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Refactoring Heterogeneous Relation

Algebras around Ordered Categories and

Converse?

Wolfram Kahl

Department of Computing and Software, McMaster University

Abstract. We present a reorganisation of popular theories of “reasoning with relational
flavour”, including allegories, Kleene algebras, and Dedekind categories, into an relatively
symmetric picture using ordered categories as common base and defining converse inde-
pendently from joins and meets.
As an example application, we use this to regroup results about formalisation of algebraic
graph rewriting and thus exhibit opportunities for applying these approaches in new
settings.
Finally we discuss how this approach influences the design of compatible approaches to
formalisation and mechanisation of relation-algebraic theories.

1 Introduction

Various textbooks and collections have popularised a relation-based approach to
reasoning in Computer Science [1, 14, 15, 77, 78] (see also the proceedings series
[13, 22, 32, 35, 45, 67, 83]). Most of these assume the presence of all the axioms
and laws of full relation algebra. Over time, a rich body of knowledge has been
accumulated in this very expressive theory.

Currently, many of these formalisations are being re-assessed in the light of
a growing number of sub-theories and amalgamated theories — for example the
relation-algebraic treatment of pointers in [58] has recently been clarified and
simplified through transfer into the more spartan setting of Kleene algebras with
domain [24].

Two important branches of such subtheories have emerged as driving further
development: On the one hand the allegories of Freyd and Scedrov [30], which
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incorporate composition, meet (intersection), and converse, and on the other hand
Kleene algebras which incorporate composition, join (union), and the Kleene star
closure operator.

In each of these branches, an ordering is defined as a derived concept, either
from meet, or from join. At the level of, for example, distributive allegories, where
both meet and join are available, and are axiomatised as lattice operations of a
single lattice, the orderings from the two branches naturally coincide. But at
the lower levels, the two different definitions of the ordering produce technically
distinct entities — when using a theorem prover, for example, it is non-trivial to
transfer statements proven for the ordering derived from meet to theories where
the ordering is derived from join.

In this paper, we propose a reorganisation of the subtheories of relation alge-
bra in such a way that the common ground between the two directions is made
explicit. In addition, we also elaborates the contribution of conversion indepen-
dent of any (semi-)lattice structure.

We outline our theory organisation in Sect. 2, and then present a quick intro-
duction into each of the theories in Sect. 3 and 4.

As an application of this reorganisation, we show in Sect. 5 how the relation-
algebraic approach to graph structure transformation [42, 43] can be streamlined
and have more symmetries exposed by carefully identifying the required context
for each situation.

Since machine assistance for proving in relational theories is increasingly ap-
preciated, and use of relational (sub-)theories as programming paradigms is be-
coming more and more popular, in Sect. 6 we survey previous approaches to
formalisation and mechanisation of relation-algebraic theories and present cur-
rent efforts to produce mechanised support that is compatible with the theory
organisation outlined in Sect. 3.

2 Theory Organisation Overview

Like linear algebra has moved reasoning from the level of coefficients to the level
of vectors, matrices, and their multiplication, relation algebra has moved from the
level of element-wise reasoning “xRy” to reasoning using operations on relations,
most prominently relational composition.

There are two basic approaches to axiomatisation of binary composition of
binary relations: In the homogeneous approach, composition is a total operation
on a single, “untyped” universe of “relations”, just like multiplication in monoids
or rings. However, applications to concrete relations can profit from an under-
standing of relations as matrices of Boolean values, and then, as in linear algebra,
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composition does not work on all pairs of matrices, and therefore becomes a par-
tial operation. This view is reflected in the heterogeneous approach, and can be
axiomatised by considering “relations” as typed entities, each with a source and a
target type, and composition R;S is defined if and only if the target of R coincides
with the source of S.

Composition with this kind of type discipline and in addition associativity and
units is exactly what is provided by a category. Therefore it has become customary
to use category-theoretic notions for presenting composition in a heterogeneous
approach. In a category, what we informally called “type” is called object, and
the arguments of composition are called morphisms (Sect. 3.1).

Since one of the hallmarks of calculational “relational” reasoning is the use of
inclusion chains, we use ordered categories as common subtheory for all reasoning
with “relation-algebraic flavour” (Sect. 3.2).

From this point, different directions may be taken:

– Adding conversion as involution operation enables the definition of many
important properties such as univalence, totality, symmetry, equivalence, etc.
(Sect. 3.4). This yields on the one hand the sub-category of mappings, and on
the other hand can be used to abstractly characterise subobjects and quotient
objects.

Diagrams in ordered categories with converse (OCCs) correspond to a re-
stricted kind of relational and algebraic structures, and allow to define simu-
lations as a relational generalisation of structure homomorphisms. Bisimula-
tions of structures over an OCC form again OCCs (Sect. 3.6).

– Kleene categories, the typed variant of Kleene algebras, add join and iteration
to ordered categories (Sect. 4.2). A diagram in a Kleene category can be
understood as a control-flow graph, which opens up numerous applications in
computer science.

– A domain operation in an ordered category (Sect. 3.5) maps every morphism
R to an endomorphism included in the identity on the source of R; this is
useful for modelling “guards” even in the absence of meet.

If such guard functionality is added to Kleene algebras, as in Kleene algebras
with domain (KAD) [24] or Kleene algebras with tests (KAT) [52], then this
yields a particularly useful tool for program analysis and verification.

– Allegories (Sect. 4.3) add meet and converse to ordered categories (from these
two one can then define the domain operation). Diagrams in certain allegories
can be understood as data-flow graphs.

The duality between the data-flow and control-flow interpretations of rela-
tional diagrams is studied by Ştefănescu [16, 80, 81] in the calculus of flowno-
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mials which provides a syntax for such diagrams and can be equipped with
either semantics.

Adding converse to Kleene categories adds the power to characterise direct sums
(Sect. 4.5), while allegories already come equipped with the power to characterise
direct products (Sect. 4.4).

3 Relational Concepts in Ordered Categories

We now present some basic concepts from category theory and then consider
ordered categories and different extensions of ordered categories, but leave ex-
tensions that assume an upper or a lower semilattice structure in the ordering
of each homset to Sect. 4. Even with this restriction, a remarkable array of re-
lational concepts can be covered, in particular after the introduction of ordered
categories with converse (OCCs) in Sect. 3.4.

3.1 Categories

We introduce categories for the sole purpose to serve as basic substrate of the
composition aspects of all kinds of heterogenous relational algebras. Morphisms
will therefore usually be relations, or other objects we want to consider as being
“relation-like”. Therefore, we use the symbol “↔” for declaring morphism types1,
thus reducing the usually rather heavy overloading of the single arrow “→”.

Definition 1. A category C is a tuple (ObjC, MorC, src, trg, I, ;) where

– ObjC is a collection of objects.

– MorC is a collection of arrows or morphisms.

– src (resp. trg) maps each morphism to its source (resp. target) object.

Instead of src(f) = A ∧ trg(f) = B we write f : A ↔ B.

The collection of all morphisms f with f : A ↔ B is denoted as MorC[A,B]
and also called a homset.

– “;” is the binary composition operator, and composition of two morphisms
f : A ↔ B and g : B′ ↔ C is defined iff B = B′, and then (f ;g) : A ↔ C;
composition is associative.

– I associates with every object A a morphism IA which is both a right and left
unit for composition.

1 The use of a symmetric symbol does of course not introduce any assumptions about algebraic
properties of that symbol: subtraction “−” is not commutative, either.
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Frequently, the simple category-theoretic concepts of span and co-span is useful to
achieve more concise formulations: A span is an ordered pair (f, g) of morphisms
f : A ↔ B and g : A ↔ C with the same source. Such a span is often written
B f¾ A g-C. Analogously, a co-span is an ordered pair (h, k) of morphisms

h : B ↔ D and k : C ↔ D with the same target, written B h-D k¾ C.

Factorisation of identities induces important morphism properties:

Definition 2. For a morphism R : A ↔ B in a category we define:

– R is right-invertible if there is a morphism S : B ↔ A such that R;S = IA.
We then call S a right-inverse of R.

– R is left-invertible if there is a morphism S : B ↔ A such that S;R = IB. We
then call S a left-inverse of R.

– R is an isomorphism if R is both right- and left-invertible.

A morphism is called an endomorphism iff its source and target objects coincide.
In typed relation algebras, such morphisms are often called homogeneous .

Definition 3. An endomorphism R : A ↔ A is idempotent if R;R = R.

Certain kinds of idempotent morphisms are important since they characterise
(uniquely up to isomorphism) in a general way objects that are induced by certain
morphisms. As examples of this we will see subobjects and quotients below.

Obviously, if S : B ↔ A is a right-inverse of R : A ↔ B, then

S;R;S;R = S;IA;R = S;R ,

so S;R is idempotent. We adapt the nomenclature of Freyd and Scedrov [30] for
this kind of situation:

Definition 4. If for an idempotent morphism E : A ↔ A there are an object
X and two morphisms R : A ↔ X and S : X ↔ A such that S;R = IX and
E = R;S, then we say that the morphism pair A R-X S-A splits E, and E is
then called a split idempotent.

Proposition 5. [30, 1.282] Different splittings of the same idempotent morphism
factor through unique morphisms, and these morphisms are isomorphisms.
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3.2 Ordered Categories

One of the hallmarks of the relational flavour of reasoning is the use of the
inclusion ordering between morphisms. Adding this to categories gives rise to
what is usually called “locally ordered categories”; for the sake of brevity, we
shall use the name ordered category.

Definition 6. An ordered category is a category C such that

– for each two objects A and B, the relation vA,B is a partial order on MorC[A,B]
(the indices will usually be omitted), and

– composition is monotonic with respect to v in both arguments.

A number of important endomorphism properties can already be defined using
the language of ordered categories — the following are all standard except for
co-transitivity:

Definition 7. For a morphism R : A ↔ A in an ordered category we define the
following properties:

– R is reflexive iff I v R,
– R is transitive iff R;R v R,
– R is a pre-order iff R is reflexive and transitive,
– R is co-reflexive or a sub-identity iff R v IA,
– R is co-transitive iff R v R;R.

These properties are not completely independent of each other:

Lemma 8. In every ordered category, the following hold:

1. all co-reflexive morphisms are transitive;
2. all reflexive morphisms are co-transitive.

Proof. 1. R v IA implies R;R v IA;R = R.
2. Dually, IA v R implies R = IA;R v R;R.

A direct consequence of this is:

Corollary 9. All pre-orders and all co-transitive sub-identities are idempotent.

This also shows that idempotent sub-identities are exactly the co-transitive
and co-reflexive morphisms, and therefore dual to preorders. Idempotent sub-
identities have been identified by Desharnais et al. [24] as playing an important
rôle when considering domain operators, see Sect. 3.5.

For homsets that have least or greatest elements, we introduce corresponding
notation:
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Definition 10. In an ordered category, for each two objects A and B we intro-
duce the following notions:

– If the homset MorC[A,B] contains a greatest element, then this is denoted
>>A,B.

– If the homset MorC[A,B] contains a least element, then this is denoted ⊥⊥A,B.

For these extremal morphisms and for identities we frequently omit indices where
these can be induced from the context.

Existence of least morphisms is usually assumed together with the zero law :

Definition 11. An ordered category with zero morphisms is an ordered category
such that

– each homset MorC[A,B] has a least element ⊥⊥A,B, and
– each least element ⊥⊥A,B is a left- and right-zero for composition.

3.3 Residuation

Given an ordering ≤ and a binary operator ⊗, an element R is called right-residual
of S with respect to P iff for all X (of appropriate type),

P ⊗ X ≤ S ⇔ X ≤ R

Analogously, P is called left-residual of S with respect to R iff for all X (of
appropriate type),

X ⊗ R ≤ S ⇔ X ≤ P

For commutative operators, one just talks about “residuals”.
Where a certain kind of residual always exists, this gives rise to a Galois

connection; this fact makes many useful laws available, see for example [1, 70].
For example, Boolean implication R ⇒ S is the residual of conjunction with

respect to the implication ordering:

(X ∧ R) ⇒ S ⇔ X ⇒ (R ⇒ S)

Such residuals exist automatically if the relevant ordering is complete. If this is
not the case, they are frequently introduced axiomatically as existing for certain
operators.

The plain names “left- and right-residual” are used for composition in ordered
categories; where these residuals exist, we have for X,P : A ↔ B and Y,R : B ↔
C and S : A ↔ C:

P ;Y v S ⇔ Y v (P\S) right-residual

X ;R v S ⇔ X v (S/R) left-residual
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These residuals of composition frequently open alternative ways of obtaining
results that would otherwise be obtained using converse.

3.4 Ordered Categories with Converse (OCCs)

We now introduce converse into ordered categories before we consider join or
meet, and we shall see that, even with only the basic axiomatisation of converse
as an involution, the resulting theory is quite expressive.

Definition 12. An ordered category with converse (OCC) is an ordered category
C such that

– each morphism R : A ↔ B has a converse R` : B ↔ A,
– the involution equations hold for all R : A ↔ B and S : B ↔ C:

(R`)` = R

I
`

A = IA

(R;S)` = S`
;R`

– conversion is monotonic with respect to v.

Many standard properties of relations can be characterised in the context of
OCCs — the following set is closed both under `-duality and under v-duality:

Definition 13. For a morphism R : A ↔ B in an OCC we define:

– R is univalent iff R`
;R v IB,

– R is total iff IA v R;R`,
– R is injective iff R;R` v IA,
– R is surjective iff IB v R`

;R,
– R is a mapping iff R is univalent and total,
– R is bijective iff R is injective and surjective.

Furthermore, we denote the sub-category of an OCC C that contains all objects
of C, but only mappings as arrows with MapC, and the sub-category of all partial
functions (i.e., univalent morphisms) with PfnC.

For endomorphisms, there are a few additional properties of interest:
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Definition 14. For a morphism R : A ↔ A in an OCC we define:

– R is symmetric iff R` v R,
– R is an equivalence iff R is a symmetric pre-order,
– R is a co-equivalence iff R is co-reflexive, co-transitive, and symmetric.

The concept of co-equivalence is the strict v-dual of the concept of equivalence
since symmetry is self-dual: using monotonicity of converse and involution one
sees that R` v R and R v R` are equivalent; therefore each alone is also equiva-
lent to R` = R.

Some interesting properties are collected in the following list:

Lemma 15. In every OCC, the following hold:

1. R is a co-equivalence iff R is a symmetric idempotent sub-identity.
2. If F : A ↔ B is a mapping, then F ;F` is an equivalence.
3. If F : A ↔ B is a mapping, then F`

;F is a co-equivalence.

Proof. 1. From Corollary 9.
2. F ;F` is obviously symmetric, and reflexive since F is total. For transitivity

we need univalence: F ;F`
;F ;F` v F ;IB;F` = F ;F`

3. Dually, F`
;F is obviously symmetric, and a co-reflexive since F is univalent.

For co-transitivity we need totality: F`
;F = F`

;IA;F v F`
;F ;F`

;F

Each of the last two items can be generalised by replacing the two occurences of
the mapping F by two different mappings; the more general resulting properties
are the following:

Definition 16. In an OCC C, for a morphism R : A ↔ B we define the following
properties:

– R is difunctional iff R;R`
;R v R,

– R is co-difunctional iff R v R;R`
;R.

– R is strictly difunctional iff R;R`
;R = R,

An OCC is called (strictly) (co-)difunctional if all morphisms are (strictly)
(co-)difunctional.

Difunctionality of relations has been studied in particular by Riguet [71] and
Schmidt [9, 78]. As mentioned above, difunctionality is motivated by the following
generalisation of Lemma 15.(2) and (3).

Lemma 17. If a morphism R : A ↔ B in an OCC can be represented by a
co-span A F-X G¾ B of univalent morphisms in the sense that R = F ;G`, then
R is difunctional.

Dually, if R can be represented by a span A H¾ X K-B of total morphisms
in the sense that R = H`

;K, then R is co-difunctional.



286 Wolfram Kahl

Proof. Assuming R = F ;G`, then univalence of F and G implies

R;R
`
;R = F ;G

`
;G;F

`
;F ;G

`

v F ;IX ;IX ;G
`

= F ;G
`

= R .

Dually, assuming R = H`
;K, totality of H and K implies:

R = H
`
;K = H

`
;IX ;IX ;K v H

`
;K;K

`
;H ;H

`
;K; = R;R

`
;R

We now make the relation between the difunctionality properties and those they
generalise explicit:

Lemma 18. 1. Each equivalence or co-equivalence is strictly difunctional.
2. Each morphism that is co-difunctional and co-reflexive is a co-equivalence.
3. Each morphism that is difunctional and reflexive is an equivalence.

Proof. 1. Assume R : A ↔ A is an equivalence or co-equivalence. Then R is
idempotent and symmetric, and we have: R = R;R = R;R;R = R;R`

;R.
2. Assume that R : A ↔ A is both co-difunctional R v R;R`

;R and co-reflexive
R v IA. From this we obtain symmetry: R v R;R`

;R v IA;R`
;IA = R`, and,

in a similar way, co-transitivity: R v R;R`
;R v R;I

`

A
;R = R;IA;R = R;R.

3. Dual to 2.

While our OCC axioms correspond to what Desharnais et al. call “preconverse” in
[24] (with the difference that we consider converse in the absence of join, starting
from the inclusion ordering instead), co-difunctionality of OCCs is the condition
used for “idempotent semiring with converse” in [24], motivated by Ésik and
Bernátsky who showed that co-difunctionality holds in the variety generated by
all full Kleene algebras of relations with converse [29].

While in general OCCs, not even all idempotent sub-identities need to be sym-
metric, Lemma 18.2) shows that co-difunctionality implies a very strong property:

Lemma 19. In a co-difunctional OCC, all sub-identities are co-equivalences.

As we shall see later, in allegories all morphisms are co-difunctional. In that con-
text, the conclusion of the following lemma collapses to an unconditional equality
F` = G and has been shown by Freyd and Scedrov [30, 2.162]. In general OCCs,
we obtain:

Lemma 20. If A F-X G-A splits a symmetric idempotent E : A ↔ A, then:

1. F` v G if G is co-difunctional or F is difunctional;
2. G` v F if F is co-difunctional or G is difunctional.
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Proof. We only show (1) since (2) is dual. Assume the stated splitting, i.e.,
G;F = IX and F ;G = E. Then F ;G = E` = (F ;G)`, and we have:

– if G is co-difunctional, i.e., G v G;G`
;G, then:

F
`

= G;F ;F
`

v G;G
`
;G;F ;F

`

= G;G
`
;F

`

= G;(F ;G)
`

= G;F ;G = G

– if F is difunctional, i.e., F ;F`
;F v F , then:

F` = G;F ;F` = G;F ;G;F ;F` = G;(F ;G)`
;F ;F` = G;G`

;F`
;F ;F`

v G;G`
;F` = G;(F ;G)` = G;F ;G = G

If both items of this lemma are satisfied, for example in co-difunctional OCCs,
we obtain G = F`.

In general, if A F-X F
`

-A splits an idempotent E : A ↔ A, we call this
a symmetric splitting of E. If an idempotent E has a symmetric splitting, then
E is symmetric: E = F ;F` = (F ;F`)` = E`. Special cases of this are quotients
for equivalences and subobjects for co-equivalences; defining these via splittings
has the advantage that their uniqueness up to isomorphism is already shown by
Proposition 5.

Definition 21. A quotient for an equivalence Ξ : A ↔ A is a pair (Q, H)
consisting of a quotient object Q and a projection morphism H : A ↔ Q such

that A H-Q H
`

-A is a symmetric splitting of Ξ.
An OCC C has quotients iff for every equivalence there is a quotient.

It is easy to see that the quotient projection is a surjective mapping: surjectivity
and univalence together are equivalent to the splitting property H`

;H = IQ, and
totality follows from reflexivity of the equivalence: IA v Ξ = H ;H`.

Dually, subobject injections are injective mappings:

Definition 22. A subobject for a co-equivalence q : A ↔ A is a pair (S, J)
consisting of an object S and a injection morphism J : S ↔ A such that

A J
`

-Q J-A is a symmetric splitting of q.
The OCC C has subobjects iff for every co-equivalence there is a subobject.

A number of important more complex constructions than subobjects and quo-
tients starts from commuting square diagrams in category theory, in particular
pullbacks and pushouts as archetypes of limits and colimits in categories.

Central to the connection between pullbacks and pushouts in categories of
mappings on the one hand and constructions in relational theories on the other
hand is the fact a square of mappings commutes iff the “relation” induced by
the source span is contained in that induced by the target co-span. The allegory
proof by Freyd and Scedrov [30, 2.146] really only uses OCC material:
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Lemma 23. Given a span B P¾ A Q-C and a co-span B R-D S¾ C of map-
pings in an OCC, we have P ;R = Q;S iff P`

;Q v R;S`.

A
¡

¡
¡ª
P

@
@

@R

Q

B C
@

@
@R

R ¡
¡

¡ª
S

D

Proof. P ;R = Q;S implies

P`
;Q v P`

;Q;S;S` S total

= P`
;P ;R;S` assumption

v R;S` P univalent.

Conversely, P`
;Q v R;S` implies

Q;S v P ;P`
;Q;S P total

v P ;R;S`
;S assumption

v P ;R S univalent

v Q;Q`
;P ;R Q total

v Q;S;R`
;R assumption

v Q;S R univalent.

This implies that when looking for a pushout of the span B P¾ A Q-C, the iden-
tity of the two mappings P and Q does not matter, we only need to consider the
diagonal P`

;Q. Dually, when looking for a pullback of the co-span B R-D S¾ C,
only R;S` needs to be considered. The gap can be significant: according to Lemma
17, P`

;Q is always co-difunctional, while R;S` is always difunctional.

3.5 Domain

Desharnais et el. [24] discussed the definition of domain and range operators2

for Kleene algebras in considerable detail, and much of the material there can
be transferred into the setting of ordered categories by replacing preservation of

2 It is important not to confuse these domain and range operations, which only make sense in ordered
categories, with the categorical concepts of source and target of a morphism!
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joins with monotonicity. In particular, their core definition of “predomain” only
requires ordered categories and is given as a special residual of composition with
respect to the ordering w:

Definition 24. An ordered category with predomain is an ordered category where
for every morphism R : A ↔ B there is a morphism dom R : A ↔ A such that
for every X : A ↔ A, we have:

X ;R w R ⇔ X w dom R

In an ordered category with domain, additionally the following “locality” condi-
tion holds:

dom (R;S) = dom (R;dom S)

Co-reflexivity of dom R follows by substitution IA for X in the predomain condi-
tion.

Range can be defined similarly; an OCC with domain also has range, and
range is then related with domain via converse:

ran R = (dom (R
`

))
`

(Without co-difunctionality, sub-identities need not be symmetric, so we need the
outer conversion, too.)

3.6 Σ-Structures and OCCs of Bisimulations

A diagram over a category C is a graph Σ together with a graph homomorphism
into the graph underlying C. It is frequently useful to interpret the graph Σ as
a unary signature Σ = (S,F , src, trg) where

– S is a set, the elements of which are called sorts,

– F is a set, the elements of which are called (function or relation) symbols, and

– src, trg : F → S map each symbol to its source and target sort, respectively.

As usual, we write “f : s → t” to denote “src(f) = s and trg(f) = t”.

From this point of view, a diagram D with graph Σ is now considered as a
Σ-structure D over C, which consists of:

– a carrier object sD for each sort s ∈ S, and

– an interpretation morphism fD : sD ↔ tD for each symbol f ∈ F with
f : s → t.
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If C is an OCC, then a Σ-algebra over C is a Σ-structure over C in which all
symbols are interpreted as mappings.

For general Σ-structures, we are now aiming towards a homomorphism con-
cept where homomorphisms have to behave “essentially like relations”, and so
it is only natural that we consider a relational generalisation of conventional
(functional) Σ-homomorphisms.

This is closely related to the field of data refinement, where usually unary
homogeneous operations f : s → s over a signature with single sort s are con-
sidered, and interpretations are allowed to be arbitrary relations, see for example
the book by de Roever and Engelhardt [72]. In that context, an “L-simulation”
from A to B is a relation Φ : sA ↔ sB satisfying the following inclusion for every
operation f :

Φ
`
;fA v fB

;Φ
`

The name “L-simulation” is derived from the L-shape of the inclusion’s left-hand
side in the following sub-commuting diagram:

sB
fB

- sB

Φ
6

v

6
Φ

sA -
fA sA

A detailed relation-algebraic analysis of the different simulation concepts pre-
sented by de Roever and Engelhardt [72] and of L-bisimulation has been per-
formed by Khedri [49].

In our context of Σ-structures, a symbol f may have different source and
target sorts, so instead of a single simulation relation Φ, we need a family of
simulation relations Φs, one for each sort s.

For a simulation Φ of Σ-structures from A to B, the following diagram has to
sub-commute for every symbol f : s → t:

B sB
fB

- tB

Φ
6

Φs

6

v

6
Φt

A sA -
fA tA
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Definition 25. Let a unary signature Σ = (S,F , src, trg) and an OCC C be
given, and let A and B be two Σ-structures over C.

A Σ-compatible family of morphisms from A to B is an S-indexed family of
morphisms, Φ = (Φs)s:S , such that Φs : sA ↔ sB for every sort s : S.

Such a Φ is called a Σ-simulation from A to B if for every symbol f ∈ F with
f : s → t, the following inclusion holds:

Φ
`

s
;fA v fB

;Φ
`

t .

Φ is called a Σ-bisimulation from A to B if in addition, for every symbol f ∈ F
with f : s → t, also the following inclusion holds:

Φs
;fB v fA

;Φt .

From this, we immediately obtain ordered categories of simulations:

Proposition 26. For each unary signature Σ = (S,F , src, trg), Σ-structures
over an OCC C together with Σ-simulations form an ordered category, denoted
CΣ.

Proof. Identities, composition, and inclusion in CΣ are defined component-wise
— this implies the identity laws and associativity of composition. Identities are
obviously well-defined, and well-definedness of the composition of Φ : A ↔ B and
Ψ : B ↔ C follows easily:

(Φs
;Ψs)

`
;fA = Ψ

`

s
;Φ

`

s
;fA v Ψ

`

s
;fB

;Φ
`

t v fC
;Ψ

`

t
;Φ

`

t = fC
;(Φt

;Ψt)
`

.

The component-wise definition of inclusion implies that inclusion in each hom-
set of CΣ is a partial ordering again, and, together with the component-wise
definition of composition, also yields monotonicity of composition.

We can also lift the conversion operation via a component-wise definition:

Φ
`

:= (Φ
`

s)s:S .

This component-wise definition produces a monotonic operator on Σ-compatible
morphism families, and also guarantees the involution equations. However, Φ`

is in general not a Σ-simulation again, even if Φ is. But since the bisimulation
condition is dual to the simulation condition, we have:

Proposition 27. A simulation Φ is a bisimulation if and only if Φ` is a simula-
tion.
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In [42], where we considered the restriction of Σ-simulations to Σ-algebras
under the name of “relational Σ-homomorphisms”, we showed that this converse
is well-defined thanks to the mapping properties of the interpretations of the
(function) symbols:

Proposition 28. If A and B are Σ-algebras, then every simulation Φ : A → B
is a bisimulation.

In any case, we obtain OCCs of bisimulations by combining Proposition 27
with Proposition 26:

Proposition 29. For each unary signature Σ = (S,F , src, trg), Σ-structures

over an OCC C together with Σ-bisumulations form an OCC, denoted CΣ
`

.

Since this does not make any assumptions over Σ-structures, it applies to
relational structures in the same way as to algebraic structures. In particular, it
makes all the properties and constructions of Sect. 3.4 available for bisimulation
OCCs of relational structures.

For example, equivalences in Σ-bisimulation OCCs are exactly Σ-congruences;
for the case of Σ-algebras, this has been shown in [42, The. 3.3.4]. Schmidt dis-
cusses congruences and multi-coverings of relational structures in [79, Sect. 3.3];
it is easy to see that these congruences are just equivalences in OCCs of bisimu-
lations, and multi-coverings are the corresponding quotient projections.

4 Allegories and Kleene Categories

We now consider ordered categories where joins, repectively meets, have to exist
in the ordering of each homset (Sect. 4.1), and obtain as most important represen-
tants of the resulting two direction on the one hand Kleene categories (Sect. 4.2),
and on the other hand allegories (Sect. 4.3).

The binary operations meet and join can now be used to define tabulations
and co-tabulations that can be seen as relational formulations of pullbacks and
pushouts in mapping categories.

In comparison with the category-theoretic definitions of pullbacks and push-
outs, the “relational” definitions are perfectly local in that they involve only the
morphisms under discussion. In addition, they are syntactically first-order, since
they do not use quantification, so their relational treatment makes reasoning much
more accessible both for human readers and for mechanised proof checking.

The attraction of the alternative characterisations in Props. 42 and 45 is that
they allow purely equational reasoning concerning all aspects of (co-)tabulations.
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Tabulations and co-tabulations can also be seen as generalisations of the sym-
metric splittings in the subobject and quotient constructions (Defs. 21 and 22).
This is in parallels the way we showed how equivalences and co-equivalences can
be seen as generalising to difunctionality and co-difunctionality, which accord-
ingly play an important rôle in this context.

As special cases of tabulations and co-tabulations we obtain direct products
and sums (Sects. 4.4 and 4.5), and arriving at their definition via this route
provides a nice explanation for what otherwise might be perceived to be a flaw
in their duality.

Finally, we mention a number of important models of these theories (Sect. 4.6).

4.1 Semilattice Categories

We now consider ordered categories where homsets have (semi-)lattice structure.

Definition 30. A lower semilattice category is an ordered category such that
each homset is a lower semilattice with binary meet u.

In contexts where the inclusion ordering v is not primitive, but defined using
meet, the following property is usually listed as an axiom; here it follows from
monotonicity of composition:

Lemma 31. In a lower semilattice category, for all morphisms P : A ↔ B and
Q,R : B ↔ C, and S : C ↔ D, meet-subdistributivity holds:

P ;(Q u R) v P ;Q u P ;R

(Q u R);S v Q;S u R;S

Pseudo-complements are residuation of meet in lower semilattice categories; where
pseudo-complements exist, we denote the pseudo-complement or R with respect
to S as R→S, and we have:

X u R v S ⇔ X v (R→S)

Dually, we obtain “join-superdistributivity” in the presence of joins. However, it is
customary to demand distributivity of composition over join, so upper semilattice
categories are not completely dual to lower semilattice categories:

Definition 32. An upper semilattice category is an ordered category such that

– each homset is an upper semilattice with binary join t, and
– composition distributes over joins from both sides.
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If we consider upper or lower semilattice categories with converse, i.e., upper
respectively lower semilattice categories that are at the same time OCCs, then
the involution law for join respectively meet follows from isotony of converse.

One frequently assumes the existence of least upper bounds with respect to
v of arbitrary subsets of homsets:

Definition 33. An upper semilattice category C is called complete if

– each homset MorC[A,B] is a complete upper semilattice, i.e., for each subset
S of MorC[A,B], the join tS exists, and

– composition distributes over arbitrary joins from both sides.

In a complete upper semilattice category, each homset automatically has a least
element, but this does not have to be a zero — counter-examples arise for example
with simulations of Σ-algebras with constant symbols.

The result of adding zero morphisms to upper semilattice categories can be
seen as a heterogoneous version of idempotent semirings, which come equipped
with the two binary operations of “multiplication” (or composition) and “addi-
tion” (or join), and two constants, “0” which is a unit for addition and a zero for
multiplication, and “1” as a unit for multiplication. This motivates out choice of
name for the corresponding class of categories:

Definition 34. An idempotent semiring category (ISR category) is an upper
semilattice categories with zero morphisms.

4.2 Kleene Categories

Kleene algebras are a generalisation of the algebra of regular languages, and
are frequently presented as extensions of idempotent semirings, where “multipli-
cation” corresponds to concatenation of languages, “addition” to union of lan-
guages, “0” to the empty language, and “1” to the language containing only the
empty word.

On top of the idempotent semiring structure, a Kleene algebra also has one
unary operation, the Kleene star, for which we use an axiomatisation by Kozen
[50]. Most treatments of Kleene algebras are untyped; for a typed version see [53]
— in the categorical setting, the Kleene star is defined only on endomorphisms:

Definition 35. A Kleene category is an ISR category such that on homsets of
endomorphisms there is an additional unary operation ∗ which satisfies the fol-
lowing axioms for all R : A ↔ A, Q : B ↔ A, and S : A ↔ C:

R∗ = IA t R t R∗
;R∗ recursive star definition

Q;R v Q ⇒ Q;R∗ v Q right induction

R;S v S ⇒ R∗
;S v S left induction
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A frequently used alternative approach is to assume completeness of the ordering
v on each homset and distributivity of composition over arbitrary joins. This
stronger setting is also known as S-algebras or standard Kleene algebras as in-
troduced by Conway [20], or quantales [59]; we call the typed version complete
Kleene categories. In these, the Kleene star can be defined via an infinite join:

R∗ =t{Ri|i ∈ N}

The Kleene star axioms from above then turn into theorems.

Definition 36. A Kleene category with converse is a Kleene category that is at
the same time an OCC, and the involution law for Kleene star holds: (R∗)` =
(R`)∗.

In Kleene categories with converse, difunctional closures always exist:

Lemma 37. For an arbitrary morphism R : A ↔ B in a Kleene category with
converse, the least difunctional morphism containing R, i.e., its difunctional clo-
sure, is the morphism R ∗¡ with:

R ∗¡ = (R;R
`

);R

Residuated Kleene categories are Kleene categories with residuals of composition;
Kozen introduced the untyped variant of these as residuated Kleene algebras [51]
and showed that they are equivalent to the action algebras of Pratt [69] that do
not include the Kleene star as primitive operation.

4.3 Allegories

Definition 38. An allegory is a lower semilattice category with converse such
that for all Q : A ↔ B, R : B ↔ C, and S : A ↔ C, the modal rule holds:

Q;R u S v (Q u S;R
`

);R .

From the given modal rule above we may — using properties of conversion —
obtain the dual modal rule

Q;R u S v Q;(R u Q
`
;S) ,

which is used by Olivier and Serrato for their axiomatisation of Dedekind cat-
egories [65, 66] (see below) and there called “Dedekind formula” — however,
Jacques Riguet had much earlier attached the name “Dedekind formula” to the
following formula [70], which is equivalent to the modal rules:

Q;R u S v (Q u S;R
`

);(R u Q
`
;S) .

The Dedekind formula (and any modal rule) implies that in allegories, all mor-
phisms are co-difunctional: R = I;R u R v (I u R;R`);R v R;R`

;R.
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Definition 39. In an allegory, for a morphism R : A ↔ A we define the following
properties:

– R is antisymmetric iff R` u R v I,
– R is an ordering iff R is reflexive, transitive, and antisymmetric.

In allegories, one can define domain and range operators

Definition 40. For every morphism R : A ↔ B in an allegory, we define
dom R : A ↔ A and ran R : B ↔ B as:

dom R := IA u R;R
`

ran R := IB u R
`
;R

This definition of domain for allegories turns every allegory into an ordered
category with domain in the sense of Def. 24.

We now just list the definitions for the most important allegories with addi-
tional structure:

– A distributive allegory is an allegory that is also an ISR category.
– Division allegories [30] are distributive allegories with residuals.
– Dedekind categories [65, 66] (locally complete distributive allegories in [30])

are complete distributive allegories. These are automatically division allegories
and also Kleene categories.

– Relation algebras are Dedekind categories where all homsets are Boolean lat-
tices.

4.4 Tabulations and Direct Products

We no prepare to introduce a relational characterisation of direct products as
special case of what Freyd and Scedrov call tabulation [30, 2.14].

Definition 41. In a lower semilattice category with converse let a morphism
V : B ↔ C be given. The span B P¾ A Q-C of mappings P and Q is called a
tabulation of R iff the following equations hold:

P
`
;Q = V P ;P

`

u Q;Q
`

= I .

A
¡

¡
¡ª
P

@
@

@R

Q

B V - C
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So only co-difunctional morphisms can be tabulated — in an allegory, this is no
restriction.

The following equivalent characterisation is easily checked. Notice that, ac-
cording to Def. 40, I u V ;V ` = dom V ; we use the expanded form to emphasise
the duality with Proposition 45 below.

Proposition 42. In an allegory, the span B P¾ A Q-C is a tabulation of
V : B ↔ C if and only if the following equations hold:

P
`
;Q = V

P`
;P = I u V ;V `

Q`
;Q = I u V `

;V
P ;P

`

u Q;Q
`

= IA .

If A is an allegory, tabulations in A are unique up to isomorphism, and if
V = R;S` for two mappings R and S, then a tabulation for V is a pullback
in MapA. If direct products and subobjects are available, then a tabulation can
be constructed for each morphism of the allegory A.

In categories with terminal objects, direct products can be defined as pullbacks
of a co-span with a terminal object as target of both morphisms. Corresponding
to terminal objects, we can have unit objects in OCCs (the definition of Freyd
and Scedorv can be used [30, 2.15]), and the resulting morphisms will be top
morphisms, including the span morphism >>A,B = >>A,

;>> ,B [30, 2.152].
A direct product of A and B is therefore defined as a tabulation of this greatest

morphism >>A,B. We can also give an equivalent, direct definition in the style of
the “Munich approach” of Schmidt and coworkers [74, 17, 8, 89, 90, 78, 10]. As a
result of being a special case of tabulations, our definition differs from that usually
given in the Munich approach essentially by not demanding surjectivity of the
projections; taking the allegory of sets and concrete relations as motivation, this
is necessary to cover also the case of empty products where only one of the two
sets A and B is empty.

Definition 43. In an allegory, a direct product for two objects A and B for which
>>A,B exists is a triple (P , π, ρ) consisting of an object P and two projections , i.e.,
relations π : P ↔ A and ρ : P ↔ B for which the following conditions hold:

π
`
;ρ = >>A,B

π`
;π = dom (>>A,B)

ρ`
;ρ = ran (>>A,B)

π;π
`

u ρ;ρ
`

= IP .

Because of the uniqueness of tabulations, this definition is a monomorphic char-
acterisation of direct products.

It is well-known that the self-duality of categories of relations implies that cat-
egorical sums are at the same time categorical products, so these direct products
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are not categorical products in the category underlying the allegory A under
consideration, but only in MapA.

The fact that the direct definition of direct products ends up being not per-
fectly dual to direct sums is due to the fact that >> is not perfectly dual to ⊥⊥,
either: in most interesting models, zero laws for >> do not hold.

4.5 Co-Tabulations and Direct Sums

While a tabulation can be seen as a certain kind of decomposition of a co-
difunctional morphism in an allegory into a span, the dual of a tabulation is
then a certain kind of decomposition of a difunctional morphism in an upper
semilattice category into a co-span. A special case of this decomposition has
been discussed by Schmidt and Ströhlein, for example in [78, 4.4.10]. Although
the formal material here is dual to that in the previous section, we still spell it
out in full detail for reference and better intuition.

Definition 44. In an upper semilattice category with converse let a morphism
W : B ↔ C be given. The co-span B R-D S¾ C of mappings R and S is called
a co-tabulation of W iff iff the following equations hold:

R;S
`

= W R
`
;R t S

`
;S = ID .

B W - C
@

@
@R

R ¡
¡

¡ª
S

D

Because of Lemma 17, only difunctional morphisms can be co-tabulated — in
most contexts, this is a heavy restriction.

We explicitly give the equivalent characterisation that is dual to the one in
Proposition 42:

Proposition 45. In an upper semilattice category with converse, the span
B R-D S¾ C is a co-tabulation of W : B ↔ C iff the following equations hold:

R;S
`

= W
R;R` = I t W ;W`

S;S` = I t W`
;W

R
`
;R t S

`
;S = ID .

In each upper semilattice category with converse, co-tabulations are unique up
to isomorphism.
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If C is a Kleene category with converse, and if W = (P`
;Q) ∗¡ for two mappings

P and Q in C, then a co-tabulation for W is a pushout for P and Q in MapC. If
direct sums and quotients are available, then a co-tabulation can be constructed
for each difunctional morphism.

A gluing as introduced by the author in [42] is a co-tabulation of the difunc-
tional closure of an arbitrary morphism, essentially using the characterisation of
Proposition 45 instantiated accordingly. Kawahara is the first to have charac-
terised pushouts relation-algebraically in this way [47].

Each zero morphism ⊥⊥A,B is difunctional, and therefore can have a co-tabu-
lation; this is how direct sums can be defined in ISR categories with converse.
From the direct definition resulting from this we see that the injections are total
and therefore subobject injections; the terms resulting from W ;W` and W`

;W
disappear thanks to the zero laws.

Definition 46. In an ISR category with converse, a direct sum for two objects
A and B is a triple (S, ι, κ) consisting of an object S and two injections , i.e.,
morphisms ι : A ↔ S and κ : B ↔ S for which the following conditions hold:

ι;κ
`

= ⊥⊥A,B

ι;ι` = IA

κ;κ` = IB

ι
`
;ι t κ

`
;κ = IS .

Direct sums in an ISR category with converse C are at the same time categorical
coproducts in C and in the mapping category MapC.

4.6 Some Important Models

The algebra of regular languages and other set-based Kleene algebras are in fact
standard Kleene algebras (or quantales) since set-theoretic union of arbitrary sets
of sets is available, and composition, when defined via an element-wise monoid
operation, naturally distributes over arbitrary unions. Transferred into our typed
setting, all these are therefore complete Kleene categories. Most of these models
extend to Kleene categories with converse through the addition of an element-wise
definition of converse.

Simulations (Def. 25) between algebras over fixed, not necessarily unary sig-
natures form allegories [42]. A noteworthy special case of this is the allegory
of relational group homomorphisms, where all morphisms are (strictly) difunc-
tional3. Logical theories give rise to allegories of derived predicates [30, App. B].

In any topos one finds a Dedekind category [47]. A special case of this are re-
lational graph structure homomorphisms, presented in [42] directly without using

3 This was pointed out to me by Yasuo Kawahara (Kyushu Univ.), personal communication, 2001
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topos theory. In such a Dedekind category of relational graph structure homo-
morphisms, conventional graph structure homomorphisms are recovered as the
mappings in these Dedekind categories, that is, as total and univalent relational
graph structure homomorphisms.

Fuzzy relations give rise to Dedekind categories, too [48], although fuzzy rela-
tions are more appropriately axiomatised in the Goguen categories proposed by
Winter, where there are two additional operations for handling crispness [87, 88].

5 Application to Graph Structure Transformation

The so-called “algebraic approach to graph transformation” is really a collection
of approaches that essentially rely on category-theoretic abstractions. Historically,
Ehrig, Pfender, and Schneider developed the double-pushout approach as a way to
generalise Chomsky grammars from strings to graphs, using pushouts as “gluing
construction” to play the rôle of concatenation on strings [27], see also [21].

In the double-pushout approach, a rewriting rule is a span L ΦL¾ G ΦR-R
of morphisms starting from the gluing object G. A redex for such a rule is a
morphism XL : L ↔ A from the rule’s left-hand side L into some application
graph A. Application of the rule has to establish a double-pushout diagram of the
following shape:

L
ΦL¾ G ΦR - R

XL

?

H

?

XR

?

A
ΨL¾ H

ΨR - B

Note that for the left-hand side pushout, the “wrong” arrows are given, so the
completion to a pushout square, called pushout complement, is not a universally
characterised categorical construction.

Replication is notoriously impossible with pushouts, but is inherent in the
dual concept of pullbacks. Accordingly, there is a less well-known variant of the
categoric approach that uses pullbacks for graph transformation, put forward by
Bauderon and Jacquet [34, 5, 4, 6].

However, that approach never really gained popularity, probably mostly be-
cause its rules as such appear to be quite unintuitive and usually have to be
regarded as “encodings” of the rules of other approaches. With that encoding at-
titude, however, the pullback approach is able to cover most popular approaches
to graph rewriting, including the double-pushout approach.
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In this section, we present a short summary of the central results of [42], with
an improved presentation thanks to the now separate concept of co-tabulations
and the finer-grained theory organisation.

Using the fact that Σ-simulations between Σ-algebras form allegories, and
in the case of a unary signature Σ even Dedekind categories, we consider graph
structures as unary Σ-algebras, and then perform all reasoning in the abstract
theories. In comparison with the topos-based approach of Kawahara [47], we
have the advantage that we have modular set of theories available, and can easily
identify sufficient weaker theories for results that do not rely on the full language,
and therewith make them available to a wider application area. For example, our
characterisation of pullback complements (Sect. 5.1) takes place entirely within
the allegory setting, and therefore can be used in arbitrary Σ-algebra allegories,
even in the presence of constants and binary operations.

Dually, pushout rewriting can be formalised in idempotent semiring categories
with converse, and the single-pushout approach translates into an appealing gen-
eralisation of co-tabulations (Sect. 5.2).

Finally, we show how the unifying setting of Dedekind categories permits a
“unified” rewriting concept that employs the power of pullback rewriting on “sub-
graph variables”, and the precise control of pushout rewriting on “fixed parts”, to
yield an intuitively accessible relation-algebraic approach to graph transformation
with proper subgraph variables.

5.1 Pullback Rewriting in Allegories

Just like in the double-pushout approach, the left-hand-side square of a rewriting
step in the double-pullback approach also poses the problem that the “wrong”
arrows are to be constructed.

Assuming two mappings D P-B R-A to be given, we therefore need a pull-
back complement D Q-C S-A, that is, an object C and two mappings Q : D ↔
C and S : C ↔ A such that the resulting square is a pullback for R and S.

B R - A

P
6

S

p

p

p

p

p

p

p

p

p

p

p6

D
Q

p p p p p p p p p p p- C

A necessary and sufficient condition for the existence of pullback complements in
the category of concrete graphs has been given by Bauderon and Jacquet [4, 34,
6]. This is an extremely complex condition formulated on the level of edges and
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nodes, postulating enumerations of pre-images satisfying certain compatibility
conditions, and using quite intricate notation.

In the relational approach, we can replace this with an abstract, component-free
condition that is necessary and sufficient for the existence of pullback comple-
ments in the sub-category of mappings in arbitrary allegories. This condition is
extremely simple, and thus offers valuable insight into the essence of pullback
complements (we continue to use the name “coherent” proposed by Bauderon
and Jacquet):

Definition 47. Two mappings D P-B R-A are called coherent iff there exists
an equivalence Θ : D ↔ D such that the following conditions hold:

1. P ;P` u Θ v I,
2. Θ;P = P ;R;R`.

We also say that P and R are coherent via Θ.

Note that (2) implies Θ;P ;P` = P ;R;R`
;P`. Since with the right-hand side, also

the left-hand side is an equivalence, and since the composition of two equivalences
is always contained in their equivalence join, but not in any smaller equivalence,
this means that P ;R;R`

;P` is the equivalence join of Θ and P ;P`. Together with
(1) it then follows that Θ is a complement of P ;P` in the lattice of all equiva-
lences contained in P ;R;R`

;P`. Since this lattice is, in general, not distributive,
this complement need not be uniquely determined even if it exists. And not all
complements in addition fulfil (2).

Proposition 48. If B P¾ D Q-C is a pullback for B R-A S¾ C, then P and
R are coherent via Θ := Q;Q`.

Proof. With commutativity and alternative commutativity we obtain (2):

P ;R;R
`

= Q;S;R
`

= Q;Q
`
;P = Θ;P

The coherence condition (1) is part of the tabulation properties.

Theorem 49. If there exists an equivalence Θ : D ↔ D such that P and R are
coherent via Θ, then a pullback complement D Q-C S-A for D P-B R-A is
obtained as follows:

– Let C be a quotient of D for Θ, with projection Q : D ↔ C.
– Define S : C ↔ A as S := Q`

;P ;R.

In comparison with Bauderon and Jacquet’s, ours is a much simpler formulation of
the pullback complement condition. From our formulation it also becomes clearer
that the reason for the absence of efficient implementations is the intractability
of the general problem of searching for an (appropriate) equivalence complement.
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5.2 Pushout Rewriting in ISR Categories with Converse

The pushout complement necessary for the double-pushout approach exists iff
the so-called gluing condition holds — for items from left-hand side outside the
image of the interface, the redex must not perform any identification or mapping
to nodes incident with “dangling edges”.

This gluing condition is usually stated using the concrete language of graphs
with nodes and edges; Kawahara gave a component-free formulation [47] employs
an embedding of relational calculus in topos theory, which essentially corresponds
to a Dedekind category setting. For the additional condition of conflict-freeness
that is important in the single-pushout approach, a component-free formulation
was given in [42]. Closer inspection reveals that these conditions do use domain
and range, and pseudo-complements on domain and range elements, but otherwise
no meet. Therefore, we can set the environment accordingly:

Definition 50. In an ISR category with converse, domain, and pseudo-comple-
ments on domain elements let two morphisms Φ : G ↔ L and X : L ↔ A be
given. We define:

– The identification condition holds iff X ;X` v I t (ran Φ);X ;X`
;ran Φ .

– The dangling condition holds iff ran X t (ran X → ran (Φ;X)) = I .
– We call X conflict-free for Φ iff ran (Φ;X ;X`) v ran Φ.

When the identification and dangling conditions both hold, then a subobject for
ran X → ran (Φ;X) produces a pushout complement.

Motivated by the shortcomings of the double-pushout approach that was
based on total graph homomorphisms, the end of the 1980s saw the emergence of
the single-pushout approach based on categories of partial graph homomorphisms;
the most general approach is by Löwe [55, 56, 54, 28]. Construction of pushouts
of partial morphisms is technically rather involved, and the properties are not
obvious.

In [42], we arrived at a characterisation that is a relatively simple generalisa-
tion of co-tabulations:

Definition 51. Let two difunctional morphisms Q,U : R ↔ A with Q v U be
given.

A co-span R X-B Ψ¾ A is called a restricted gluing for Q in U if:

X ;Ψ` = Q

X ;X` = (dom U → dom Q) t Q;Q`

Ψ ;Ψ` = (ran U → ran Q) t Q`
;Q

X`
;X t Ψ`

;Ψ = I
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If one starts from a span A Y¾ L Φ-R of partial functions, i.e., univalent mor-
phisms, and defines U := Φ`

;>>;Y and Q := satSyq(Φ, Y ) using a function satSyq

that can be defined in complete Kleene categories with domain and converse,
then each restricted gluing for Q in U is a pushout of partial functions.

This pushout can be easily constructed using two subobjects induced by
(dom U → dom Q) and (ran U → ran Q) and a standard co-tabulation.

5.3 Rewriting with Graph Variables in Dedekind Categories

In [42, 43], we presented a formalism that allows the abstract specification of
graph transformation with “graph variables” and replication of their images. This
approach is superficially be modelled at the double-pushout approach, but works
in the setting of relational graph morphisms; the pullout construction used there
can be understood as amalgamated from a pushout used for “fixed” parts of the
rule, and a pullback used for the “variable” or “parameter” parts.

With a few interface preservation conditions that we leave out here, a co-span
G1

X-G3
Ψ¾ G2 is defined to be a glued tabulation for V along U on c1 and

c2 (where U is difunctional, and c1 and c2 are partial identities comprising the
respective interface parts and contexts) iff the following conditions hold:

X ;Ψ` = U t V

X ;X` = c1
;(I t U ;U`);c1 t (I u V ;V `)

Ψ ;Ψ` = c2
;(I t U`

;U);c2 t (I u V `
;V )

I = (X`
;c1

;X t Ψ`
;c2

;Ψ) t (X`
;v1

;X u Ψ`
;v2

;Ψ)

Obviously, these pullout conditions are an amalgamation of the co-tabulation
and tabulation conditions, and as such can be formulated in distributive alle-
gories with pseudo-complements on sub-identities. However, obtaining U from
the original span requires difunctional closure. Since completeness also guaran-
tees the existence of pseudo-complements, Dedekind categories are the natural
setting for rewriting using pullouts.

The ease with which this amalgamation of the pushout and pullback ap-
proaches is possible is the essential advantage of the relational approach over
purely category theoretic approaches.

6 Formalisation and Mechanisation

Reasoning in the “relational flavour” theories is relatively high-level and fre-
quently calculational; it therefore tends to be fairly rigorous. Nevertheless, be-
cause of the large number of different axiomatisations considered even within
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investigations of relatively narrow scope, the large number of laws valid in many
theories, and because frequently “trivial” properties of familiar theories “unex-
pectedly” fail to hold under reduced combinations of axioms, confusion can arise.
Therefore, mechanised proof support becomes very desirable.

Based on our experience for example with formalising graph transformation
as described in Sect. 5, we have identified the following requirements for user-
friendly proof support for reasoning in “theories with relational flavour”:

– Many different theories, including all those described in Sect. 3 need to be
supported, and adding new theories should be easy and systematic.

– Since untyped theories can always be considered as special cases of typed
theories, and most computer science applications are naturally typed, support
for typed theories is essential.

– The calculational style is an essential tool for both proof development and
proof presentation in the theories we are interested in; support for calculational
proofs is therefore necessary for acceptance.

– Reasoning within structures, in the style of “let an arbitrary but fixed OCC
be given”, should be supported with minimal overhead.

– Reasoning about structures is essential for applications: Concrete models, for
example Kleene categories of regular languages, or allegories of relations, as
well as model constructions, such as matrix Kleene algebras and allegories of
Σ-algebras, need to be accessible and verifiable.

– Reasoning between structures involves several structures over identical or over-
lapping signatures; these overlaps should be handled gracefully.

Quite a few projects in the recent past have striven to provide computer-aided
proof assistance for reasoning in abstract relation algebras or Kleene algebras,
each with its particular motivation and priorities.

– The relation-algebraic formula manipulation system and proof checker RALF
[11, 33, 40] was designed as a special-purpose proof assistant for abstract (hete-
rogeneous) relation algebras with the goal of supporting proofs in the calcu-
lational style. RALF has a graphical user interface presenting goal formulae
in their tree structure, a feature that allows easy interactive selection of the
subexpressions to be transformed by proof steps. RALF is based on a fixed
axiomatisation, and only supports reasoning within a single relation algebra.

– Math
∫
pad is a flexible quasi-WYSIWYG syntax-directed editing environment

for mathematical documents that has been designed to support calculational
proof presentation. It has been connected with the theorem prover PVS to
enable checking of relation-algebraic proofs contained in Math

∫
pad documents
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[84], but is normally used as powerful editing support for a rigorous style of
calculational reasoning without formal proof checking.

– “PCP: Point and Click Proofs” is a proof assistant based on a small JavaScript
rewriting engine that allows users to interactively construct proofs of proper-
ties in a wide range of mathematical structures, characterised by equational
and quasi-equational theories [37, 36]. Currently, (homogeneous) relation alge-
bra and Kleene algebra are already supported by the system, which is exten-
sible and still under development. It appears not to be geared to the addition
of a type system, and is also limited to reasoning within single structures.

– A previous formalisation of heterogeneous relation algebras in Isabelle, RALL
[64], uses the Isabelle/HOL type system to support reasoning within abstract
heterogeneous relation algebras with minimal effort, but at the cost of limiting
itself to reasoning within a single relation algebra, as well. RALL’s approach of
atomising relation-algebraic formulae into predicate logic does not carry over
to weaker structures like allegories or Kleene algebras.

– Struth realised a formalisation in Isabelle-1999 of untyped Kleene algebras,
and used this to fully formalise Church-Rosser proofs in Kleene algebras [82].
He formalised Kleene algebras via a hierarchy of axiomatic type classes [86],
which to some extent do support reasoning between several structures; but
impose severe limitations to reasoning about structures.

– KAT-ML is an interactive calculational theorem prover for reasoning within a
single (untyped) Kleene algebra with tests [2]. Its (text-based) user interface
includes a focusing feature similar to the selection feature of the graphical
user interface of RALF.

Obviously, each of these systems was designed with a different set of requirements
in mind, and none of them appears appropriate as a basis for a system that might
satisfy all of the requirements listed above.

In [44, 31] we therefore embarked on a new approach to mechanised support
of reasoning in “theories with relational flavour” using recent developments in
the theorem prover Isabelle [60] that support our long-term objectives relatively
well:

– For reasoning within abstract algebraic structures in essentially the same way
as it is done in pencil-and-paper mathematics, the concept of locales has been
introduced into Isabelle [46, 3]. If such locales are based on records, this also
allows reasoning about and between algebraic structures.

– While internally Isabelle still is a tactical theorem prover, the addition of
the interpreted “Isar” language for “Intelligible semi-automated reasoning”
allows proofs to be structured in the same way as in traditional mathematical
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proof presentation [61, 85]. One additional aspect of Isar is its support for
calculational reasoning [7]; this has been designed to also support user-defined
transitive relations, such as the inclusion ordering of relations.

These features together allow us to implement a collection of theories reflecting
the organisation of Sect. 3 and already covering most of the material presented
there, together with useful derived properties in each theory. The granularity of
the theories in this collection is even finer than that presented in Sect. 3, and
the whole design is geared towards calculational reasoning in and about ordered
categories and all the different kinds of allegories and Kleene categories up to
heterogeneous relation algebras.

A different aspect of mechanised support is the use of languages with “rela-
tional flavour” as programming paradigms. The field here seems to be populated
almost exclusively by languages that allow programming of concrete relations
using the language of relation algebras:

– The most prominent system in this class is RelView [12] which provides a
simple imperative programming language with finite concrete relations (im-
plemented efficiently using BDDs) as its only datatype, and a graphical user
interface to produce argument relations and access result relations.

– The languages Drusilla [18, 19] and Libra [25, 26] allow relational programming
with standard primitive datatypes and potentially infinite relations considered
as generators.

– The relational circuit design language Ruby [38, 39] uses the language of al-
legories with direct products for specification and refinement of VLSI circuit
designs; there are interpreters that allow evaluation of (certain) Ruby expres-
sions.

– McPhee proposes to represent concrete relations via their tabulations, and
evaluate relational operations as operations on tabulations [57]. However, no
report on further progress appears to be available.

A completely different approach is the framework RATH [41] for relation-algebraic
programming which has started to fill the gap between on the one hand the sys-
tem RelView and on the other hand high-level programming languages. RATH
provides mechanisms for

– defining arbitrary algebras with the signatures of the most of the theories
listed in Sect. 3,

– performing algebra-level operations to generate product algebras, matrix al-
gebras, sub-algebras, etc.,
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– performing calculations within those algebras (accessing their operations via
the respective signatures), effectively turning each theory into a programming
language embedded in the purely functional programming language Haskell
[68], and

– testing the validity of the respective axioms in finite algebras.

RATH has been used for automatic generation of non-standard allegories and re-
lation algebras [63], and for implementing the graph rewriting approach described
in Sect. 5 [42].

7 Conclusion and Outlook

One may discern two main flavours of sub-theories of the theory of relation al-
gebras that are by themselves important tools in computer science: On the one
hand Kleene algebras, which represent a “control-flow view”, and on the other
hand allegories, which represent a “data-flow view”.

Recent efforts to move investigations that previously were performed in the
full theory of relation algebras into weaker, more specialised theories frequently
started from an algebraic point of view, for example with the single-sorted idem-
potent semirings underlying Kleene algebras, or with allegories. In both cases, the
most common axiomatisations do not include the inclusion ordering as primitive,
but derive it either from join or from meet.

In this paper, we reorganised the presentation of the spectrum of theories with
“relational flavour” around ordered categories, and introduced converse directly
on top of those. With this approach, we strove to present a more unifying and
symmetric view of these theories. Although real symmetry is probably not easy
to achieve, given on the one hand join-distributivity of composition and on the
other hand the strong coupling between composition, meet, and converse in the
modal rules, we feel that not assuming co-difunctionality in OCCs still brought
a significant advance in visible duality.

Putting some of the new distinctions to use in revisiting the relation-algebraic
formalisation of algebraic approaches to graph rewriting served as an example to
show how two sub-approaches naturally reside in Kleene categories with converse
and in allegories, and how using the joint power of Dedekind categories allows to
amalgamate these approaches.

We believe that in the near future, more combined theories such as “Kleene
algebras with domain” and “Kleene algebras with relations” [23] will be investi-
gated and used, and that elegant and usable formalisation and mechanisation of
the resulting ever-growing “theory-web” will become a higher priority, and will
remain, for quite some time, a significant challenge.



Refactoring Heterogeneous Relation Algebras 309

Acknowledgements

I am grateful to Millie Rhoss de Guzman, Hitoshi Furusawa, Yasuo Kawahara,
Gunther Schmidt, and Michael Winter for many related discussions; and I would
like to thank Ridha Khedri and the anonymous reviewers for their valuable com-
ments.

References

1. C. Aarts, R. C. Backhouse, P. Hoogendijk, E. Voermans, J. van der Woude.
A Relational Theory of Datatypes. Working document, 1992. 387 pp., available at
http://www.cs.nott.ac.uk/˜rcb/MPC/book.ps.gz.

2. K. Aboul-Hosn, D. Kozen. KAT-ML: An Interactive Theorem Prover for Kleene Algebra with
Tests. In B. Konev, R. Schmidt, eds., Proc. 4th Intl. Workshop on the Implementation of Logics
(WIL’03), pp. 2–12. University of Manchester, 2003.

3. C. Ballarin. Locales and Locale Expressions in Isabelle/Isar. In S. Berardi et al., eds., Types
for Proofs and Programs, International Workshop TYPES 2003, Torino, Italy, LNCS. Springer,
2004. (in press).

4. M. Bauderon, H. Jacquet. Categorical Product as a Generic Graph Rewriting Mechanism.
Technical Report 1166–97, LaBRI, University of Bordeaux, 1996. see also [6].

5. M. Bauderon. A Uniform Approach to Graph Rewriting: The Pullback Approach. In M. Nagl,
ed., Graph Theoretic Concepts in Computer Science, WG ’96, LNCS 1017, pp. 101–115. Springer,
1997.

6. M. Bauderon, H. Jacquet. Pullback as a Generic Graph Rewriting Mechanism. Applied Cate-
gorical Structures 9(1) 65–82, 2001.

7. G. Bauer, M. Wenzel. Calculational reasoning revisited, an Isabelle/Isar experience. In R. J.

Boulton, P. B. Jackson, eds., Theorem Proving in Higher-Order Logics: TPHOLs 2001, LNCS
2152, pp. 75–90. Springer, 2001.

8. R. Berghammer, H. Zierer. Relational Algebraic Semantics of Deterministic and Nondetermin-
istic Programs. Theoretical Computer Science 43 123–147, 1986.

9. R. Berghammer, G. Schmidt, H. Zierer. Symmetric Quotients and Domain Constructions.
Inform. Process. Lett. 33(3) 163–168, 1989.

10. R. Berghammer, A. M. Haeberer, G. Schmidt, P. A. S. Veloso. Comparing Two Different
Approaches to Products in Abstract Relation Algebra. In [62], pp. 167–176.

11. R. Berghammer, C. Hattensperger. Computer-Aided Manipulation of Relational Expressions
and Formulae using RALF. In B. Buth, R. Berghammer, eds., Systems for Computer-Aided
Specification, Development and Verification, Bericht Nr. 9416, pp. 62–78. Universität Kiel, 1994.

12. R. Berghammer, T. Hoffmann, B. Leoniuk, U. Milanese. Prototyping and Programming with
Relations. ENTCS 44(3) 3.1–3.24, 2003.
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24. J. Desharnais, B. Möller, G. Struth. Kleene Algebra with Domain. Technical Report 2003-7,

Universität Augsburg, Institut für Informatik, 2003.
25. B. Dwyer. LIBRA: A Lazy Interpreter of Binary Relational Algebra. Technical Report 95-10,

Dept. of Computer Science, University of Adelaide, 1995. http://www.cs.adelaide.edu.au/ dwyer/.
26. B. Dwyer. Relational Programming in Libra. In A. Jaoua, P. Kempf, G. Schmidt, eds., Using

Relational Methods in Computer Science, Technical Report Nr. 1998-03, pp. 35–58. Fakultät für
Informatik, Universität der Bundeswehr München, 1998.

27. H. Ehrig, M. Pfender, H. J. Schneider. Graph Grammars: An Algebraic Approach. In: Proc.
IEEE Conf. on Automata and Switching Theory, SWAT ’73, pp. 167–180, 1973.
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58. B. Möller. Towards Pointer Algebra. Science of Computer Programming 21 57–90, 1993.
59. C. Mulvey. &. Rend. Circ. Mat. Palermo 12 99–104, 1986.
60. T. Nipkow, L. C. Paulson, M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-Order

Logic, LNCS 2283. Springer, 2002.
61. T. Nipkow. Structured Proofs in Isar/HOL. In H. Geuvers, F. Wiedijk, eds., Types for Proofs

and Programs, International Workshop TYPES 2002, LNCS 2646, pp. 259–278. Springer, 2003.
62. M. Nivat, C. Rattray, T. Rus, G. Scollo, eds. Proc. 3rd Internat. Conf. Algebraic Methodology

and Software Technology, Enschede, June 21–25, Workshops in Computing. Springer, 1994.
63. E. Offermann. Konstruktion Relationaler Kategorien. PhD thesis, Fakultät für Informatik,

Universität der Bundeswehr München, 2003.
64. D. von Oheimb, T. F. Gritzner. RALL: Machine-supported Proofs for Relation Algebra. In

W. McCune, ed., Conference on Automated Deduction – CADE-14, LNCS 1249, pp. 380–394.
Springer, 1997.

65. J.-P. Olivier, D. Serrato. Catégories de Dedekind. Morphismes dans les catégories de Schröder.
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81. Gheorghe Ştefănescu. Network Algebra. Springer, London, 2000.

82. G. Struth. Calculating Church-Rosser Proofs in Kleene Algebra. In [83], pp. 276–290.

83. H. de Swart, ed. Proc. RelMiCS 6, International Workshop on Relational Methods in Computer
Science, Oisterwijk near Tilburg, Netherlands, 16–21 October 2001, LNCS 2561. Springer, 2002.

84. R. Verhoeven, R. Backhouse. Towards Tool Support for Program Verification and Construction.
In J. Wing, J. Woodcock, J. Davies, eds., FM ’99 – Formal Methods, LNCS 1709, pp. 1128–
1146. Springer, 1999.

85. M. M. Wenzel. Isabelle/Isar — A Versatile Environment for Human-Readable Formal Proof
Documents. PhD thesis, Technische Universität München, Fakultät für Informatik, 2002.

86. M. Wenzel. Type classes and overloading in higher-order logic. In E. L. Gunter, A. Felty,
eds., Theorem Proving in Higher-Order Logics, TPHOLs ’97, LNCS 1275, pp. 307–322. Springer,
1997.

87. M. Winter. A New Algebraic Approach to L-fuzzy Relations Convenient to Study Crispness.
Information Sciences 139(3–4) 233–252, 2001.

88. M. Winter. Representation Theory of Goguen Categories. Fuzzy Sets and Systems 138 85–126,
2003.

89. H. Zierer. Programmierung mit Funktionsobjekten: Konstruktive Erzeugung semantischer Bere-
iche und Anwendung auf die partielle Auswertung. Dissertation, Technische Univ. München,
Fakultät für Informatik, 1988. Report TUM-I8803.

90. H. Zierer. Relation-Algebraic Domain Constructions. Theoretical Computer Science 87 163–188,
1991.



Refactoring Heterogeneous Relation Algebras 313

Journal on Relational Methods in Computer Science, Vol. 1, 2004, pp. 277 - 313
Received by the editors March 08, 2004, and, in revised form, October 14, 2004.
Published on December 10, 2004.
c© Wolfram Kahl, 2004.
Permission to copy for private and scientific use granted.
This article may be accessed via WWW at http://www.jormics.org.


