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Abstract. A highly expressive multilevel relational reference language is proposed that
covers most possibilities to use relations in practical applications. The language is de-
signed to describe work in a heterogeneous setting. It originated from a Haskell-based
system announced in [29], forerunners of which were [17, 16].
This language is intended to serve a variety of purposes. First, it shall allow to formulate
all of the problems that have so far been tackled using relational methods providing
full syntax- and type-control. Transformation of relational terms and formulae in the
broadest sense shall be possible as well as interpretation in many forms. In the most
simple way, boolean matrices will serve as an interpretation, but also non-representable
models as with the Rath-system may be used. Proofs of relational formulae in the style
of Ralf or in Rasiowa-Sikorski style are aimed at.

1 Introduction

When an engineer is about to design an artefact and has to apply Linear Algebra
methods (such as solving systems of linear equations or determining eigenvalues
and eigenvectors), he will approach the respective computing center and most cer-
tainly get the necessary software. When the matrices considered become boolean
matrices, i.e., relations, the situation changes dramatically. Neither will one find
persons competent in that, nor will there exist commonly accepted high-quality
software. Even formulation of the ideas is often bound to the respective scientists
personal habits of denotation.

A commonly accepted language that covers at least the broad majority of
the topics handled with relational means is not yet available. It is this situation
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which is addressed by the present article. As far as relational research is reported
on games, satisfiability, domain construction, e.g., this is not new — new is the
exposition of how to formulate all this so as to separate it from its interpreta-
tion. Other activities, such as handling elementary graph theory relationally, or
presenting elementary combinatorics to students, made it even more desirable to
arrive at such a language.

Recollecting [17, 16, 20, 29, 8, 31], a multilevel relational reference language should
serve a variety of purposes.

– It shall allow to formulate all of the problems that have so far been tackled
using relational methods, thereby offering syntax- and type-control to reduce
the likelihood of running into errors.

– It shall allow to transform relational terms and formulae in order to opti-
mize these for handling them later efficiently with the help of some system.
In particular, a distinction is made between the matchable denotation of an
operation and its execution.

– There shall exist the possibility to interpret the relational language. For this
mainly three ways are conceivable. In the most simple way, one shall be able to
attach boolean matrices to the terms and evaluate them. In a second more so-
phisticated form, one shall be enabled to interpret using the RelView system,
thus dealing very efficiently with relations of considerable size [11, 5, 4, 6, 7, 38].
In a third variant, interpretation shall be possible using the Rath-system, a
Haskell-based tool with which also nonrepresentable relation algebras may
be studied.

– It is also intended to be able to prove relational formulae. Again, several forms
shall be possible. In a first variant, a system will allow proofs in the style
of Ralf, a former interactive proof assistent for executing relational proofs
[16]. Already now, however, a variant has been initiated that allows proofs in
Rasiowa-Sikorski style [22].

– In order to support people in their work with relations, it shall be possible
to translate relational formulae into TEX-representation or into some pure
Ascii-form. Opposed to these external translations, also internal ones shall
be supported, namely those translating a relational formula in componentfree
form into a form of first-order predicate logic.

– Finally, additional studies on partialities shall be possible. Attempts have been
made to embed relation algebras into others, and thus handle the strict/non-
continuous as well as the non-strict/continuous case in a common framework.
This means in particular to concentrate on the language used and to scrupu-
lously distinguish which operation to apply.
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With regard to all these aspects several studies have shown considerable progress,
not least concerning system control. All this cannot be presented in one single
article. For the background, we refer to the underlying reports [20, 30].

These underlying reports are written in literate style; they are thus not just
scientific texts but also programs and have been used to thoroughly test many
of the concepts presented here. For this, we have used Haskell [18] as the
programming language. Haskell is by far the language best suited for such
structural and transformational experiments. It is purely functional and now
widely accepted in research and university teaching. For more information about
Haskell see the Haskell WWW site at

URL: http://www.haskell.org/

For solely studying the language to be developed here, we might have chosen to
present it in some grammar. We have, however, supported our study by many
programs to investigate the interdependencies and to check our decisions from
various points of view with programs in Haskell. As notation in Haskell

rather closely resembles the grammar structures, we decided to use it also for
presentation purposes.

We are fully aware that many people may not be versed enough in Haskell.
So our plan is to later care for appropriate parser elements which shall then be
bound together using parser combinators to allow whatever a (reasonably precise)
relation syntax is desired.

The article is organized as follows. After this introduction in Ch. 1, we define the
multilevel (elements, vectors, relations) language in Ch. 2 together with all the
syntactic additions such as collection of syntactic material etc. Finally, theories
are introduced as Haskell data structures. Typing, well-formedness, and the
most general types are studied in Ch. 3. Several ways of translation of terms,
not least to TEX are presented in Ch. 4. Chapter 5 contains the definition of
models as Haskell data structures, followed by all the functions necessary for
interpretation in such a model. Chapters 6 and 7 contain various case studies
of using the language: Generic constructions, Rasiowa-Sikorski rules. The report
ends with an outlook and some acknowledgments.

2 The Multilevel Language in Haskell

A multilevel relational reference language shall allow to express elements, vectors
or subsets of elements, and relations in a heterogeneous setting. All syntactic
means for this are collected here, including the formulation of theories. We refer
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to the end of this report, where examples will illustrate the usefulness of some of
the constructs now to be introduced.

2.1 The Heterogeneous Setting

From the very beginning, we work in a typed or heterogeneous setting. We admit
direct products, sums, and powers to be formed generically. Such typing means
that we have to provide for a language to formulate basics of a category. This may
seem a difficult step to start with; it is, however, outweighed by a big advantage:
Finite models are not excluded as they would be in the homogeneous case.

What one should bear in mind when reading the following data type definitions is
that capital first letters such as in CstO, Elem, Rela indicate socalled construc-
tors and that the respective data may be matched one against the other. In the
case of infix-notated operators, the corresponding is indicated with encapsulation
in colons, as in “:***:”.

data CatObjCst = CstO String

data CatObjVar = VarO String | IndexedVarO String Int

data CatObject = OC CatObjCst | OV CatObjVar | DirPow CatObject |

DirPro CatObject CatObject | QuotMod RelaTerm |

DirSum CatObject CatObject | InjFrom VectTerm | UnitOb

Normally, we will be able to give names to the category objects. When formu-
lating proof rules, we will also need variables for category objects. Here and in
later cases, we provide for two forms of variable denotations. The first is just a
name while the indexed variable name offers more easily an ever expanding set
of variable names. The categorical standard constructions of forming the direct
product, direct sum, direct power, as well as the unit object are provided for.
In addition, we generate dependent types when a “subset” is given of when a
quotient is formed. They will require to obey typing discipline.

2.2 Constants and Variables

When working in first-order predicate logic, one will usually need denotations for
individual variables and constants. In the present multilevel setting, this applies
to all three levels. Therefore, element constants and element variables as well
as predicate constants and predicate variables will be given and finally relation
constants and relation variables. In our setting, we always bind these together
with their typing. We restrict ourselves to unary predicates represented by vectors
and binary predicates, i.e., relations.
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This will, of course, lead to difficult borderline situations: We are at the same
time working in a first-order predicate logic for the elements and will via vectors
and relations, with the possibility to quantify over these, open the door to second-
order logic a tiny bit.

data ElemConst = Elem String CatObject

data VectConst = Vect String CatObject

data RelaConst = Rela String CatObject CatObject

data FuncConst = Func String CatObject CatObject

data ElemVari = VarE String CatObject | IndexedVarE String Int CatObject

data VectVari = VarV String CatObject | IndexedVarV String Int CatObject

data RelaVari = VarR String CatObject CatObject |

IndexedVarR String Int CatObject CatObject

The function constant may not really be necessary as we have relation constants.
A relational constant is nothing else than a name, the string, together with the
types/objects between which the relation is supposed to hold. They are, however,
not concretely given as we stay — so far — on the syntactical side. Again, the
possibility of defining indexed variable names is given.

2.3 Terms

All this allows to build first-order predicate logic introducing terms and formu-
lae on either one of the three levels. According to our notation, vectors are best
conceived as column vectors. From the beginning, we distinguish element terms,
vector terms, and relation terms. Null, universal, and identity relation constants
will be given generically. The generic transitions between the three levels consid-
ered will later need care. VectToElem, e.g., provides the transition from a vector to
the corresponding element in the powerset, while RelaToVect converts a relation to
the corresponding vector in the direct product.

data ElemTerm =

EV ElemVari | EC ElemConst | Pair ElemTerm ElemTerm |

Inj1 ElemTerm CatObject | Inj2 CatObject ElemTerm |

ThatV VectTerm | SomeV VectTerm | ThatR RelaTerm | SomeR RelaTerm |

FuncAppl FuncConst ElemTerm | VectToElem VectTerm |

EFctAppl ElemFct ElemTerm

data VectTerm =

VC VectConst | VV VectVari | RelaTerm :****: VectTerm |

VectTerm :||||: VectTerm | VectTerm :&&&&: VectTerm |

NegaV VectTerm | NullV CatObject | UnivV CatObject |

SupVect VectSET | InfVect VectSET | PointVect ElemTerm |

Syq RelaTerm VectTerm | RelaToVect RelaTerm |

PowElemToVect ElemTerm | VFctAppl VectFct VectTerm

data RelaTerm =
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RC RelaConst | RV RelaVari | RelaTerm :***: RelaTerm |

RelaTerm :|||: RelaTerm | RelaTerm :&&&: RelaTerm |

NegaR RelaTerm | Ident CatObject | NullR CatObject CatObject |

UnivR CatObject CatObject | Convs RelaTerm |

VectTerm :||--: VectTerm | SupRela RelaSET | InfRela RelaSET |

RelaTerm :*: RelaTerm | RelaTerm :\/: RelaTerm |

Pi CatObject CatObject | Rho CatObject CatObject |

Iota CatObject CatObject | Kappa CatObject CatObject |

CASE RelaTerm RelaTerm | Project RelaTerm |

Epsi CatObject | PointDiag ElemTerm | SyQ RelaTerm RelaTerm |

RFctAppl RelaFct RelaTerm

Constructs such as :||||:, :|||:, :&&&&:, :&&&:, :***:, Convs, NegaV, NegaR don’t
need detailed explanation; they resemble union, intersection, composition, con-
version, and negation of vector and relational terms, resp. The element terms
constructed via SomeV, SomeR, ThatV, ThatR, however, deserve explanation. They are
correctly defined only if, e.g., the vector term vt in ThatV vt denotes a point. In
SomeR rt, the relational term rt must denote a nonempty part of the identity.
Later, typically a proof obligation will be issued to guarantee such properties.

Further transitions lead from the element level to the others by PointVect, PointDiag.
Given an element term one may generate the corresponding “singleton set” vector
or diagonal relation “with just one single element” in the diagonal. The function
applications EFctAppl, VFctAppl, RFctAppl refer to the function definitions to be de-
fined in the next subsection.

The construct RelaTerm :****: VectTerm is intended to model the Peirce product.
(In our favourite model relations are always boolean matrices [[Bool]], while
vectors are lists [Bool] as opposed to one-column matrices. So we need a dif-
ferent symbol for the mixed product.) With Pi, Rho, Pair, generic denotations for
projections from a direct product are introduced; in the same way Iota, Kappa,

CASE provide generic denotations for the injections into a direct sum. For these
generic constructs see our later Sect. 6. Finally, Epsi generically denotes the rela-
tionship between a set and its powerset. A (column) vector multiplied via :||--:

with a (row) vector will deliver a relation. Project converts an equivalence to the
mapping onto the quotient.

The operations :\/: and :*: are defined using the other operations. The first
resembles the often discussed fork operator ∇, while the second expresses the
corresponding parallel propagation. Also the two symmetric quotients Syq, SyQ

are defined using other operations. As we have included them here, one may later
match them. When using such defined constructs, an expansion will always take
place as a first step via expandDefine ...
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2.4 Functions

The following are necessary when, e.g., introducing a transitive closure of a re-
lation by the classical infimum definition. Here it may be discussed whether also
variables for such functions should be introduced.

data ElemFct = EFCT ElemVari ElemTerm

data VectFct = VFCT VectVari VectTerm

data RelaFct = RFCT RelaVari RelaTerm

Often a relation is given descriptively, e.g., saying that it is the least fixedpoint
of some functional. While it is usually not a good idea to use a purely descriptive
definition to compute the relation, it may well be the starting point for proving
that a given algorithm really works. Using the facility just introduced, it is possi-
ble to define the two example functionals for transitive and difunctional closure.
The function supply gives an appropriate number of indexed variables introduc-
ing the necessary category object variables with a sufficiently high index starting
(here) from 99.

transFctl, difuFctl :: RelaTerm -> RelaFct

transFctl r =

let ([],[],[],[rv],[]) = supply 99 0 0 0 1 0

rt = RV rv

in generalTypeOfRelaFct $ RFCT rv (r :|||: (rt :***: rt))

difuFctl r =

let ([],[],[],[rv],[]) = supply 99 0 0 0 1 0

rt = RV rv

in generalTypeOfRelaFct $

RFCT rv (r :|||: (rt :***: (Convs rt) :***: rt))

When instantiated with R for r, these are translated into TEX as
〈\X −→ R ∪ X ;X〉 〈\XO1,O1

−→ RO1,O1
∪ XO1,O1

;XO1,O1
〉

〈\X −→ R ∪ X ;XT
;X〉 〈\XO1,O2

−→ RO1,O2
∪ XO1,O2

;XO1,O2

T
;XO1,O2

〉

2.5 Sets of Elements, Vectors, and Relations

In order to be able to write down formulae on least upper bounds, e.g., also sets
of elements, vectors, and relations shall be formed. They are provided in one of
two possible forms.

data ElemSET = VarES String CatObject |

ES ElemVari [Formula] | EX [ElemTerm] CatObject

data VectSET = VarVS String CatObject |

VS VectVari [Formula] | VX [VectTerm] CatObject
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data RelaSET = VarRS String CatObject CatObject |

RS RelaVari [Formula] | RX [RelaTerm] CatObject CatObject

Either sets are given by some condition or as an explicit set. For the explicit sets
also the type is provided, a measure which is relevant only in case the set is void,
i.e., in constructs such as RX [] O1 O2.

Using the relation set facility, one may formulate the least fixedpoint operation.

leastFixedPoint fctl =

let ([],[],[],[rv],[]) = supply 999 0 0 0 1 0

rt = RV rv

relaSet = RS rv [RF $ RFctAppl fctl rt :<==: rt]

in InfRela relaSet

Here the functional is a parameter that we now instantiate in two ways in order
to obtain two definitions for the transitive as well as for the difunctional closure.

transClosure = leastFixedPoint transFctl

difuClosure = leastFixedPoint difuFctl

It had obviously been necessary to use formulae which we introduce next.

2.6 Formulae

Four sorts of formulae are distinguished in order to maintain type control as long
as possible. Only when negation, e.g., is applied to a formula f = Disjunct g h,
it will be handled as a formula: Negated f. Until that point, i.e. as long as
negation is something like A ⊆/ B, the type is a convenient way of correctness
control. In addition, it allows pattern matching.

data UnivOrExist = Univ | Exis

data ElemForm =

Equation ElemTerm ElemTerm | NegaEqua ElemTerm ElemTerm |

QuantElemForm UnivOrExist ElemVari [Formula]

data VectForm =

VectTerm :<===: VectTerm | VectTerm :>===: VectTerm |

VectTerm :====: VectTerm | VectTerm :<=/=: VectTerm |

VectTerm :==/=: VectTerm | VectTerm :>=/=: VectTerm |

VE VectTerm ElemTerm | VectInSet VectTerm VectSET |

QuantVectForm UnivOrExist VectVari [Formula]

data RelaForm =

RelaTerm :<==: RelaTerm | RelaTerm :>==: RelaTerm |

RelaTerm :===: RelaTerm | RelaTerm :<=/: RelaTerm |

RelaTerm :=/=: RelaTerm | RelaTerm :>=/: RelaTerm |

RelaInSet RelaTerm RelaSET | REE RelaTerm ElemTerm ElemTerm |

QuantRelaForm UnivOrExist RelaVari [Formula]
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Element terms may just be equal or unequal, while vector or relation terms may
in addition be compared with regard to containment.

The basic multilevel connection shows up in VE vt et meaning et ∈ vt, i.e.,
that the element designated by the element term et is contained in the vector
designated by the vector term vt, and REE rt et1 et2 meaning (et1, et2) ∈ rt,
or that the element pair (et1, et2) is in relation rt. Quantification over vectors
as unary predicates and relations as binary predicates moderately opens the door
to second-order predicate logic.

The result type is in all cases intended to be Bool; we have, however, tried to
benefit from typing of vectors and relations as long as possible. Only now, we
bind these three variants of formulae together as follows.

data FormVari = VarF String | IndexedVarF String Int

data Formula = FV FormVari | EF ElemForm | VF VectForm | RF RelaForm |

Verum | Falsum | Negated Formula |

Implies Formula Formula | SemEqu Formula Formula |

Disjunct Formula Formula | Conjunct Formula Formula

2.7 Theories

We are now in a position to formulate theory presentations.

data Theory =

TH String -- name of the theory

[CatObject] -- carrier set denotations encountered in the theory

[ElemConst] -- element denotations encountered in the theory

[VectConst] -- subset denotations encountered in the theory

[RelaConst] -- relation denotations encountered in the theory

[FuncConst] -- function denotations encountered in the theory

[VectFct] -- vector functions encountered in the theory

[RelaFct] -- relation functions encountered in the theory

[Formula] -- formulae demanded to hold

We have decided to not include an ElemFct as these may easily be simulated
by relations. There exist several auxiliary functions to test whether a theory is
formulated in a correct way. Later one may check whether some proposed model
is indeed a model of the theory.

Over these definitions the usual recursive algorithms are defined. The syntacti-
cal material may be collected with syntMatUsed, accumulating them as a tuple
(category object variables, category object constants, element variables, element
constants, vector variables, vector constants, relation variables, and relation con-
stants). Free and bound variables may, of course, also be determined.
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3 Typing

Every term is supposed to have category objects assigned for typing purposes.
Such a type may be given explicitly. It may, however, also be deduced from the
construction of the term in question. So we will often obtain types by reasoning.

3.1 Typing Discipline

As we intend to define a language supporting work with polymorphically typed
heterogeneous relations, we have to provide for such reasoning about typing. A
corresponding type inference system has already been proposed in [19], mainly
based on [3, 1].

We start determining domain and range of a construct. Collecting this in a type
class definition, one may henceforth simply write dom,cod,typeOf. The typical
checks are provided for well-formedness using isWellFormed.

class Typed a where

dom :: a -> CatObject

cod :: a -> CatObject

typeOf :: a -> (CatObject,CatObject)

isWellFormed :: a -> Bool

syntMat :: a -> ([CatObjVar],[CatObjCst],[ElemVari],[ElemConst],

[VectVari], [VectConst],[RelaVari],[RelaConst],

[FuncConst],[FormVari])

freeVars :: a -> ([CatObjVar],[ElemVari],[VectVari],[RelaVari])

Collecting type restrictions starts from, e.g., A; B, from which we infer that cod A

= dom B. When a set of terms and/or formulae is given, we first collect all such
type restrictions. When comparing category objects in this way, one may find out
that they cannot be made equal, in which case Nothing is returned. If they are
equal, Just [] is returned. In other cases, Just is returned with a list of category
object pairs that need to be unified to make them equal.

3.2 Most General Typing

In a transformation environment one is usually interested in a most general typ-
ing, which may be reached in building terms first with ever new domains and
codomains and afterwards unifying these. The unification algorithm we apply is
an adaptation and implementation of the article of Krzysztof Apt in the Hand-
book of Theoretical Computer Science, vol. B, [2], so it does not need additional
comments. Once one has found all the type restrictions necessary to have the
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terms and formulae well-formed, and has unified them, one will wish to impose
the resulting substitutions. Thereby the not yet well-formed formulae will be
typed in the most general form.

Our approach for writing down a rule will later be as follows. In the course of
writing, we do not check for well-formedness at every stage. Once the terms are
written in total, however, we look for the necessary restrictions induced by the
(set of) terms, or (set of) formulae, respectively. Only these shall afterwards be
imposed to the formulae involved. This guarantees the most general typing to the
rules.

generalType collectFct imposeFct t =

let tyRe = collectFct t

tyReUnif = case tyRe of

Just x -> unifyCatObjPairsAPT x

Nothing -> Nothing

in case tyReUnif of

Just x -> imposeFct x t

Nothing -> t

4 Translation of Formula

Once terms and/or formulae are built and well-formed, one will immediately start
transforming them in one way or the other so as to achieve certain goals. A main
example is transformation within some proof system. But also transformation to
TEX-text or Ascii-text is some sort of a translation.

4.1 Translation into TEX

To make the type-carrying language proposed here more readable, we provide for
a translation into TEX. In order to facilitate all this we have defined a type class

class TeX a where

tEX :: Bool -> a -> String

with tEX allowing to transfer constructs automatically to TEX-notation. All ex-
amples in this article have been generated in this way. The boolean switch is
available in order to switch from a long and detailed form to a shorter one with-
out typing information.



A Multilevel Relational Reference Language 325

4.2 Translation to First-Order Form

If in an environment first-order formulae are supposed to be provided, one often
feels that it has been rather cumbersome and error-prone to write them down. In
such cases, one will often formulate in a higher relational language and afterwards
translate to first-order form — again a translation.

Translation of relational or vector formulae to the element form means in par-
ticular to introduce all the individual variables necessary as well as quantifications
which are hidden in the more complex relational form, e.g.,

A ⊆ B as opposed to ∀x, y : (x, y) ∈ A → (x, y) ∈ B

In our multilevel approach both are legitimate forms. In some sense one will say
that both forms express the same. However, this is true only for representable
relation algebras. But there exist also non-representable ones. Translation from
one form to the other is possible and is included in the language definition. As
we have to generate the variable names x, y in the course of the translation, we
should take care, that they don’t interfere with already existing ones. We have,
therefore, introduced some accounting on the variables already used.

For the translation between the levels, there exists a difficult borderline separating
first-order logic and relational logic in the form explained here. When quantifying
over vectors, we use subsets and thereby enter the realm of second-order logic.
Nonetheless, these vectors are handled much in the same way as elements. So it is
interesting to observe, where the differences between first-order and second-order
logic actually show up. We simply cannot translate all of our relational language
into the element-oriented form. In particular, quantifications over vectors or rela-
tions cannot be formulated. Expressivity of the relational logic is, thus, above that
of first-order logic. On the other hand side, the relational language is burdened
with the existence of non-standard models.

5 Semantics

While we have so far only been concerned with syntax, we will now offer the op-
portunity to interpret the language, and the theories we have defined, in a model.
Here a difference arises between the element layer on one side and the vector and
relational layer on the other. While the element layer may be interpreted in just
one way, the relational and the vector layer sometimes admit two.

Relation algebras may be non-representable ones. These can often be inter-
preted using the Rath system. To this end one had to program code bridging
the gap between the two systems, what has not yet been done.
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For a representable relation algebra it is in addition possible, to use the trans-
lation into first-order formulation and then interprete this resulting in matrices
conceived as binary predicates. Two forms of such an interpretation are possible,
from which the first will later work via emitting a string with which the Relview

system may be triggered. The second uses the following standard mechanisms. It
will, however, not be possible to interprete a non-representable relation algebra
in this standard way.

5.1 The Standard Model

Our standard model is available for a representable relation algebra. Via an in-
terpretation, the objects get assigned sets in the model, however, we just mention
the cardinalities of the sets as they are intended to later correspond to row and
column entries. Also vector and relation denotations are assigned concrete ver-
sions by the model, a boolean vector or matrix respectively. The element constant
gets assigned the number of the entry, i.e., an integer.

data InterpretObjs = Carrier CatObject Int

data InterpretCons = InterCon ElemConst Int

data InterpretVect = InterVec VectConst [Bool]

data InterpretRela = InterRel RelaConst [[Bool]]

data InterpretFunc = InterFct FuncConst [Int]

data InterpretVFct = InterVFc VectFct ([Bool] -> [Bool])

data InterpretRFct = InterRFc RelaFct ([[Bool]] -> [[Bool]])

Only in rare cases as, e.g., studying rooted graphs with the root distinguished,
will we have individual constants. We later provide an automatic interpretation
for null relations, universal relations, and identity relations. Putting this together,
a model is defined as follows:

data Model = RATHModel String |

RELVIEWModel String |

MO String -- name of the model

[InterpretObjs] -- cardinalities of carrier sets

[InterpretCons] -- numbers of corresponding elements

[InterpretVect] -- subset-interpreting boolean vectors

[InterpretRela] -- relation-interpreting matrices

[InterpretFunc] -- function-interpreting functions

[InterpretVFct] -- interpreted vector functions

[InterpretRFct] | -- interpreted relation functions

The first two variants are just indications where to embed possible future models
extending the present ideas. All the interpreting functions should then respect
these variants by introducing the respective case analyses.
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We provide some mechanisms on the model side to check, whether the sets in
question are assigned to objects consistently by the interpretations. Lots of tech-
nicalities are necessary to ensure that this works as it is supposed to, but we do
not explain this here.

5.2 Interpretation in the Standard Model

Smaller problems should be investigated without crossing the borderline to other
systems such as RelView. In these cases, the following interpretation may be
taken. Before the interpretation is possible, we need valuations of the individual
variables.

type ValuateElemVari = (ElemVari, Int)

type ValuateVectVari = (VectVari, [Bool])

type ValuateRelaVari = (RelaVari, [[Bool]])

type ElemValuations = [ValuateElemVari]

type VectValuations = [ValuateVectVari]

type RelaValuations = [ValuateRelaVari]

type Env = (ElemValuations,VectValuations,RelaValuations)

Now we can start interpreting items of the language. We show types of these
functions only, omitting the function bodies which may be found in the report.

interpretElemConst :: Model -> ElemConst -> Int

interpretVectConst :: Model -> VectConst -> [Bool]

interpretRelaConst :: Model -> RelaConst -> [[Bool]]

Based on these interpretations of constants, interpretation proceeds as on would
expect.

interpretElemTerm :: Model -> Env -> ElemTerm -> Int

interpretVectTerm :: Model -> Env -> VectTerm -> [Bool]

interpretRelaTerm :: Model -> Env -> RelaTerm -> [[Bool]]

interpretVectFct :: Model -> Env -> VectFct -> [Bool] -> [Bool]

interpretRelaFct :: Model -> Env -> RelaFct -> [[Bool]] -> [[Bool]]

interpretVectSET :: Model -> Env -> VectSET -> [[Bool]]

interpretRelaSET :: Model -> Env -> RelaSET -> [ [[Bool]] ]

interpretElemForm :: Model -> Env -> ElemForm -> Bool

interpretVectForm :: Model -> Env -> VectForm -> Bool

interpretRelaForm :: Model -> Env -> RelaForm -> Bool

interpretFormula :: Model -> Env -> Formula -> Bool

One may have observed that generic constructs such as Pi, Rho, Iota, Kappa,

Epsi have not been mentioned here. Interpretations for these are again generated
automatically by the system as shown by the following example.
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obj1 = OC $ CstO "Obj1" -- definition of 2 category objects

obj2 = OC $ CstO "Obj2"

rel1 = Rela "R" obj1 obj1 -- definition of 2 relation constants

rel2 = Rela "S" obj2 obj2

mat1 = [[True, False,True ], -- interpreting boolean matrices

[False,False,False],

[True, False,True ]]

mat2 = [[True, False,False,True ],

[False,True, True, False],

[False,True, True, False],

[True, False,False,True ]]

thTEST = TH "Sparse Test Theory" -- theory definition

[obj1, obj2] [] []

[rel1, rel2] [] [] [] []

moTEST = MO "Simple Test Model" -- model definition

[Carrier obj1 3, Carrier obj2 4] [] []

[InterRel rel1 mat1, InterRel rel2 mat2] [] [] []

One may now proceed and define π = Pi obj1 obj2, ρ = Rho obj1 obj2 as
well as R:*:S = (RC rel1) :*: (RC rel2). With

interpretRelaTerm moTEST ([],[],[]) . . .

all three may be interpreted in an “empty” environment giving as TEX-output

π =



































1 0 0

1 0 0

1 0 0

1 0 0

0 1 0

0 1 0

0 1 0

0 1 0

0 0 1

0 0 1

0 0 1

0 0 1



































R : ∗ : S =



































1 0 0 1 0 0 0 0 1 0 0 1

0 1 1 0 0 0 0 0 0 1 1 0

0 1 1 0 0 0 0 0 0 1 1 0

1 0 0 1 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 1 0 0 1

0 1 1 0 0 0 0 0 0 1 1 0

0 1 1 0 0 0 0 0 0 1 1 0

1 0 0 1 0 0 0 0 1 0 0 1



































ρ =



































1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



































6 Generic Constructs as a Running Example

As a running example exhibiting the usefulness of the language proposed, we use
the following generic constructs. This will also clarify them. With these generic
constructions, we in addition demonstrate transition to the TEX-form. In all three
cases we start with a mathematical explanation in TEX-form. This form, however,
is the result of applying tEX to the characterizing formulae formulated in the
language proposed here.
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6.1 Characterisation of Direct Sums

The direct sum in its simplest form resembles a disjoint union of two sets. When
in addition some algebraic structure is present, by mathematical folklore a “uni-
versal characterisation” is given saying that the sum structure is uniquely char-

acterized up to isomorphism. Such a universal characterisation ranges over all
sets C carrying the structure in question and all mappings R,S. Some sort of
a preordering of (C,R, S) via the possibility of factorising is introduced and the
definition asserts that some sort of an infimum (A + B, ι, κ) will be obtained.

ι

κ

R

S

Φ

Α

Β

Α+Β C

Universal characterisation of the direct sum

This method is, thus, purely descriptional. Even if a sum candidate is presented,
it cannot be tested along this definition: Quantification runs over all sets carry-
ing the structure and over all mappings leading to A,B; the characterisation is
not even first-order. So it is important that, when working with heterogeneous
relations, one may also give an equational definition instead.

Over a long period of time, relation algebraists were accustomed to work homo-
geneously; see not least [36]. This made concepts difficult, as the well-established
typing mechanisms a computer scientist applies routinely had to be replaced
developing ad hoc mathematics.

It seems that homomorphisms of heterogeneous structures (graphs, programs,
e.g.) have first been formalised relationally during the Winter term 1974/75 at
Technische Universität München in the lectures on Graphentheorie by Gunther
Schmidt. The notes [32] of these have been printed as an internal report of the
Institut für Informatik. This was then used in [25–28].

Once homomorphisms had been formalised, the characterising formulae for direct
sums, direct products, and direct powers were formulated and could further be
investigated in diploma theses at the Technische Universität München. Initiated
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by Gunther Schmidt together with Rudolf Berghammer, such theses were carried
out in [35, 13, 39] by Ingrid Taferner, Rodrigo Cardoso, and Hans Zierer.

The first publication of the equational characterisations seems to have been pre-
sented with the series of publications [9, 37] and [24, 33, 10, 34], and not least [12,
40, 41, 15], which followed the diploma theses mentioned.

The sum-characterising formulae — in a short and in a long version with type
information — are as follows.

ι; ιT = ,

κ; κT = ,

ι; κT ⊆ ,

ιT
; ι ∪ κT

; κ =

ιO1,O1+O2
; ιT

O1,O1+O2
= O1

,

κO2,O1+O2
; κT

O2,O1+O2
= O2

,

ιO1,O1+O2
; κT

O2,O1+O2
⊆ O1O2

,

ιT

O1,O1+O2

; ιO1,O1+O2
∪ κT

O2,O1+O2

; κO2,O1+O2
= O1+O2

It is also possible to first translate to first-order form and then to TEX, making
formulae much clumsier:

〈∀x : 〈∀y : 〈∃u : (x, u) ∈ ι ∧ (y, u) ∈ ι〉 =⇒ x = y〉〉 ∧
〈∀x : 〈∃v : (x, v) ∈ ι〉〉,

〈∀x : 〈∀y : 〈∃u : (x, u) ∈ κ ∧ (y, u) ∈ κ〉 =⇒ x = y〉〉 ∧
〈∀x : 〈∃v : (x, v) ∈ κ〉〉,

〈∀x : 〈∀y : ¬ (〈∃u : (x, u) ∈ ι ∧ (y, u) ∈ κ〉)〉〉,

〈∀x : 〈∀y : 〈∃u : (u, x) ∈ ι ∧ (u, y) ∈ ι〉 ∨
〈∃u : (u, x) ∈ κ ∧ (u, y) ∈ κ〉 =⇒ x = y〉〉 ∧
〈∀x : 〈∃v : (v, x) ∈ ι〉 ∨ 〈∃v : (v, x) ∈ κ〉〉

In our language an equational universal characterisation may be formulated. Two
category objects are bound together using two injective mappings ι, κ satisfying
the following formulae

sumCharacterizingFormulae o1 o2 =

let iota = Iota o1 o2

kappa = Kappa o1 o2

iotaT = Convs iota

kappaT = Convs kappa

iiT = iota :***: iotaT

kkT = kappa :***: kappaT

iTi = iotaT :***: iota
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kTk = kappaT :***: kappa

ikT = iota :***: kappaT

in [RF $ iiT :===: Ident o1,

RF $ kkT :===: Ident o2,

RF $ ikT :<==: NullR o1 o2,

RF $ iTi :|||: kTk :===: Ident (DirSum o1 o2)]

sumTheory o1 o2 = TH "Sum-Theory" [o1,o2] [] [] [] [] [] []

(sumCharacterizingFormulae o1 o2)

6.2 Characterization of Direct Products

In a closely related form also direct products may be formed. To this end two
surjective mappings π, ρ are used satisfying in a long or short form

π

ρ

R

S

Φ

Α

Β

ΑxΒ C

Universal characterisation of the direct product

πT
; π = ,

ρT
; ρ = ,

⊆ πT
; ρ,

π; πT ∩ ρ; ρT =

πT

O1×O2,O1

; πO1×O2,O1
= O1

,

ρT

O1×O2,O2

; ρO1×O2,O2
= O2

,

O1O2
⊆ πT

O1×O2,O1

; ρO1×O2,O2
,

πO1×O2,O1
; πT

O1×O2,O1
∩ ρO1×O2,O2

; ρT

O1×O2,O2
= O1×O2

The same formulae are now first translated to first-order form and then automat-
ically to TEX.

〈∀x : 〈∀y : 〈∃u : (u, x) ∈ π ∧ (u, y) ∈ π〉 =⇒ x = y〉〉 ∧
〈∀x : 〈∃v : (v, x) ∈ π〉〉,

〈∀x : 〈∀y : 〈∃u : (u, x) ∈ ρ ∧ (u, y) ∈ ρ〉 =⇒ x = y〉〉 ∧
〈∀x : 〈∃v : (v, x) ∈ ρ〉〉,

〈∀x : 〈∀y : 〈∃u : (u, x) ∈ π ∧ (u, y) ∈ ρ〉〉〉,
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〈∀x : 〈∀y : 〈∃u : (x, u) ∈ π ∧ (y, u) ∈ π〉 ∧
〈∃u : (x, u) ∈ ρ ∧ (y, u) ∈ ρ〉 =⇒ x = y〉〉 ∧
〈∀x : 〈∃v : (x, v) ∈ π〉 ∧ 〈∃v : (x, v) ∈ ρ〉〉

prodCharacterizingFormulae o1 o2 =

let ppi = Pi o1 o2

rho = Rho o1 o2

ppiT = Convs ppi

rhoT = Convs rho

ppiTppi = ppiT :***: ppi

rhoTrho = rhoT :***: rho

ppippiT = ppi :***: ppiT

rhorhoT = rho :***: rhoT

in [RF $ ppiTppi :===: Ident o1,

RF $ rhoTrho :===: Ident o2,

RF $ UnivR o1 o2 :<==: (ppiT :***: rho),

RF $ ppippiT :&&&: rhorhoT :===: Ident (DirPro o1 o2)]

prodTheory o1 o2 = TH "Prod-Theory" [o1,o2] [] [] [] [] [] []

(prodCharacterizingFormulae o1 o2)

6.3 Characterization of Direct Powers

Yet another universally characterized construct is the direct power. It models the
is element of relation between a set O and its powerset P(O). We model this with
a relation ε satisfying in short resp. long form

syq(ε, ε) ⊆ , syq(εO, εO) ⊆ P(O)

∀v : 〈 ⊆ ;syq(ε, v)〉, 〈∀vO ⊆ O : 1I ⊆ 1IP(O)
;syq(εO, vO)〉

Universal characterisation of the direct power

powerCharacterizingFormulae o1 =

let epsi = Epsi o1

vvv = VarV "v" o1

al = UnivR UnitOb (DirPow o1)

syQEpsiEpsi = SyQ epsi epsi

syQv vv = Syq epsi vv

in [RF (syQEpsiEpsi :<==: (Ident (DirPow o1))),
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VF (UnivQuantVectForm vvv

[VF (UnivV UnitOb :<===: (al :****: (syQv (VV vvv))))])]

powerTheory o1 = TH "Power-Theory" [o1] []

[] [] [] [] [] (powerCharacterizingFormulae o1)

7 Further Applications

Further examples shall demonstrate that quite an area of applications may be
covered. To this end we first formulate the Dedekind and Schröder rules. Then
hints are given to Rasiowa-Sikorski style proofs.

7.1 Dedekind and Schröder Formulae

As an example we consider the Dedekind formula. It is first built without care on
typing, i.e., at every point a new type is assumed. Then we correct these types
according to the restrictions the architecture of the Dedekind construct imposes
and get the correctly typed version.

First, however, we provide for an automatic object, variable, and constant supply.
It is indispensable in order to avoid interference between variables in rules and in
the items one is going to apply the rules to. By determining the maximum index
used in the item and then putting all the rule variables above that start index,
one will avoid such problems.

dedekindForm sI =

let ([],[],[],[pv,qv,rv],_) = supply sI 0 0 0 3 0

[p,q,r] = map RV [pv,qv,rv]

in (p :***: q :&&&: r) :<==:

((p :&&&: (r :***: (Convs q)) :***: (q :&&&: (Convs p :***: r))))

correctDedekindRelaForm = generalTypeOfRelaForm $ dedekindForm 15

Printing dedekindForm 1 without determining the general type first shows that
ever new category object variables are taken and the result is not well-formed.

Ao2,o5
; Bo3,o6

∩ Co4,o7
⊆ (Ao2,o5

∩ Co4,o7
; Bo3,o6

T); (Bo3,o6
∩ Ao2,o5

T
; Co4,o7

)

In contrast the correctDedekindRelaForm is printed in short as well as in long
form as follows:

A; B ∩ C ⊆ (A ∩ C ; BT); (B ∩ AT
; C)

AO1,O2
; BO2,O3

∩ CO1,O3

⊆ (AO1,O2
∩ CO1,O3

; BO2,O3

T); (BO2,O3
∩ AO1,O2

T
; CO1,O3

)

As a corresponding example we now show the Schröder rules.
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schroederAFormula sI =

let [a,b,c] = map RV $ take 3 $ aRVS sI

ab = a :***: b

aTcBar = Convs a :***: (NegaR c)

in generalTypeOfFormula $

SemEqu (RF (ab :<==: c)) (RF (aTcBar :<==: (NegaR b)))

schroederBFormula sI =

let [a,b,c] = map RV $take 3 $ aRVS sI

ab = a :***: b

cBarbT = NegaR c :***: (Convs b)

in generalTypeOfFormula $

SemEqu (RF (ab :<==: c)) (RF (cBarbT :<==: (NegaR a)))

Their TEX-representations with and without typing are

A; B ⊆ C ←→ AT
; C ⊆ B

AO1,O2; BO2,O3 ⊆ CO1,O3 ←→ AO1,O2
T
; CO1,O3 ⊆ BO2,O3

A; B ⊆ C ←→ C ; BT ⊆ A

AO1,O2; BO2,O3 ⊆ CO1,O3 ←→ CO1,O3; BO2,O3
T ⊆ AO1,O2

7.2 Proofs in Rasiowa-Sikorski Style

There is a Polish tradition of proving relational formulae in Rasiowa-Sikorski
style. To this end one uses rules such as

∪
x
P ∪ Q

y

x
P

y
,

x
Q

y

;

x
P ; Q

y

x
P

p
,

x
P ; Q

y
|

p
Q

y
,

x
P ; Q

y
where p is an arbitrary variable

which are applied in an expanding direction so as to obtain Rasiowa-Sikorski
trees. In these trees one will observe whether all subtrees are “closed”. A leaf is
closed when it is obviously true since a relational expression together with its
negative is available. A non-leaf trees is closed if all its subtrees are.

DC = C

DC ⊆ C

x
DC

y
,

x
C
y

| C ⊆ DC
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One will easily recognize that the vertical bar between the subtrees means and.
The variables x, y which appear when switching from the relational to the elemen-
twise consideration are universally quantified where comma-separation means or.
Such a Rasiowa-Sikorski proof system heavily needs a language together with a
system as proposed here to support rule application as well as to present trees in
a comprehendable form.

8 Outlook

Over the years there has been a considerable interest of the author to be able
to use relations as boolean matrices in the same way as real or complex matri-
ces in tasks such as solving a linear equation or determining an eigenvalue are
used by an engineer. This lead my group to initiate several studies as student
work, diploma theses, or as byproducts of doctoral theses. During the last two
years, when I was member of the Tarski group (the European Cost Action 274:
Theory and Applications of Relational Structures as Knowledge Instruments) my
impression that such techniques should be developed grew even further. I learned
that in many application fields — as well as distributed over many locations —
considerable but still incoherent work was in progress.

It is this situation which is addressed by the present proposal. The relational
language is intended to be some sort of a reference language. Colleagues are ex-
pressly invited to use it, discuss it, and contribute to it. It is still open for discus-
sion, not least regarding the notation chosen here. The proposal is still incomplete
as some cases are not yet programmed. The multitude of case decompositions is
far from having been tested thoroughly. On the other hand, the Haskell side
of this literate program is heavily used in a diversity of environments — at least
by the author. So it will gradually improve.

Several future developments are conceivable, some of which have already been
studied to a certain extent. First, a paper on a Rasiowa-Sikorski style proof system
for relational theories is close to being finished. It will use the language developed
here. Secondly, it should be studied whether it is a good idea to bind the language
together with the well-known Isabelle system to have even superior possibilities
in theorem proving. Thirdly, there will be some student paper to reengineer the
former Ralf system according to these new standards. As a fourth point, we
aim at triggering the RelView machine out of this language using its Kure

interface. As a fifth point connection to the Rath system will be made so as to
be able to interpret the language in completely different models such as interval
algebras, compass algebras, to mention just a few.
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We anticipate that there may be objections against the language Haskell, which
is developing rapidly but not yet commonly accepted. It is on the other hand side
the one best suited for the endeavour presented here. To resolve the obvious con-
flict, we aim at the following procedure. We will try to make the Haskell system
a stand-alone application. It will come equipped with a front end enabling a user
to introduce his or her own favourite notation — assumed to be reasonably ex-
pressive — which then will automatically be translated to the language proposed
here and handled using it. For the results a similar retranslation will be available.
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32. Gunther Schmidt and Thomas Ströhlein. Relationen, Graphen und Strukturen, 1975. Internal
Report.
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