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Abstract. We define the concepts of representable and abstract sequential Q-algebra,
which are generalizations of the (relational) Q-algebras in [10]. Just as in that paper,
we then prove that the two concepts coincide. In the following section we recall the
concept of observation space and note that all complex algebras of observation spaces are
representable sequential algebras. Finally we give an uncountable family of representable
sequential algebras that generate distinct minimal varieties (i.e. covers of the variety of
one-element algebras).

1 Introduction

Representable relation algebras are collections of binary relations (on a set U)
that are closed under the operations of union (∪), complementation (−, relative to
a largest relation), composition (;), converse (^) and contain the identity relation
idU . Note that the assumption of closure implies that the largest relation is an
equivalence relation.

When modeling reactive systems, the converse operation is replaced by two
derived operations:

R / S = (R;S^) ∩ T and R . S = (R^;S) ∩ T

where T is a fixed largest relation. Collections of subsets of T that are closed under
∪, −, ;, /, . and contain idU are called representable sequential algebras. Note that
in this case the top relation need no longer be symmetric, but it is still reflexive
and transitive. If it happens to be symmetric, then the algebra is term-equivalent
to a representable relation algebra since we can recover the converse operation
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by R^ = R. idU . The class of all algebras isomorphic to representable sequential
algebras is denoted by RSeA. In [6] this is shown to be a variety, but it is not
finitely axiomatizable [11], [6]. Lyndon [9] gave an equational basis for the variety
of representable relation algebras, but this infinite list of equations is complicated
to define and not easy to work with. Stebletsova and Venema [10] presented a
list of 10 axiom schema for representable Q-algebras, which are expansions of
representable relation algebras. The aim of this paper is to extend their result to
RSeA. Representable sequential algebras can also be viewed as relativizations of
representable relation algebras with respect to reflexive and transitive relations.
Further motivation and results about (abstract) sequential algebras can be found
in [11], [14], [3], [4]. In the latter two publications these algebras were referred to
as balanced Euclidean residuated monoids (or BERMs for short).

2 Q-algebras and sequential Q-algebras

We begin by recalling the definition of a representable Q-algebra. The Q-operations
are defined on n×n matrices R = (Rij) of binary relations on some set U by the
condition

aQkl
n (R)b iff

∃u0, . . . , un−1 with a = uk, b = ul, and
uiRijuj for all i, j < n.

Definition 1. Let T be an equivalence relation on a set U . The relation set
Q-algebra on T is

Q(T) = (P(T),∪, −, idU , Qkl
n )k,l<n∈ω.

Algebras of the form (A, +, −, 1
,
, Qkl

n )k,l<n∈ω are called Q-type algebras. A Q-type
algebra is representable if it can be embedded into a relation set Q-algebra. RQ

denotes the class of all representable Q-type algebras.

To see that algebras in RQ are in fact expansions of representable relation
algebras, one merely has to observe that

R^ = Q01
2

(

T T

R T

)

and R;S = Q02
3





T R T

T T S
T T T



 .

Stebletsova and Venema continue by giving a list of equation schema Q1-Q10,
and define a Q-algebra as a Q-type algebra that satisfies these axioms. They then
prove their main result, namely that the variety Q of all Q-algebras coincides with
the class RQ.

We now expand the type even further and generalize this result to sequential
Q-algebras. Note that a matrix of relations on U can also be viewed as a function
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from n× n to P(U ×U). We wish to relativize this notion. Given a relation ρ on
the set n = {0, . . . , n − 1}, a ρ-matrix R of binary relations on U is a function
from ρ to P(U × U). For (k, l) ∈ ρ, the sequential Q-operations are defined on
ρ-matrices by

aQkl
nρ(R)b iff

∃u0, . . . , un−1 with a = uk, b = ul, and
uiRijuj for all (i, j) ∈ ρ.

Definition 2. Let rt(U) be the set of reflexive and transitive relations on the set
U , and let T ∈ rt(U). The sequential set Q-algebra on T is

SQ(T) = (P(T),∪, −, idU , Qkl
nρ)(k,l)∈ρ∈rt(n),n∈ω.

Algebras of the form (A, +, −, 1
,
, Qkl

nρ)(k,l)∈ρ∈rt(n),n∈ω are called SQ-type algebras.
An SQ-type algebra is representable if it can be embedded into a sequential set
Q-algebra. RSQ denotes the class of all representable SQ-type algebras.

The class RSQ is obviously closed under taking subalgebras and isomorphic copies.
It is also easily seen to be closed under products. In fact, the product of a col-
lection of sequential set Q-algebras is (isomorphic to) a sequential set Q-algebra
constructed on the disjoint union of the respective base sets of the factors. The
fact that RSQ is also closed under homomorphic images is not obvious, but it
follows from Theorem 13 below.

Since Qkl
n = Qkl

n,n×n, sequential set Q-algebras are expansions of relation set
Q-algebras. They are also expansions of representable sequential algebras since

R;S = Q02
3≤





T R T

T S
T



, R . S = Q12
3≤





T R S
T T

T



, R / S = Q01
3≤





T T R
T S

T





Here ≤ denotes the usual order on {0, 1, 2}. Note also that the earlier term for R; S
which used Q02

3 would not work in the sequential case: e.g. if T is antisymmetric
then for any k, l < n, the condition aQkl

n (R)b implies (a, b) ∈ Rkl ⊆ T and
(b, a) ∈ Rlk ⊆ T, hence a = b, which shows that for such antisymmetric sequential
Q-algebras the Qkl

n operations only produce sub-identity relations.
The following list of SQ identities, together with the Boolean identities for

+,−, defines the variety SQ of SQ-algebras. As usual, 1 = −1
,
+ 1

,
, 0 = −1 and

x · y = −(−x + −y). Underlined letters represent ρ-matrices for the appropriate
relation ρ, and for fixed (i, j) ∈ ρ we let x[xij/a] denote the ρ-matrix x with the
ijth entry replaced by a. For a relation ρ on n = {0, 1, . . . , n− 1}, and a function
f : n → m, we let f [ρ] = {(f(p), f(q)) : (p, q) ∈ ρ}.

In the list, (k, l) ranges over ρ, which ranges over rt(n) for n ∈ ω.
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SQ1 (idmap) Q01
2≤

(

1 x
1

)

= x

SQ2 (normal) Qkl
nρ(x[xij/0]) = 0

SQ3 (meet) Qkl
nρ(x) · y = Qkl

nρ(x[xkl/xkl · y])

SQ4 (subid) Qkl
nρ(x) = Qkl

nρ(x[xii/xii · 1
,
])

SQ5 (contract) Qkl
n+1,ρ(x[xij/xij · 1

,
]) = Q

f(k)f(l)
nf [ρ] (t)

where f : n + 1 ³ n, i 6= j, f(i) = f(j), f [ρ] ∈ rt(n) and

tpq =
∏

{xp′q′ : (p′, q′) ∈ ρ, f(p′) = p and f(q′) = q}

SQ6 (rename) Q
f(k)f(l)
mσ (x) ≤ Qkl

nρ(t), where f : n → m is arbitrary, f [ρ] ⊆ σ,
and tpq = xf(p)f(q)

SQ7 (expand) Qkl
nρ(x[xij/xij · Q

k′l′

mσ(y)]) ≤ Qkl
n+m,τ (t), where f(p) = p + n, τ =

(ρ∪f [σ]∪{i, k′}2∪{j, l′}2)∗ (here ∗ denotes the operation of reflexive transitive
closure), and for (p, q) ∈ τ

tpq =



















xpq if (p, q) ∈ ρ

yp−n,q−n if (p, q) ∈ f [σ]

1
,

if {p, q} = {i, k′} or {p, q} = {j, l′}

1 otherwise

SQ8 (insert) Qkl
nρ(x) ≤ Qkl

nρ(x[xij/Q
ij
nρ(x)])

To get a feel for the above identities, it is instructive to check that they hold
in all representable SQ-algebras, i.e. RSQ ⊆ SQ. The main result of this paper
is that the reverse inclusion also holds. The proof is modeled very closely on the
one in [10], but as there are quite a few additional details to be checked it is not
feasible to simply point out the differences. The following lemmas are needed for
the proof.

Lemma 3. Each Qkl
nρ operation is conjugated in each argument: for any (k, l),

(i, j) ∈ ρ ∈ rt(n), n ∈ ω,

Qkl
nρ(x) · y = 0 iff Qij

nρ(t) · xij = 0

where t =

{

x[xkl/xkl · y][xij/1] if (i, j) 6= (k, l)

x[xij/y] if (i, j) = (k, l)
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Proof. Assuming (i, j) 6= (k, l) and Qkl
nρ(x) · y = 0, let s = x[xkl/xkl · y]. Then

Qkl
nρ(s) = 0 by SQ3, so by SQ8 and SQ2

Qij
nρ(s) ≤ Qij

nρ(s[skl/Q
kl
nρ(s)]) = Qij

nρ(s[skl/0]) = 0.

Now we use SQ3 to obtain Qij
nρ(s[xij/1]) · xij = Qij

nρ(s) = 0.
For (i, j) = (k, l) we use SQ3 twice to obtain

Qkl
nρ(x) · y = Qkl

nρ(x[xkl/xkl · y]) = Qkl
nρ(x[xkl/y]) · xkl.ut

Corollary 4. [8] The Qkl
nρ operations are normal and completely additive (hence

monotone) in each argument. Therefore SQ-algebras are Boolean algebras with
operators.

In the abstract setting we can also define term-operations for ;, ., /, using the
same terms as in the representable case:

x;y = Q02
3≤





1 x 1
1 y

1



, x . y = Q12
3≤





1 x y
1 1

1



, x / y = Q01
3≤





1 1 x
1 y

1





It is then easy to check that Lemma 3 implies the Schröder equivalences

(x;y) · z = 0 iff (x . z) · y = 0 iff (z / y) · x = 0.

For (abstract) SQ-algebras we define a weak converse by x∨ = Q01
2

(

1 1
x 1

)

.

Lemma 5. The following identities hold in SQ.

(i) x∨ = x . 1
,

(ii) x; 1
,
= x = 1

,
; x

(iii) 1
,
. x = x

(iv) 1
,∨ = 1

,

Proof. (i) x . 1
,

= Q12
3≤





1 x 1
,

1 1
1



 = Q10
2

(

1 · 1
,
· 1 x

1 1

)

by the contract law with

f = {0 7→ 0, 1 7→ 1, 2 7→ 0}. Using the rename law with {0 7→ 1, 1 7→ 0} followed

by the subid law, we get Q01
2

(

1 1
x 1

,

)

= Q01
2

(

1 1
x 1

)

= x∨.

(ii) We compute the first equality with the contract, subid and idmap laws as
follows:

Q02
3≤





1 x 1
1 1

,

1



 = Q01
2≤

(

1 x · 1
1 · 1

,
· 1

)

= Q01
2≤

(

1 x
1

)

= x.
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The second equality is similar.
(iii) One can compute it directly as in (ii), but it also follows from the Schröder

equivalences since y · (1
,
. x) = 0 iff x · (1

,
;y) = 0 iff x · y = 0.

(iv) This follows from (i) and (iii) with x = 1
,
. ut

3 The representation theorem

Definition 6. Let A be an SQ-algebra, and a ∈ A. Φ is a sequential ultrafilter
network over A for a if Φ : TΦ → Ultrafilters(A) for some relation TΦ ∈ rt(ω)
such that

(i) a ∈ Φ(i, j) for some (i, j) ∈ TΦ,
(ii) 1

,
∈ Φ(i, i) for all i ∈ ω, and

(iii) for any n ∈ ω, (k, l) ∈ ρ ∈ rt(n), (i, j) ∈ TΦ and any ρ-matrix b over A we
have

Qkl
nρ(b) ∈ Φ(i, j) iff ∃u0, . . . , un−1 ∈ ω with i = uk, j = ul,

(up, uq) ∈ TΦ, and bpq ∈ Φ(up, uq) for all (p, q) ∈ ρ.

Lemma 7. Let A be an SQ-algebra, and suppose that for each non-zero a ∈ A
there is a sequential ultrafilter network over A for a. Then A is representable.

Proof. Let Φ be a sequential ultrafilter network over the SQ-algebra A, and for
i, j ∈ ω, define i ≡ j iff (i, j) ∈ TΦ and 1

,
∈ Φ(i, j). We proceed to show that ≡

is an equivalence relation that is compatible with Φ.
By Definition 6(ii), ≡ is reflexive. Suppose that i ≡ j, i.e. (i, j) ∈ TΦ and

1
,
∈ Φ(i, j). It follows from Lemma 5(iv) that Q01

2

(

1 1
1
,
1

)

∈ Φ(i, j), so by Def-

inition 6(iii), there exist u0, u1 such that i = u0, j = u1, (u1, u0) ∈ TΦ and
1
,
∈ Φ(u1, u0). Hence j ≡ i.
Now suppose that i ≡ j and j ≡ k. Then (i, j), (j, k) ∈ TΦ and 1

,
∈

Φ(i, j) ∩ Φ(j, k). By transitivity of TΦ, we have (i, k) ∈ TΦ, and by reflexivity
(i, i), (j, j), (k, k) ∈ TΦ. Since each Φ(p, q) is a filter, 1 ∈ Φ(i, k)∩Φ(i, i)∩Φ(j, j)∩
Φ(k, k). So by Definition 6(iii),

Q02
3≤





1 1
,

1
1 1

,

1



 ∈ Φ(i, k).

Hence 1
,
; 1

,
= 1

,
∈ Φ(i, k) by Lemma 5(iii). This proves i ≡ k.
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Next we show that Φ is compatible with ≡ in the following sense: If i ≡ k,
j ≡ l and (i, j) ∈ TΦ then Φ(i, j) = Φ(k, l). Suppose the assumptions hold. Then
(k, i), (j, l) ∈ TΦ, so by transitivity (k, l) ∈ TΦ. Also 1

,
∈ Φ(k, i) ∩ Φ(j, l) and

1 ∈ Φ(p, q) for all p, q ∈ ω. We show that Φ(i, j) ⊆ Φ(k, l) then equality follows
since they are ultrafilters. Let b ∈ Φ(i, j). By Definition 6(iii)

Q03
4≤









1 1
,
1 1

1 b 1
1 1

,

1









∈ Φ(k, l).

By two applications of the contract law (identifying 0, 1 and 2, 3) this element is

equal to Q01
2≤

(

1
,

b
1
,

)

, which in turn equals Q01
2≤

(

1 b
1

)

by the subid law. Thus the

idmap law implies b ∈ Φ(k, l).
We now let U = ω/ ≡ and define TΦ on U by

([i], [j]) ∈ TΦ iff (i, j) ∈ TΦ

where [i] is the equivalence class of i with respect to ≡. By transitivity of TΦ, this
definition is well-defined, and clearly TΦ is again transitive and reflexive.

Next a representation function g : A → SQ(TΦ) is defined by

g(x) = {([i], [j]) ∈ TΦ : x ∈ Φ(i, j)}.

The compatibility condition ensures that the definition of g is independent of the
choice of representatives. We now show that g is an SQ-algebra homomorphism.

Since Φ(i, j) is an ultrafilter, it follows easily that g commutes with joins and
complementation. Also g(1

,
) = idU since

([i], [j]) ∈ TΦ and 1
,
∈ Φ(i, j) ⇒ i ≡ j ⇒ [i] = [j]

and conversely ([i], [i]) ∈ g(1
,
) follows from the reflexivity of TΦ and Defini-

tion 6(ii).
Finally, the following equivalences show that g commutes with Qkl

nρ.

([i], [j]) ∈ g(Qkl
nρ(b))

iff Qkl
nρ(b) ∈ Φ(i, j) by definition of g

iff ∃u0, . . . , un ∈ ω with i = uk, j = ul, (up, uq) ∈ TΦ and bpq ∈ Φ(up, uq) for
all (p, q) ∈ ρ (Definition 6(iii))
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iff ∃u0, . . . , un ∈ ω with i = uk, j = ul, and ([up], [uq]) ∈ g(bpq) for all (p, q) ∈ ρ
(definition of g)

iff ∃U0, . . . , Un ∈ U with [i] = Uk, [j] = Ul, and (Up, Uq) ∈ g(bpq) for all
(p, q) ∈ ρ (replacing representatives by equivalence classes)

iff ([i], [j]) ∈ Qkl
nρ((g(bpq))) (Definition 6(iii)).

Now, by assumption, for each nonzero a ∈ A there exists a sequential ultrafilter
network Φa which gives rise to a homomorphism ga : A → SQ(TΦa

). So we
define h : A →

∏

a 6=0 Q(TΦa
) by h(x) = (ga(x))06=a∈A. This is easily seen to be a

homomorphism, and by the remark after Definition 2, h maps into (an isomorphic
copy of) a sequential set Q-algebra. Since congruences in Boolean algebra with
operators are determined by ideals, in order to check that h is an embedding,
it suffices to show that for any nonzero b ∈ A, h(b) 6= 0. Fortunately, from
Definition 6(i) we get some (i, j) ∈ TΦb

such that b ∈ Φb(i, j), hence ([i], [j]) ∈
gb(b). ut

We now turn to the question of existence of sequential ultrafilter networks. Let
A be an SQ-algebra. We will build the networks from certain chains of matrices,
which may be viewed as ‘partial representations’. Recall that for a relation σ on
m and a function f : m → n, f [σ] = {(f(p), f(q)) : (p, q) ∈ σ}.

Definition 8. Let σ ∈ rt(m) and ρ ∈ rt(n). For a σ-matrix b and a ρ-matrix c, a
function f : m → n is called an embedding of b into c if f [σ] ⊆ ρ and cf(i)f(j) ≤ bij

for all i, j < m. We also say that c is an extension of b, in symbols b ⊆ c, if such
an f exists.

For ρ ∈ rt(n), c is said to be a ρ-consistent matrix if c is a ρ-matrix and
Qkl

nρ(c) 6= 0 for some (k, l) ∈ ρ.
A first-degree defect of a ρ-consistent matrix c is a pair ((i, j), d)∈ ρ×A such

that cij 6≤ d and cij 6≤ d−. A second-degree defect of a ρ-consistent matrix c is
a triple ((i, j), (k, l), b) ∈ ρ × ρ × Aσ such that cij ≤ Qkl

mσ(b) but there is no
embedding f : m → n of b into c such that f(k) = i, f(l) = j.

The first observation is a simple consequence of Lemma 3, using y = 1 and
then applying the meet law.

Lemma 9. If Qkl
nρ(c) = 0 for some (k, l) ∈ ρ then Qk′l′

nρ (c) = 0 for all (k′, l′) ∈ ρ.

Lemma 10. Any ρ-consistent matrix c with a first-degree defect ((i, j), d) has a
ρ-consistent extension in which ((i, j), d) is not a defect.
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Proof. Consider the ρ-matrices c[cij/cij ·d] and c[cij/cij ·d
−]. Clearly they are both

extensions of c, and since the Q-operations are additive, at least one of them is
ρ-consistent. ut

Lemma 11. Let c be a ρ-consistent matrix, and ((i, j), (k′, l′), b) a second-degree
defect of c. Then there exists a relation τ on n + m − 2 and a τ -matrix d such
that

(i) e : n → n + m − 2 given by e(p) = p is an embedding of c into d,

(ii) ρ ⊆ τ ,

(iii) d is τ -consistent and

(iv) ((i, j), (k′, l′), b) is not a defect of d

Proof. Since ((i, j), (k′, l′), b) is a second-degree defect of c, we have cij ≤ Qk′l′

mσ(b).
Let f : m → n+m be given by f(p) = p+n. We first construct a relation τ ′ which
is the reflexive, transitive closure of ρ ∪ f [σ] ∪ {i, k′}2 ∪ {j, l′}2, and a τ ′-matrix
d′ of size m + n by defining

d′
pq =



















cpq if (p, q) ∈ ρ

bp−n,q−n if (p, q) ∈ σ

1
,

if {p, q} = {i, k′} or {p, q} = {j, l′}

1 otherwise.

Since c is ρ-consistent, 0 6= Qkl
nρ(c) = Qkl

nρ(c[cij/cij ·Q
k′l′

mσ(b)]) ≤ Qkl
n+m,τ ′(d

′) by the
expand law.

We now apply the contract rule twice to d′, first identifying the indices i, k′

and then the indices j, l′. The matrix d is the argument on the right hand side
of the second application of the contract rule, so it follows that Qkl

n+m,τ ′(d
′) ≤

Qkl
n+m−2,τ (d), where τ = f2[f1[τ

′]] and f1, f2 are the two contraction mappings.
Hence d is τ -consistent, and (iv) holds since g = f2 ◦ f1 ◦ f : m → m + n − 2 is
an embedding of b into d which satisfies g(k′) = i and g(l′) = j.

Finally, (i) and (ii) hold since the contraction mappings are identity maps on
the indices 0, . . . , n − 1. ut

We are now ready for the main lemma where the sequential ultrafilter networks
are constructed inductively.

Lemma 12. Let A be a countable SQ-algebra and a and non-zero element of A.
Then there exists a sequential ultrafilter network over A for a.
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Proof. Since we are assuming that A is countable, we can enumerate all possible
first and second-degree defects: let

{C0, C1, . . .} = ω2 × A and

{D0, D1, . . .} = ω2 × ω2 ×
⋃

{Aσ : σ ∈ rt(m), m < ω}.

base step Let c(0) =

(

1 a
1

)

and ρ0 = {(0, 0), (0, 1), (1, 1)}. Since a is assumed

to be non-zero, c(0) is ρ0-consistent by the idmap law.
odd steps Assume that c(2r) and ρ2r have been defined for some r < ω. If c(2r)

has no first-degree defects, let c(2r+1) = c(2r). Otherwise let Cp be the first
first-degree defect of c(2r). By Lemma 10 there is a ρ2r-consistent extension of
c(2r) in which Cp is not a defect, so we define c(2r+1) to be this extension. In
either case we take ρ2r+1 = ρ2r.

even steps As in the previous case, but using second-degree defects and Lemma
11 with ρ2r+2 = τ .

This process gives a chain of relations ρ0 ⊆ ρ1 ⊆ ρ2 ⊆ . . . and a chain of matrices
c(0) ⊆ c(1) ⊆ c(2) ⊆ . . . such that each c(r) is ρr-consistent. By construction we

have c
(s)
ij ≤ c

(r)
ij whenever r ≤ s and (i, j) ∈ ρr. We now define the sequential

ultrafilter network Φ on TΦ =
⋃

r<ω ρr by

Φ(i, j) = {b ∈ A : (i, j) ∈ ρr and c
(r)
ij ≤ b for some r < ω}.

It remains to check that Φ satisfies Definition 6. First we show that Φ(i, j) is an
ultrafilter for each (i, j) ∈ TΦ. Suppose b, d ∈ Φ(i, j). Then there exist r, s < ω

such that c
(r)
ij ≤ b and c

(s)
ij ≤ d. We may assume that r ≤ s, whence c

(s)
ij ≤ b · d,

so b · d ∈ Φ(i, j). Also, 0 /∈ Φ(i, j) since c
(r)
ij 6= 0 for all (i, j) ∈ ρr by the normal

law and ρr-consistency. Clearly Φ(i, j) is upward closed, so we have shown Φ(i, j)
is a proper filter.

Suppose for some d ∈ A, d /∈ Φ(i, j). By construction of TΦ and the sequences
of matrices and relations, there is a stage r < ω such that (i, j) ∈ ρr and the
first-degree defect ((i, j), d) does not occur in c(r) (since every defect is eventually

repaired). Hence c
(r)
ij ≤ d or c

(r)
ij ≤ d−. Since we assumed d /∈ Φ(i, j), we have

c
(r)
ij ≤ d−, so by definition of Φ, it follows that d− ∈ Φ(i, j). Hence Φ(i, j) is an

ultrafilter.
Definition 6(i) is built in at the base step. To see that (ii) holds, observe that

Qkl
nρr

(c(r)) 6= 0 for all r < ω, by ρr-consistency. Since Φ(i, i) is an ultrafilter, it
contains either 1

,
or 0

,
. But the latter is impossible because the subid and normal

law imply that c
(r)
ii · 1

,
6= 0.
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Finally, we need to check (iii). Let m ∈ ω, (k, l) ∈ ρ ∈ rt(m), (i, j) ∈ TΦ

and consider a ρ-matrix b. For the forward direction, suppose Qkl
mρ(b) ∈ Φ(i, j).

Then there exists r ∈ ω such that c
(r)
ij ≤ Qkl

mρ(b). By construction, there exists

s ≥ r such that the triple ((i, j), (k, l), b) is not a defect of c(s). Let n be the
size of c(s). It follows from the definition of second-degree defect that there is
an embedding f : m → n of b into c(s) with f(k) = i, f(l) = j. This means

f [ρ] ⊆ ρs and c
(s)
f(p)f(q) ≤ bpq for all (p, q) ∈ ρ, hence (f(p), f(q)) ∈ ρs ⊆ TΦ and

bpq ∈ Φ(f(p), f(q)) for all (p, q) ∈ ρ as required.
For the reverse direction, suppose there exist u0, . . . , um−1 ∈ ω with i = uk,

j = ul such that (up, uq) ∈ TΦ and bpq ∈ Φ(up, uq) for all (p, q) ∈ ρ. Then, by

construction of Φ, there exists r < ω such that c
(r)
upuq ≤ bpq for all (p, q) ∈ ρ (r is

the maximum of the r’s that exists for each (p, q) ∈ ρ).
Let n be the size of c(r) and d = Qij

nρr
(c(r)). We claim that d ∈ Φ(i, j). If

not, then d− ∈ Φ(i, j), since Φ(i, j) is an ultrafilter. So there would exist an

s < ω such that c
(s)
ij ≤ d− and we may assume that s > r. Hence 0 = c

(s)
ij · d =

Qij
nρr

(c(r)[c
(r)
ij /c

(s)
ij ]) by the meet law. But

0 6= Qij
n′ρs

(c(s)) ≤ Qij
nρr

(c(r)[c
(r)
ij /c

(s)
ij ])

by ρs-consistency, the rename law and monotonicity (here n′ is the size of ρs,
and in the rename law we use f : n → n′ given by f(p) = p). This contradiction
establishes the claim.

Using the rename law again with f(p) = up, and monotonicity, we have
Qij

nρr
(c(r)) ≤ Qkl

mρ(b). Hence Qkl
mρ(b) ∈ Φ(i, j) as required. ut

Theorem 13. The variety SQ of all SQ-algebras coincides with the class RSQ

of all representable SQ-algebras.

Proof. Lemma 7 and Lemma 12 show that countable SQ-algebras are repre-
sentable. The following standard argument extends this result to all SQ-algebras.

Let A be any SQ-algebra, and define LA to be the first-order language with
binary predicate symbols Pa for each a ∈ A. Consider the theory TA given by the
following axioms, where a, b range over A, a ∈ An×n, (k, l) ∈ ρ ∈ rt(n), n ∈ ω.

1. ∀v(P1(v, v)), ∀uvw(P1(u, v) ∧ P1(v, w) → P1(u,w))
2. ∀vw(Pa·b(v, w) ↔ Pa(v, w) ∧ Pb(v, w))
3. ∀vw(P1(v, w) → [Pa−(v, w) ↔ ¬Pa(v, w)])
4. ∀vw(P1

, (v, w) ↔ v = w)
5. ∀vw(PQkl

nρ(a)(v, w) ↔
∃u0 . . . un−1(v = uk ∧ w = ul ∧

∧

(i,j)∈ρ Paij
(ui, uj))).
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A model of TA corresponds to a representation of A, so by the compactness
theorem it suffices to show that each finite subset of TA has a model.

Let F be a finite subset of TA and consider the subalgebra F of A that
is generated by the elements a of A for which the predicate symbol Pa occurs
in F . Since SQ-algebras have only countably many operations, F is countable.
Therefore it is representable, whence its theory TF has a model. To see that this
is also a model of F , it is enough to check that F ⊆ TF. But any sentence in F
contains only predicate symbols that are associated with generators of F, hence
such a sentence also occurs in TF. ut

Corollary 14. An algebra A = (A, +,− , ;, ., /, 1
,
) is a representable sequential

algebra iff it is a subreduct of an SQ-algebra.

If an SQ-algebra satisfies 1∨ = 1 then it is term-equivalent to a Q-algebra.
Thus we can deduce the Stebletsova-Venema result (with a slightly different equa-
tional basis) from the above theorem.

4 Complex algebras of observation spaces

Hoare and von Karger [14] have argued for a general theory of observations that
underlies many different models of process semantics. Extensive discussion, mo-
tivation and examples can be found in [12] [13]. What these models all have in
common is an associative partial composition operation and two unary operations
which map each observation to a left and right unit observation respectively.

Definition 15. An observation space is a partial algebra of the form O =
(O, ; ,−→,←−), where −→, ←− are total unary operations and for all x, y, z ∈ O

(i) x; y is defined iff −→x = ←−y

(ii)
−→−→x = −→x =

←−−→x ,
−→←−x = ←−x =

←−←−x
(iii) ←−x ; x = x and x;−→x = x
(iv) ←−x; y = ←−x and −→x; y = −→y if x; y is defined
(v) (x; y); z = x; (y; z) whenever both sides are defined
(vi) x; y = ←−x implies y; x = ←−y

Conditions (i)-(v) are the axioms of a small category, and (vi) states that
every retraction is an isomorphism. Note that if x; y = ←−x = x; y′ then y; x = ←−y ,

so −→x = −→y; x =
−→←−y = ←−y and similarly −→x =

←−
y′ . It follows that y = ←−y ; y = y; x; y =

y; x; y′ = ←−y ; y′ = −→x ; y′ =
←−
y′ ; y′ = y′, hence there is a unique y with the property

that x; y = ←−x . If such a y exists, it is called the inverse of x and is denoted by
x−1.
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A pair observation space is of the form T = (T, ; ,←−,−→), where T is a reflexive
transitive relation on a set U , and for all (s, t), (u, v) ∈ T ,

(s, t); (u, v) =

{

(s, v) if t = u

undefined otherwise

←−−−
(u, v) = (u, u) and

−−−→
(u, v) = (v, v).

The conjugated complex algebra of an observation space O is

Cmc(O) = (P(O),∪,− , ; , ., /,1
,
)

where for R,S ⊆ O

R;S = {x;y : −→x = ←−y , x ∈ R, y ∈ S}

R . S = {z ∈ O : x; z = y for some x ∈ R, y ∈ S}

R / S = {z ∈ O : z; y = x for some x ∈ R, y ∈ S}

1
,
= {−→x : x ∈ O}

Axiom (ii) of observation spaces implies that 1
,

= {←−x : x ∈ O}. It is almost
immediate that the conjugated complex algebra of any pair observation space is
a representable sequential algebra. The following generalization of this result is
proved by the same approach as Theorem 2 in [5].

Theorem 16. The conjugated complex algebra of any observation space is a rep-
resentable sequential algebra. Hence Var(Cmc(Obs)) = RSeA.

Proof. Let O be an observation space and define E = {−→a | a ∈ O} and D = O\E.
For a binary relation R, let domR = {〈u, u〉 | 〈u, v〉 ∈ R} and rngR = {〈v, v〉 |
〈u, v〉 ∈ R}.

We would like to find a set U and a collection {Ra ⊆ U2 | a ∈ O} of pairwise
disjoint nonempty binary relations on U such that Ra ◦Rb = Ra;b, domRa = R←−a ,
rngRa = R−→a , and idU =

⋃

a∈O R−→a .
The set U and the relations Ra are defined step-by-step using transfinite in-

duction. A detailed discussion of this method for representing relation algebras
can be found in [1] or [2]. Our setting of sequential algebras requires some modi-
fications, and we take a rather informal approach here.

Suppose at the κth step we have an “approximate embedding”, by which we
mean a collection of disjoint relations Ra,κ on a set Uκ such that Ra,κ ◦ Rb,κ ⊆
R(a;b),κ, domRa,κ = R←−a ,κ, rngRa,κ = R−→a ,κ, and Ra ∩ idU = ∅ for a, b ∈ D.

Using the well-ordering principle, we list all the pairs in R(a;b),κ \ (Ra,κ ◦Rb,κ)
for all a, b ∈ D, and proceed to extend Uκ and the Ra,κ so as to eventually obtain
Ra ◦ Rb = Ra;b, where Ra is the union of all the Ra,κ constructed along the way.
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For all a, b ∈ D, and all 〈u, v〉 ∈ R(a;b),κ\(Ra,κ ◦ Rb,κ), choose w /∈ Uκ and let

Uκ+1 = Uκ ∪ {w}

R′
z =

⋃

{Rx,κ ◦ {〈u,w〉} | x; a = z} ∪
⋃

{{〈w, v〉} ◦ Ry,κ | b; y = z}

Ra,κ+1 = Ra,κ ∪ R′
a ∪ {〈u,w〉} (∪{〈w, u〉} if a = a−1)

Rb,κ+1 = Rb,κ ∪ R′
b ∪ {〈w, v〉} (∪{〈v, w〉} if b = b−1)

Ra−1,κ+1 = Ra−1,κ ∪ R′
a−1 ∪ {〈w, u〉} if a 6= a−1 exists

Rb−1,κ+1 = Rb−1,κ ∪ R′
b−1 ∪ {〈v, w〉} if b 6= b−1 exists

R−→a ,κ+1 = R−→a ,κ ∪ {〈w,w〉}

Rz,κ+1 = Rz,κ ∪ R′
z if z ∈ O \ {a, b, a−1, b−1,−→a }.

For limit ordinals λ, we let Uλ =
⋃

κ<λ Uκ and Rx,λ =
⋃

κ<λ Rx,κ for all x ∈ O.

It remains to check that the new relations are still an approximate embed-
ding. In the limit ordinal case this is immediate. In the successor ordinal case,
the relations are pairwise disjoint by construction. For z ∈ E, R′

z = ∅ hence
domRx,κ+1 = R←−x ,κ = R←−x ,κ+1 unless x = a = a−1. In the latter case, ←−a = −→a
implies R←−a ,κ+1 = R−→a ,κ+1 = domRa,κ ∪ {〈w,w〉} = domRa,κ+1. The argument for
rngRx,κ+1 = R−→x ,κ+1 is similar.

Checking the inclusion Rc,κ+1 ◦ Rd,κ+1 ⊆ R(c;d),κ+1 involves several cases, de-
pending on whether c, d ∈ {a, b, a−1, b−1}. Since they are similar, we consider
only the case c, d /∈ {a, b, a−1, b−1}. Let 〈p, q〉 ∈ Rc,κ+1 ◦ Rd,κ+1. Then there ex-
ists r ∈ Uκ+1 such that 〈p, r〉 ∈ Rc,κ+1 and 〈r, q〉 ∈ Rd,κ+1. If r ∈ Uκ then the
conclusion follows from the assumption that Rz,κ is an approximate embedding.
So we may assume r = w (the unique element in Uκ+1 \ Uκ). By construction
〈p, u〉 ∈ Rx,κ for some x such that x; a = c and 〈v, q〉 ∈ Ry,κ for some y such that
b; y = d. Since 〈u, v〉 ∈ R(a;b),κ it follows that 〈p, q〉 ∈ Rx;(a;b);y,κ. By associativity
we have Rx;(a;b);y,κ ⊆ R(x;a);(b;y),κ+1 = R(c;d),κ+1, as required.

Finally, to start the construction take U0 = D ∪D′ where D′ = D ×{0}, and
for each a ∈ D, define a′ = 〈a, 0〉. If a = a−1 exists, take Ra,0 = {〈a, a′〉, 〈a′, a〉},
R−→a ,0 = {〈a, a〉, 〈a′, a′〉} and otherwise take Ra,0 = {〈a, a′〉}, R←−a ,0 = {〈a, a〉}
and R−→a ,0 = {〈a′, a′〉}. It is straightforward to check that this is an approximate
embedding. ut

From the preceding result and Corollary 14 we deduce the following.

Corollary 17. The conjugated complex algebra of any observation space is a
subreduct of an SQ-algebra.
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5 Uncountably many minimal varieties of representable
sequential algebras

In this section we construct an uncountable family of reflexive and transitive
relations on Z, and show that the residuated complex algebras of these pair
observation spaces generate pairwise distinct minimal varieties.

Let S be any subset of negative integers, and define a binary relation TS on
Z by TS = {(m,n) | 0 ≤ m ≤ n} ∪ {(m,−n) | 0 ≤ m ≤ n ∈ S} ∪ idS. It is easy
to check that TS is a partial order, hence it is the universe of a pair observation
space. Let AS be the conjugated complex algebra of this structure.

We first note that each AS is 0-generated, i.e. has no nontrivial subalgebras.
This follows from the observation that the domain operator xδ = (1 / x)1

,
and

range operator xρ = (x . 1)1
,

do indeed compute the domain and range of any
subrelation of TS. So we have idN = id−δ, {(0, 0)} = T ρ−

S , {(1, 1)} = (TS \
{(0, 0)}; TS)ρ− · idN, and so on. Since the structure of each AS can be described
by first-order formulas (involving only ground terms), AS is a subalgebra of any
nontrivial member of HSPu(As), hence Var(AS) is a minimal variety.

Using results from [4] it is also straightforward to check that AS is a dis-
criminator algebra. Finally, for distinct subsets S and S ′, there exist equations
(with no variables) that hold in AS, but not in AS′ . Thus we conclude with the
following result.

Theorem 18. The lattice of subvarieties of representable sequential discrimina-
tor algebras has continuum many atoms.

This is in contrast with the well-known corresponding result about relation
algebras, where there are only three minimal subvarieties [7].
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