sci-
ence, this is a fundamental problem. To handle such kind of information, Zadeh
[26] introduced the concept of fuzzy sets and relations. In contrast to usual sets,
fuzzy sets are characterized by a membership relation taking its values from the
unit interval [0, 1] of the real numbers. After its introduction in 1965 the theory
of fuzzy sets and relations was ranked to be some exotic field of research. The
success during the last years with even consumer products involving fuzzy meth-
ods causes a rapidly growing interest of engineers and computer scientists in this
field. Nevertheless, Goguen [7] generalized this concept in 1967 to L-fuzzy sets
and relations for an arbitrary complete Brouwerian lattice L instead of the unit
interval [0, 1] of the real numbers. He described one of his motivating examples
as follows:
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A housewife faces a fairly typical optimization problem in her grocery shop-
ping: she must select among all possible grocery bundles one that meets as
well as several criteria of optimality, such as cost, nutritional value, quality,
and variety. The partial ordering of the bundles is an intrinsic quality of
this problem. (Goguen [7], 1967)

It seems to be unnatural in the example above to describe the criteria of optimal-
ity by a linear ordering as the unit interval, e.g., why should the nutritional value
of a given product be described by 0.6 (instead of 0.65, or any other value from
[0, 1]) and why should a product with a high nutritional value be better than a
product with high quality since those criteria are usually incomparable?

One important notion within fuzzy theory is 0-1 crispness. The class of 0-
1 crisp fuzzy sets or relations may be seen as the subclass of regular sets or
relations within the fuzzy world, i.e., they are described by the property that their
characteristic function supplies either the least element 0 or the greatest element
1 of the unit interval [0, 1] or the complete Brouwerian lattice L. Especially in
applications, this notion is fundamental. For example, in fuzzy decision theory
the basic problem is to select a specific element from a fuzzy set of alternatives.
Therefore, several cuts are used [3, 11]. Basically, an α-cut of a fuzzy set M is
a set N such that an element x is in N if and only if x is in M with a degree
≥ α. Analogously, an α-cut of a fuzzy relation R is a crisp relation S such that
a pair of elements is related in S if and only if they are related in R with a
degree ≥ α. Some variants of this notion may also be used. By definition, these
cut operations are strongly connected to the notion of crispness. In particular,
using the notion of crispness, one may define cut operations, and a cut operation
naturally implies a notion of crispness. In the development of fuzzy controllers
the notion of crispness is also fundamental. Usually the output of the controller
has to be a 0-1 crisp value since it is used to control some non-fuzzy physical
or software system. Therefore, a procedure called defuzzification is applied to
transform the fuzzy output into some 0-1 crisp value. This list of examples may
be continued. To sum it up, a convenient theory for L-fuzzy relations should be
able to express the notion of crispness.

Today, fuzzy theory as well as its application is usually formulated as a varia-
tion of set theory or some kind of many-valued logic (e.g., c.f. [6]). Although a lot
of algebraic laws are developed, these formalizations are not algebraic themselves.
But an algebraic description would have several advantages. Applications of fuzzy
theory may be described by simple terms in this language. In this way, we get in
some sense a denotational semantics of the application and hence a mathematical
theory to reason about notions like correctness and so on. One may prove such
properties using the calculus of the algebraic theory. Furthermore, a denotational
semantics may be used to get a prototype of the application.
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On the other hand, the calculus of binary relations has been investigated
since the middle of the nineteenth century as an algebraic theory for logic and
set theory [20, 21]. A first adequate development of such algebras was given by de
Morgan and Peirce. Their work has been taken up and systematically extended by
Schröder in [17]. More than 40 years later, Tarski started with [18] the exhaustive
study of relation algebras, and more generally, Boolean algebras with operators
[19].

The papers above deal with relational algebras presented in their classical
form. Elements of such algebras might be called quadratic or homogeneous ; rela-
tions over a fixed universe. Usually a relation acts between two different kinds of
objects, e.g., between boys and girls. Therefore, a variant of the theory of binary
relations has evolved that treats relations as heterogeneous or rectangular . A con-
venient framework to describe such kind of typing is given by category theory [4,
13, 15, 16].

There are some attempts to extend the calculus of relations to the fuzzy
world. In [10] the concept of fuzzy relation algebras was introduced as an alge-
braic formalization of fuzzy relations with sup-min composition. These algebras
are equipped with a semi-scalar multiplication, i.e., an operation mapping an el-
ement from [0, 1] and a fuzzy relation to a fuzzy relation. In the standard model
this is done by componentwise multiplication of the real values. Fuzzy relation al-
gebras and their categorical counterpart [5], so-called Zadeh categories, constitute
a convenient algebraic theory for fuzzy relations. Using the semi-scalar multipli-
cation it is also possible to characterize 0-1 crisp relations. Unfortunately, there
is no way to extend or modify this approach for L-fuzzy relations since for an
arbitrary complete Brouwerian lattice such a semi-scalar multiplication may not
exist.

Another approach is based on Dedekind categories introduced in [13]. It was
shown that the class of L-fuzzy relations constitutes such a category. Unfortu-
nately, the notion of 0-1 crispness causes some problems. Using the notion of
scalar elements, i.e., partial identities corresponding to the lattice L, several no-
tions of crispness in an arbitrary Dedekind category were introduced in [5, 9].
It was shown that the notion of s-crispness as well as the notion of l-crispness
coincides with 0-1 crispness under an assumption concerning the underlying lat-
tice. This assumption is fulfilled by all linear orderings, e.g., the unit interval.
Unfortunately, it was also shown that both classes of crisp relations are trivial if
the underlying lattice is a Boolean lattice.

This paper is a survey of the theory of Goguen categories which establishes
a suitable categorical description of L-fuzzy relations. We will just give the cor-
responding theorems without a proof. The corresponding proofs can be found in
[23–25]. In Section 2 we briefly introduce the notion of a Dedekind category, and
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in Section 3 the theory of (concrete) L-fuzzy relations. Then, in Section 3, we
introduce the notion of a Goguen category and state some its basic properties.
The following three sections (Section 5, 6 and 7) focus on the representability
of Goguen categories, the existence of crisp versions of several categorical con-
structions as relational products, relational sums and subobjects, and operations
derived from suitable binary functions on the underlying lattice of scalar elements,
i.e., on the abstract counterpart of L.

We assume that the reader is familiar with the basic concepts of category
theory and allegories [1, 4, 12].

2 Dedekind Categories

Throughout this paper, we use the following notations. To indicate that a mor-
phism R of a category R has source A and target B we write R : A → B. The
collection of all morphisms R : A → B is denoted by R[A,B] and the composi-
tion of a morphism R : A → B followed by a morphism S : B → C by R; S. Last
but not least, the identity morphism on A is denoted by IA.

In this section we recall some fundamentals on Dedekind categories [13, 14].
This kind of categories are called locally complete division allegories in [4].

Definition 1. A Dedekind category R is a category satisfying the following:

1. For all objects A and B the collection R[A,B] is a complete Brouwerian lat-
tice. The elements of R[A,B] are called (abstract) relations (with source A
and target B). Meet, join, the induced ordering, the least and the greatest
element are denoted by u,t,v,⊥⊥AB,>>AB, respectively.

2. There is a monotone operation ` (called converse) mapping a relation Q :
A → B to Q` : B → A such that for all relations Q : A → B and R : B → C

the following holds: (Q; R)` = R`; Q` and (Q`)
`

= Q.
3. For all relations Q : A → B,R : B → C and S : A → C the modular law

(Q; R) u S v Q; (R u (Q`; S)) holds.
4. For all relations R : B → C and S : A → C there is a relation S/R : A → B

(called the left residual of S and R) such that for all X : A → B the following
holds: X; R v S ⇐⇒ X v S/R.

Notice, that by convention composition binds more tightly than meet. There-
fore, Axiom 3 may be written as Q; R u S v Q; (R u Q`; S).

Corresponding to the left residual, we define the right residual by Q\R :=

(R`/Q`)
`
. This relation is characterized by Q; Y v R ⇐⇒ Y v Q\R.

Because the so-called Tarski rule

R 6= ⊥⊥AB =⇒ >>CA; R;>>BD = >>CD for all objects C and D
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is equivalent to a generalized version of the notion of simplicity known from
universal algebra, we call a Dedekind category simple iff the Tarski rule is valid.

A (simple) Dedekind category R is called representable iff there is an injective
homomorphism from R to the category of sets and binary relations.

An important class of relations is given by mappings.

Definition 2. Let Q : A → B be a relation. Then we call

1. Q univalent iff Q`; Q v IB,
2. Q total iff IA v Q; Q` or equivalently iff Q;>>BC = >>AC for all objects C,
3. Q a map iff Q is univalent and total,
4. Q injective iff Q` is univalent,
5. Q surjective iff Q` is total,
6. Q an isomorphism iff Q and Q` are mappings.

Notice, that if Q is an isomorphism we have Q`; Q = IB and Q; Q` = IA.
In some sense a relation of a Dedekind category may be seen as an L-relation.

The lattice L may equivalently be characterized by the ideal relations, i.e., a
relation J : A → B satisfying >>AA; J ;>>BB = J , or by the scalar relations.

Definition 3. A relation αA : A → A is called a scalar on A iff αA v IA and
>>AA; αA = αA;>>AA.

We will denote the set of scalar relations in R on A by ScR(A).

3 L-fuzzy relations

As mentioned in the introduction L-fuzzy relations are relations taking values
from an arbitrary complete Brouwerian lattice L instead of the unit interval [0, 1]
of the real numbers.

Definition 4. Let L be a complete Brouwerian lattice. Then the structure of
L-fuzzy relations is defined as follows:

1. The objects are sets.
2. A relation Q : A → B between two sets A and B is function from A × B to

L.
3. For Q : A → B and R : B → C composition is defined by

(Q; R)(x, z) :=
⊔

y∈B

Q(x, y) u R(y, z).

4. For Q : A → B the converse is defined by Q`(x, y) := Q(y, x).
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5. For Q,S : A → B join and meet are defined by

(Q t S)(x, y) := Q(x, y) t S(x, y), (Q u S)(x, y) := Q(x, y) u S(x, y).

6. The identity, zero and universal elements are defined by

IA(x, y) :=

{

0 : x 6= y
1 : x = y,

⊥⊥AB(x, y) := 0,
>>AB(x, y) := 1.

The structure of L-fuzzy relation is indeed a Dedekind category.
As mentioned in the introduction crispness is a fundamental notion within

fuzzy theory. An L-fuzzy relation Q is called 0-1 crisp iff Q(x, y) = 0 or Q(x, y) =
1 for all x and y. Obviously, the set of 0-1 crisp relations is closed under all relation
algebraic operations so that we may identify those relations with regular binary
relations.

The scalar elements in the Dedekind category of L-fuzzy relations are of the
form

αu
A(x, y) =

{

u iff x = y,
0 else,

with u ∈ L. Obviously, the set of scalars on A is closed under arbitrary intersec-
tions and unions and is isomorphic to L. This isomorphism is an isomorphism of
complete Brouwerian lattices since it is surjective in respect to the set of scalars
on A. Notice, that the last property is not true for arbitrary Dedekind categories.

A u-cut of an L-fuzzy relation is defined as the following 0-1 crisp relation

Ru(x, y) :=

{

1 iff R(x, y) ≥ u,
0 else.

The special cut with 1 will be denoted by R↓. It is the greatest 0-1 crisp relation
R contains. On the other hand, we may define

R↑(x, y) :=

{

1 iff R(x, y) 6= 0
0 else.

R↑ is the least 0-1 crisp relation containing R.
It is well-known that an L-fuzzy relation R may be represented by the set of

all its u-cuts. For example, let

R :=

(

1 k l
0 k m
0 1 l

)

0

k

l m

1

L := ¡
¡¡

@
@@

¡
¡¡

@
@@
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be given. The L-fuzzy relation R is a relation on a set A with three elements, and
the matrix representation above is similar to the representation of binary relations
by Boolean matrices, e.g., the first element is related to the second element in R
by a degree of k. Using this representation composition, for example, is computed
by regular matrix multiplication using intersection (instead of multiplication) and
union (instead of summation). Consider the set of u-cuts of R:

(

1 1 1
1 1 1
1 1 1

) (

1 1 1
0 1 1
0 1 1

) (

1 0 1
0 0 0
0 1 1

) (

1 0 0
0 0 1
0 1 0

) (

1 0 0
0 0 0
0 1 0

)

R0 Rk Rl Rm R1

The following computation shows that the cuts above establish a representation
of R.

⊔

u∈L

αu
A; Ru = α0

A; R0 t αk
A t αl

A; Rl t αm
A ; Rm t α1

A; R1

=

(

0 0 0
0 0 0
0 0 0

)

t

(

k k k
0 k k
0 k k

)

t

(

l 0 l
0 0 0
0 l l

)

t

(

m 0 0
0 0 m
0 m 0

)

t

(

1 0 0
0 0 0
0 1 0

)

=

(

1 k l
0 k m
0 1 l

)

= R

The equation R =
⊔

u∈L

αu
A; Ru is valid for arbitrary L-fuzzy relations R and is

known as the α-cut theorem.
Now, the set {R0, Rk, Rl, Rm, R1} may be represented by a function f from L

to the set of crisp relations defined by

f(0) := R0, f(k) := Rk, f(l) := Rl, f(m) := Rm, f(1) := R1.

It is easy to verify that f is an antimorphism, i.e., that f(
⊔

M) = f(M)
holds for all subsets M of L. Consequently, the set of L-fuzzy relations may be
represented by the set of antimorphisms from L to the set of crisp relations.

We will study a similar representation of abstract Goguen Categories in Sec-
tion 5.

4 Goguen Categories

In [23] a first order language for Dedekind categories is defined. This language is a
two sorted language (relations and objects) based on the relational and the usual
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logical operations. Furthermore, it was shown that a relation Q : A → B fulfils a
formula ϕ iff f ; Q; g fulfils ϕ where f : A → A and g : B → B are isomorphisms.
Consider the following example:

Let B4 := P({a, b}) be the power set of the set {a, b}, and X = {x} and
Y = {x, y} be sets. Consider the L-fuzzy relation f : Y → Y defined by

f :=

(

{a} {b}
{b} {a}

)

,

and the 0-1 crisp relation R : X → Y defined by

R :=
(

{a, b} ∅
)

.

A simple verification shows that f is an isomorphism. Now, suppose that ϕ is a
formula expressing 0-1 crispness, i.e., a formula which is fulfilled exactly by 0-1
crisp relations. Then ϕ is fulfilled by R and by the lemma mentioned above by
I; R; f . But, this is a contradiction since

I; R; f =
(

{a, b} ∅
)

;

(

{a} {b}
{b} {a}

)

=
(

{a} {b}
)

,

which shows that I; R; f is far from being 0-1 crisp.
The computation above shows that the theory of Dedekind categories is too

weak to express crispness. This gives us the motivation to define an extended
algebraic structure for L-fuzziness. Our approach introduces an abstract version
of the operations R↓ and R↑ mapping every relation R to the greatest 0-1 crisp
relation R contains and to the least 0-1 crisp relation R is included in, respectively.

Definition 5. A Goguen category G is a Dedekind category with >>AB 6= ⊥⊥AB for
all objects A and B together with two operations ↑ and ↓ satisfying the following:

1. R↑, R↓ : A → B for all R : A → B.
2. (↑, ↓) is a Galois correspondence.

3. (R`; S↓)
↑

= R↑`
; S↓ for all R : B → A and S : B → C.

4. If αA 6= ⊥⊥AA is a non-zero scalar then α↑
A = IA.

5. For all antimorphisms f : ScG(A) → G[A,B] such that f(αA)↑ = f(αA) for
all αA ∈ ScG(A) and all R : A → B the following equivalence holds

R v
⊔

αA∈ScG(A)

(αA; f(αA)) ⇐⇒ (αA\R)↓ v f(αA) for all αA ∈ ScG(A).

The obvious definition of ↑ and ↓ introduced in the last section for L-fuzzy
relations gives us the standard model.
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Theorem 1. Let L be a complete Brouwerian lattice with 0 6= 1. Then the
Dedekind category of L-fuzzy relations together with ↑ and ↓ is a Goguen cat-
egory.

According to our standard model, we define crispness in an arbitrary Goguen
category as follows.

Definition 6. A relation R : A → B of a Goguen category is called crisp iff
R↑ = R. The crisp fragment G↑ of G is defined as the collection of all crisp
relations of G.

Notice, that a relation is crisp iff R↓ = R iff R↑ = R↓. Furthermore, the
next theorem shows that the crisp relation are indeed an abstract counterpart of
binary relations.

Theorem 2. Let G be a Goguen category. Then next G↑ is a simple Dedekind
category with >>AB 6= ⊥⊥AB for all objects A and B.

In the remainder of this section we want to state two important properties of
Goguen categories. First of all, an abstract version of the α-cut Theorem may be
proved.

Theorem 3 (α-cut Theorem). Let G be a Goguen category and R : A → B.
Then we have R =

⊔

αA∈ScG(A)

(αA; (αA\R)↓),

The second property shows that the elements of a Goguen category are indeed
relations based on a single underlying lattice L.

Theorem 4. Let G be a Goguen category. For all objects A and B the function
f(αA) := IB u>>BA; αA;>>AB is an isomorphism between the complete Brouwerian
lattices ScG(A) and ScG(B).

In the remainder of the paper we will identify all sets of scalars and denote
this set by Sc[G]. We use α, β, γ, . . . to denote abstract elements from Sc[G]. The
corresponding scalar on an object A is then denoted by αA, βA, γA, . . . with the
convention that f(αA) = αB, i.e., IB u >>BA; αA;>>AB = αB.

Consequently, we call a Goguen category G representable iff there is an injec-
tive homomorphism from G to the category of Sc[G]-fuzzy relations.
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5 Representation of Goguen categories

The representation theory of Goguen categories is based on a pseudo-representa-
tion within a suitable category of antimorphisms. The set of all antimorphisms
between two lattices need not be a lattice. In particular, the componentwise union
of two antimorphisms is not an antimorphism. But this set forms a closure system,
i.e., is closed under arbitrary intersections and contains the greatest function 1̇
defined by 1̇(x) := 1. Therefore, it induces the following closure operation:

τ(f) := {h | f v h and h antimorphism}.

Furthermore, for all elements a in the second lattice we have the pseudo-constant
antimorphism ȧ defined by

ȧ(x) :=

{

1 iff x = 0,
a otherwise.

This leads to the following theorem about Dedekind categories of antimorphisms.

Theorem 5. Let L be an arbitrary complete Brouwerian lattice, and R be a
Dedekind category. Then the following structure RL is a Dedekind category.

1. The objects of RL are the objects of R,
2. A morphism from A to B is an antimorphism from L to R[A,B],
3. The identity morphism on A, the least and the greatest element in RL[A,B]

are given by İA, ⊥̇⊥AB and >̇>AB, respectively.
4. Meet and conversion are defined componentwise, e.g., (fug)(x) := f(x)ug(x).
5. Union and composition (denoted by ·t and ··,) are defined as the closure (with

respect to τ) of the componentwise definition, e.g., f ·t g := τ(f u g) where
(f u g)(x) := f(x) u g(x).

Now, we define the up- and down-operation in RL by

f ↑ := Ṙ with R =
⊔

y 6=0

f(y) and f ↓ := Ṡ with S = f(1)

or componentwise by

f ↑(x) :=

{

>>AB iff x = 0
⊔

y 6=0

f(y) otherwise, f ↓(x) :=

{

>>AB iff x = 0
f(1) otherwise.

Theorem 6. Let L be an arbitrary complete Brouwerian lattice with 0 6= 1 and
R be a simple Dedekind category with >>AB 6= ⊥⊥AB for all objects A and B. Then
RL is a Goguen category.
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The converse implication of the last theorem is also valid and called the
pseudo-representation theorem of Goguen categories.

Theorem 7 (Pseudo-Representation Theorem). Let G be a Goguen cate-

gory. Then G↑Sc[G]
is again a Goguen category and G and G↑Sc[G]

are isomorphic.

The last theorem leads to the equivalence of the representation problem of
Goguen categories and simple Dedekind categories.

Theorem 8. A Goguen category G is representable iff G↑ is representable.

6 Equations in Goguen categories

A Goguen category may provide some relational constructions as products, sums
or subobjects. Such a construction is given by an object together with a set
of relations fulfilling some equations. For example, a relational product of two
objects A and B is an object A × B together with two relation π : A × B → A
and ρ : A × B → B such that

π`; π v IA, ρ`; ρ v IB π`; ρ = >>AB, π; π` u ρ; ρ` = IA×B.

One may expect that the projections π and ρ as well as the pairing Q; π`uR; ρ`

of two crisp relations Q and R is crisp again. Notice, that the first property
implies the second since the class of crisp relations is closed under the relational
operations.

Especially in applications, such a property seems to be essential. For example,
if the input (or output) domain of a fuzzy controller is a product of several
domains with non-crisp projection there would be a fuzzification, which is not an
integral part of the specification of the controller. This fuzzification arises from
the specific choice of the product. In this case, reasoning about the controller
using a description within Goguen categories seems to be impossible or at least
difficult.

Unfortunately, there may exists such non-crisp injections or projections. Con-
sider again B4 := P({a, b}) and the relations

π1 :=









{a, b} ∅
{a} {b}
{b} {a}
∅ {a, b}









, ρ1 :=









{a, b} ∅
{b} {a}
{a} {b}
∅ {a, b}









,

π2 :=









{a, b} ∅
{a, b} ∅
∅ {a, b}
∅ {a, b}









, ρ2 :=









{a, b} ∅
∅ {a, b}

{a, b} ∅
∅ {a, b}









.
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Both pairs (π1, ρ1) and (π2, ρ2) constitute a product of two copies of a set with
two elements, i.e., they fulfil the equations above. The first pair of relations is
not crisp. But, this example also shows that there is a crisp version (π2, ρ2) of
the product, i.e., there are crisp relations between the same objects fulfilling the
same set of equations. In our example, one may require without loss of generality
that the projections are crisp. In this section we want to show that under an
assumption on the lattice L such a crisp version always exists.

Definition 7. A subset F ⊆ L of a complete Brouwerian lattice L is called a
complete prime filter iff

1. 0 6∈ F ,
2. x u y ∈ F iff x ∈ F and y ∈ F for all x, y ∈ L,
3.

⊔

M ∈ F iff ∃y ∈ M : y ∈ F for all subsets M ⊆ L.

We will denote the set of all complete prime filters of L by FL. If FL 6= ∅ we call
L proper.

First, we want to study the class of proper lattices.

Theorem 9. 1. Every linear ordering is proper.
2. The class of proper lattices is closed under arbitrary products.
3. A complete atomless Boolean algebra is not proper.

Equations are defined as usual. If S is a set of equations with relational vari-
ables within {r1, . . . , rn} we denote the fact that the relations R1, . . . , Rn fulfil S
by R1, . . . , Rn |= S.

Theorem 10. Let RL be a Goguen category with a proper lattice L, S be a
set of equations with variables within {r1, . . . , rn} and f1, . . . , fn be elements of
RL such that f1, . . . , fn |= S. Then there are relations U1, . . . , Un from R with
U̇1, . . . , U̇n |= S.

Notice, that U̇i is always crisp.
The relation Ui is given by Ui :=

⊔

x∈F

fi(x) with F a complete prime filter in

L.
Using our pseudo-representation theorem the last result can be extended to

arbitrary Goguen categories.

Corollary 1. Let G be a Goguen category with a proper underlying lattice Sc[G],
S be a set of equations with variables within {r1, . . . , rn} and R1, . . . , Rn rela-
tions such that R1, . . . , Rn |= S. Then there are crisp relations Q1, . . . , Qn with
Q1, . . . , Qn |= S.
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Since products, sums and subobjects induced by crisp partial identities are
defined by equations, we may require without loss of generality that the related
relations (e.g., the projections) are crisp.

Unfortunately, we were just able to state Theorem 10 for Goguen categories
RL with a proper lattice L. The experiences we made during searching a coun-
terexample to this theorem in general leads us to the following conjecture.

Conjecture 1. Theorem 10 is true for all Goguen categories RL.

7 Derived operations in Goguen categories

Since t-norms are suitable candidates for conjunctions and t-conorms for disjunc-
tion they are widely used within applications of fuzzy theory. Usually, operations
on fuzzy sets and/or relations derived from t-norms and t-conorms are the basic
means to combine several parts of a fuzzy system. For example, the decision-
module within a fuzzy controller, i.e., the process deciding which rule on the
linguistic variables is activated with a certain degree, may be modelled by a suit-
able composition operator. Therefore, every theory intended on describing fuzzy
systems should be able to model such operations. The corresponding notion of
t-norms and t-conorms for complete Brouwerian lattices is given by complete
lattice-ordered semi groups introduced in [7].

The aim of this section is to define such derived operations within arbitrary
Goguen categories and state their basic properties.

Definition 8. Let L be a distributive lattice with least element 0 and greatest
element 1, ∗ a binary operation on L and e, z ∈ L. Then (L, ∗, e, z) is called a
lattice-ordered operator set, abbreviated loos, iff

1. ∗ is monotonic in both arguments,
2. e is a left and right neutral element for ∗, i.e., x ∗ e = e ∗ x = x for all x ∈ L,
3. z is a left and right zero for ∗, i.e., x ∗ z = z ∗ x = z for all x ∈ L.

If ∗ is associative (L, ∗, e, z) is called a lattice-ordered semigroup (losg). Further-
more, if L is a complete Brouwerian lattice and ∗ is continuous (distributes over
arbitrary unions), i.e.,

x ∗
⊔

i∈I

yi =
⊔

i∈I

(x ∗ yi) and (
⊔

i∈I

yi) ∗ x =
⊔

i∈I

(yi ∗ x)

for all nonempty sets I. (L, ∗, e, z) is called a complete lattice-ordered operator
set/semigroup (cloos/closg). Finally, the structures defined above are called com-
mutative if ∗ is.
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As usual, e and z are unique, i.e., if e′ (z′) is another left and right neutral
element (left and right zero) for ∗ then e′ = e (z′ = z).

Notice, that for L = [0, 1], e = 1 and z = 0 we get the usual definition of
t-norms and for e = 0 and z = 1 of t-conorms.

(L,u, 1, 0) and (L,t, 0, 1) are commutative losg’s. Furthermore, we may define
the following operations

x ~ y :=







x iff y = 1,
y iff x = 1,
0 otherwise.

x ¢ y :=







x iff y = 0,
y iff x = 0,
1 otherwise.

Again, (L,~, 1, 0) and (L,¢, 0, 1) are commutative losg’s.

Theorem 11. Let (L, ∗, 1, z) be a loos. Then we have the following:

1. z = 0, i.e., x ∗ 0 = 0 ∗ x = 0 for all x ∈ L,
2. x ~ y v x ∗ y v x u y for all x, y ∈ L,
3. ∗ = u iff u ∗ u = u for all u ∈ L.

If the identity 1 of (L, ∗, 1, z) in the last theorem is replaced by 0 a dual
version may be proved.

Theorem 12. Let (L, ∗, 0, z) be a loos. Then we have the following:

1. z = 1, i.e., x ∗ 1 = 1 ∗ x = 1 for all x ∈ L,
2. x t y v x ∗ y v x ¢ y for all x, y ∈ L,
3. ∗ = t iff u ∗ u = u for all u ∈ L.

Throughout this section, unless otherwise stated, let G be a Goguen category
and ∗ an operation such that (Sc[G], ∗, ε, ζ) is a loos. Furthermore, suppose ⊗ is
an operation on relations such that

1. ⊗ is defined for all pairs of relations from G[A,A] for all objects A and its
value is within G[B,B] for a suitable B and if Q⊗R is defined for Q : A → B
and R : C → D then ⊗ is defined for all pairs of relations from G[A,B] and
G[C,D],

2. if Q ⊗ R is defined for Q : A → B and R : C → D and within G[E,F ] then
Q ⊗⊥⊥CD = ⊥⊥AB ⊗ R = ⊥⊥EF ,

3. if >>AB ⊗>>CD is defined and within G[E,F ] then >>AB ⊗>>CD = >>EF ,
4. ⊗ distributes over arbitrary unions in both arguments, i.e., for all Q,Qi, R,Ri

with i ∈ I we have

Q ⊗ (
⊔

i∈I

Ri) =
⊔

i∈I

(Q ⊗ Ri) and (
⊔

i∈I

Qi) ⊗ R =
⊔

i∈I

(Qi ⊗ R)

whenever the application of ⊗ is defined,
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5. for all α, β ∈ Sc[G] and relations Q : A → B,R : C → D such that Q ⊗ R is
defined and within G[E,F ] we have

(αE u βE); (Q ⊗ R) = (αA; Q) ⊗ (βC ; R),

6. ⊗ is closed on G↑, i.e., for all crisp relations Q,R such that Q ⊗ R is defined
Q ⊗ R is crisp.

Notice that u and ; satisfy the properties above. 1,2 and 4 follow immediately
from the definition of a Dedekind category. For meet property 3 is trivial and for
composition it follows from the fact that I is crisp and that the crisp relations
constitute a simple Dedekind category. Property 6 is true since the crisp relations
are closed under all relational operations. Finally, property 5 is shown as follows.

(αA u βA); (Q u R) = (αA u βA);>>AB u Q u R

= αA;>>AB u βA;>>AB u Q u R

= αA; Q u βA; R,

(αA u βA); Q; S = αA; βA; Q; S

= αA; Q; βB; R.

Now, we may define ∗ based operations as follows.

Definition 9. Let Q,R be relations such that Q ⊗ R is defined. Then we define

Q ⊗∗ R :=
⊔

α,β∈Sc[G]

(α ∗ β); ((α\Q)↓ ⊗ (β\R)↓).

The definition above corresponds to the componentwise definition in the case
of L-fuzzy relations. Notice, that ;∗ and the composition defined in [2] coincide.

Theorem 13. Let Q,R be L-fuzzy relations between the sets A and B, and let
S be a L-fuzzy relation between B and C. Then we have

1. (Q u∗ R)(x, y) = Q(x, y) ∗ R(x, y),
2. (Q;∗ S)(x, z) =

⊔

y∈B

Q(x, y) ∗ S(y, z).

Property 1. of the last theorem shows that u∗ and u coincide for L-fuzzy
relations iff ∗ equals the operation u. This property can be generalized as follows.

Theorem 14. Let Q and R be relations such that Q ⊗ R is defined. Then we
have Q ⊗∗ R = Q ⊗ R for all Q and R iff ∗ equals the operation u.
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Since t is the weakest t-conorm like operation by Theorem 12 (2) we get a
similar result for ⊗ being the operation u.

Theorem 15. let Q,R : A → B be relations. Then we have Qu∗ R = QtR for
all Q and R iff ∗ equals the operation t.

Suppose (L, ∗, 1, 0) is a loos and R is a crisp L-fuzzy relation. Then we have

(Q u∗ R)(x, y) = Q(x, y) ∗ R(x, y) = Q(x, y) u R(x, y) = (Q u R)(x, y).

The next theorem shows that this property is true in general.

Theorem 16. Let ε = I. Furthermore, let Q and R be relations such that Q⊗R
is defined. If Q or R is crisp then we have Q ⊗∗ R = Q ⊗ R.

Theorem 11 may be lifted to the ∗ based operation as follows.

Theorem 17. Let ε = I. Furthermore, let Q and R be relations such that Q⊗R
is defined. Then we have the following.

1. Q ⊗∗ ⊥⊥ = ⊥⊥⊗∗ R = ⊥⊥,
2. Q u∗ >> = Q and >> u∗ R = R,
3. Q ⊗~ R v Q ⊗∗ R v Q ⊗ R.

Replacing I by ⊥⊥ we may state a kind of a dual version of the last two theorems.

Theorem 18. Let ε = ⊥⊥. Furthermore, let Q and R be relations such that Q⊗R
is defined. If Q or R are crisp then we have Q ⊗∗ R = (Q ⊗>>) t (>>⊗ R).

In the rest of this section we want to give some basic properties of ∗ based
operations and the structures induced by them. We start with the following two
theorems.

Theorem 19. Let ⊗ be commutative. Then ⊗∗ is commutative iff (Sc[G], ∗, ε, ζ)
is a commutative loos.

Theorem 20. Let ⊗ be associative and (Sc[G], ∗, ε, ζ) complete. Then ⊗∗ is as-
sociative iff (Sc[G], ∗, ε, ζ) is a losg.

If ⊗ is composition one may ask about a categorical structure induced by ;∗.
The answer is given in the next theorem.

Theorem 21. Let (Sc[G], ∗, ε, ζ) be complete and G non trivial, i.e., there is an
object A so that >>AA 6= IA. Then G together with composition ;∗ and identity
morphisms ε is a category iff (Sc[G], ∗, ε, ζ) is a losg with ζ = ⊥⊥.
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Since converse is a well-behaved operation we get the following theorem.

Theorem 22. Let (Sc[G], ∗, ε, ζ) be a closg. Then we have (Q;∗ R)` = R`;∗ Q`

for all Q : A → B and R : B → C.

Last but not least, we will focus on continuity of ⊗∗.

Theorem 23. Let (Sc[G], ∗, ε, ζ) be a cloos. Then we have

(
⊔

i∈I

Qi) ⊗∗ R =
⊔

i∈I

(Qi ⊗∗ R) and Q ⊗∗ (
⊔

i∈I

Ri) =
⊔

i∈I

(Q ⊗∗ Ri)

for all Q,Qi, R,Ri with i ∈ I whenever the application of ⊗∗ is defined.

As usual, for a continuous binary operation a residuated operation may be
defined.

Theorem 24. Let (Sc[G], ∗, ε, ζ) be a cloos. Then there are operations C∗ and
B∗ such that

Q ⊗∗ X v R ⇐⇒ X v Q C∗ R
and Y ⊗∗ S v R ⇐⇒ Y v R B∗ S,

whenever the application of ⊗∗ is defined.

The last theorem shows that an inclusion Q;∗ X v R has a greatest solution
in X, namely Q C∗ R. Furthermore, the equation Q;∗ X = R has a solution
(X = Q C∗ R) iff Q;∗ (Q C∗ R) = R.

8 Conclusion

In this paper we have provided a survey of the theory of Goguen categories. The
well-known theory of Dedekind categories (or locally complete division allegories)
is too weak to express important properties of fuzzy relations, which naturally
leads to an extended theory, e.g., the theory of Goguen categories.

Beneath some basic properties we have studied the representation theory of
Goguen categories. In particular, we have indicated that the representation the-
ories of Goguen and simple Dedekind categories are equivalent. This shows that
Goguen categories are a suitable extension of the theory of binary relations to the
fuzzy world. Furthermore, this result allows us to transfer representation results
for Dedekind categories to the theory of Goguen categories. It also shows that
there are nonstandard models.

The study of equations within Goguen categories allows us to assume (under a
condition of the underlying lattice) that crisp versions of relational constructions
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exist. This is an important result in respect to applications of this theory to
computer science, e.g., correctness considerations of fuzzy controllers.

Furthermore, we have shown that operations derived from lattice-ordered
semigroups may be defined in an arbitrary Goguen category without referring
to a componentwise representation of the relations, i.e., without using the coeffi-
cients from L of concrete L-fuzzy relations. Again, this seems to be important in
the view of applications of the theory mentioned above.

The theory of Goguen categories is based on Dedekind categories and basically
equational and element-free. Therefore, it constitutes a nice categorical theory to
reason about L-fuzzy controllers and other applications of fuzziness in computer
science.
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