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Abstract. This is a survey article on algebraic logic. It gives a historical background
leading up to a modern perspective. Central problems in algebraic logic (like the rep-
resentation problem) are discussed in connection to other branches of logic, like modal
logic, proof theory, model-theoretic forcing and Gödel’s incompleteness results. We focus
on cylindric algebras which are natural algebras of n-ary relations. Relation algebras
(which are algebras of binary relations) are mostly only covered insofar as they relate to
cylindric algebras. Cylindric and relation algebras were introduced by Tarski, hence the
title of the article.

Algebraic Logic

Algebraic logic arose as a subdiscipline of algebra mirroring constructions and
theorems of mathematical logic. It is similar in this respect to such fields as
algebraic geometry and algebraic topology, where the main constructions and
theorems are algebraic in nature, but the main intuitions underlying them are
respectively geometric and topological. The main intuitions underlying algebraic
logic are, of course, those of formal logic. Investigations in algebraic logic can
proceed in two conceptually different, but often (and unexpectedly) closely re-
lated ways. First one tries to investigate the algebraic essence of constructions
and results in logic, at the hope of gaining more insight that could add to his
understanding, thus his knowledge. One can then study certain “particular” al-
gebraic structures (or simply algebras) that arise in the course of his first kind
of investigations as objects of interest in their own right and go on to discuss
questions which naturally arise independently of any connection with logic. But
often such purely algebraic results have an impact on the logic side. Through-
out this article we will have occasion to deal with both types of investigations
(algebraic and metamathematical) and their unexpected and indeed intriguing
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interplay and interaction. Also one of the aims of this article is to see what the
ideas of Boole has led to. Have they borne their full fruit, or not yet? But let us
start with some history.

A Brief History

In the middle of the nineteenth century, George Boole initiated the investigation
of a class of algebraic structures which were subsequently called Boolean algebras.
The theory of these algebras is directly related to the development of the most
elementary part of mathematical logic, namely propositional logic.

As is well known, however, the theory of Boolean algebras can be developed
in a purely algebraic fashion. It has at present numerous connections with several
branches of mathematics - (independence results in) set theory, topology and
analysis - and hence it can be understood and appreciated by mathematicians
unfamiliar with the logical problems to which it owes its birth. The work of Boole
was the starting point for a continuous flow of inquiries into the algebraization
of quantifier logics (like first order logic and infinitary reducts of Keisler’s logic)
which through various intermediate stages led to (but did not end with) the
foundation of the theory of cylindric and polyadic algebras.

The history of the subject is interesting and worth a brief review. It dates
back to the nineteenth century when the pre-modern tradition of algebraic logic
began. De Morgan, in a restive frame of mind, was trying to extend Aristotle’s
syllogistic tradition that had held sway for 2000 years to encompass more complex
situations, when he came across the slightly earlier work of Boole who had come
forward with a highly successful algebra of Propositions. In 1860, de Morgan
published [12] thereby launching an investigation into the algebra of relations.
This developed into the subject now known as algebraic logic though in the
nineteenth century it was known simply as mathematical logic. This work, along
with Frege’s quantifier logic, became the foundation of modern logic and model
theory.

So in the nineteenth century there were basically two approaches to the formal-
ization of quantification in logic. The first (algebraic) approach adopted by Boole
and De Morgan and taken up by Pierce and Schröder led to what we now call
(following Tarski) relation algebra. The other approach due to Frege, and boosted
by Russell and Whitehead in their momentous work Principia Mathematica, be-
came the standard formalism of first order logic with its explicit universal and
existential quantifiers. Both can express quantification, albeit in different ways.

Historians of Mathematical Logic frequently tell us that there are two tradi-
tions, the algebraic tradition of Boole, Schröder, De Morgan and Pierce, arising
from the algebraization of analysis as opposed to the quantification-theoretical
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(or logistic) tradition of Peano, Frege and Russell arising from the development
of the theory of functions. It is said that these two traditions, together with the
independent set-theoretic tradition of Cantor, Dedekind and Zermelo arising out
of the search for a foundation for real analysis in the work of Cauchy, Weierstrass
and others, were united by Whitehead and Russel in their Principia Mathematica
to create Mathematical Logic. However, the dual algebraic and quantification-
theoretic traditions, as a matter of of historical fact, simply did not exist for
logicians at the turn of the century. It is a false retrospective duality which de-
rives from the Principia and is post Principia phenomenon. There was no such
dichotomy in the nineteenth century, algebraic logic was simply the Mathematical
Logic of its time.

Cylindric Algebras

In the twentieth century first order logic was given an algebraic setting by Tarski
in the framework of cylindric algebra. This was a natural outcome of Tarski’s
formalization of the notion of truth in set theory, for indeed the prime examples
of cylindric algebras are those algebras whose elements are sets of sequences (i.e.
relations) satisfying first order formulas.

While relation algebras constitute an algebraization of binary relations, n-
dimensional cylindric algebras are an algebraization of n-ary relations. (Here n
is any (not necessarily finite) ordinal.) Ever since relation and cylindric algebras
were defined, researchers have been investigating the connections between them.
Tarski, Monk and Henkin investigated such connections, [37], [20] Thm 5.3.8.
More recent references include the work of Maddux [33],[34], the work of Németi
and Simon [43], [51], [5] and the work of Hirsch and Hodkinson [25].

Indeed, every cylindric algebra of dimension > 3, has a natural relation algebra
reduct obtained by taking the 2-neat reduct i.e. the essentially 2-dimensional ele-
ments abstracting binary relations, and defining converse and composition using
one spare dimension. Conversely, one can construct cylindric algebras of arbitrary
dimension n, 3 < n ≤ ω from relation algebras that posses what Maddux calls
an n-dimensional cylindric basis [33].

Making another leap into modern perspective, the motivation for studying
the theory of relation algebra and cylindric algebra, or hereinafter algebras of
relations for short, today comes from at least three areas:

(i) Logic (predicate logics, propositional multi-modal logics, dynamic logics.)
(ii) Algebra: the algebraic theory of these algebras is of interest in its own right.

Indeed boolean and cylindric algebras served as a starting point for the (by
now well-developed) theory of discriminator varieties.
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(iii) The theory of relations: relations are of interest in themselves.

The study of algebraic logic can be further motivated by surveying its nu-
merous applications in temporal reasoning, planning data bases, modal logic and
elsewhere, cf. the survey article [40] for an exposition of such applications. Instead,
we prefer to recommend the part of algebraic logic most relevant to our inves-
tigations here as a very well established mathematical procedure-algebraization-
applied to a fundamental entity, viz. a relation.

For this purpose, let us focus for a while on cylindric algebras, which is an
abstraction from algebras (of not necessarily binary) relations. The concept of
cylindric algebras permits the use of algebraic methods in treating two related
parts of mathematics. One of these is a very general kind of geometry associated
with basic set-theoretic notions. Indeed, Andréka, Madarász and Németi have
used their geometric intuition originating from their investigations in the theory of
cylindric algebra to formulate Einstein’s general theory of relativity in first order
logic, an exotic, exciting and novel application of algebraic logic [6]. The other
- as previously mentioned - is the theory of deductive systems in Mathematical
Logic. The two parts are indeed interconnected, because models of deductive
systems (like first order theories) give rise in a natural way to structures within
the set-theoretic “spaces” (set algebras based on these models.)

To illustrate this connection further, let L be any first order relational lan-
guage, i.e. L has no function symbols nor individual constants. Then L has an
infinite countable sequence of individual variables x0, x1 . . . xn : n < ω, logical
constants ¬, =⇒, ∀, ∃, =, and non-logical constants-say a system 〈Ri : i ∈ I〉 of
relation symbols, where Ri is of rank ρi < ω for each i ∈ I. We assume as known
the usual syntactical primitive notions defined in terms of L, e.g. the notions of
a formula, a sentence (formula without free occurrences of variables), the con-
junction φ ∧ ψ of formulas of L, the notion of a formal proof of a formula from
a set of sentences, etc. Now given a set Γ of sentences, sometimes referred to as
a theory, we may call two formulas φ and ψ equivalent under (or modulo) Γ , in
symbols

φ ≡Γ ψ

provided that the biconditional φ ←→ ψ is provable from Γ , in symbols Γ `
φ ←→ ψ. Here ` denotes a standard (complete) proof system. It is easy to check
that the relation ≡Γ is actually an equivalence relation on the set of formulas.
In fact, it is a congruence relation compatible with the boolean operations of
conjunction and negation on formulas. Even more, if we let AΓ denote the set
of equivalence classes under ≡Γ , we find that certain algebraic operations can be
introduced on AΓ which reflect the syntactical operations of building formulas:
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Besides the boolean operations

[φ]Γ + [ψ]Γ = [φ ∨ ψ]Γ ,

[φ]Γ .[ψ]Γ = [φ ∧ ψ]Γ ,

−[φ]Γ = [¬φ]Γ ,

we have
ci[φ]Γ = [∃xiφ]Γ ,

dij = [xi = xj]Γ .

Here, of course, [φ]Γ is the equivalence class of φ under Γ . Note that the con-
gruence relation defined via provability is now compatible with the newly added
operations ci and dij for each i, j < ω. The resulting quotient algebra AΓ thus
associated with L and Γ is one of the fundamental algebras studied in algebraic
logic, and it is in fact the prime source of inspiration of cylindric algebras. It
turns out that many constructions and theorems in logic can be algebraically
reflected using these algebras. For example Γ is complete and consistent if AΓ

is a simple algebra, i.e. has no proper congruences; the theorem that any con-
sistent theory can be extended to a complete and consistent theory is mirrored
by the theorem that any algebra AΓ with |AΓ | > 1 has a simple homomorphic
image. For more on such connections between metalogical notions and algebraic
ones, the reader is referred to [20] Sec. 4.3. The algebra AΓ is referred to as the
Tarski-Lindenbaum cylindric algebra of formulas corresponding to Γ , or simply
an algebra of formulas.

Abstract Cylindric Algebras

The notion of a cylindric algebra is obtained from algebras of formulas by a
process of abstraction. Let α be an ordinal. A cylindric algebra of dimension α,
for brevity a CAα, is an algebra of the form

A = 〈A, +, .,−, ci, dij〉i,j<α

where 〈A, +, .,−〉 is a boolean algebra with + denoting the boolean join, . denoting
the boolean meet and − denoting boolean complementation. The ci’s, i ∈ α, are
unary operations of cylindrifications on A (the domain of A) and the dij’s, i, j ∈
α the diagonal elements are distinguished elements of A. The operation ci is
an abstract version of the unary operation on first order formulas of existential
quantification with respect to the i − th variable xi. The diagonal element dij is
an abstract version of the atomic identity formula xi = xj in first order logic. The
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class CAα of all cylindric algebras of dimension α is axiomatized by finitely many
equational schemata that aim at capturing the essential algebraic properties of
existential quantification and atomic identity formulas (cf. [20] Part I, Def 1.1.1.)
Intuitively, the axioms say the following for all i, j, k ∈ α.

(i) ci is an additive complemented closure operator.
(ii) cicjx = cjcix, i.e. the cylindrifications commute.
(iii) The diagonal elements satisfy the usual axioms one would expect of equality

such as dij · djk ≤ dik (transitivity).
(iv) dij · cix ≤ x for all x ≤ dij.

Axiom (iv) for example is an algebraic version of Leibniz’s law of equality
saying that equal objects are indistinguishable by formulas, i.e.

φ =⇒ vi = vj ` (vi = vj ∧ ∃viφ) =⇒ φ.

That the abstraction from the algebras of formulas to abstract algebras is
indeed sound, is established by the following logical representation Theorem,
which is not very difficult to prove. Loosely speaking, the proof of Theorem 1
consists of simply checking that the postulates characterizing cylindric algebras
form an adequate algebraic transcription of the axioms of any standard complete
system for first order logic, cf. [20] Sec. 4.3 Thm 4.2.28(iii).

Theorem 1. (Tarski) For any algebra A having the same signature as CAω the
following two conditions are equivalent:

(i) A ∼= AΓ for some set of first order formulas Γ .
(ii) A is a CAω such that the set ∆x = {i ∈ ω : cix 6= x} is finite for every
x ∈ A.

Theorem 1 justifies the choice of equations axiomatizing CAα. In the infinite
dimensional case; these equations force locally finite algebras satisfying them to
be isomorphic to algebras of formulas. Historically that was the reason that led
Tarski to stipulate the (by now) official axiomatization of cylindric algebras.

Models and Set algebras.

The other more concrete source of cylindric algebras is that of cylindric set al-
gebras which Tarski introduced as an algebraic counterpart of semantics of first
order logic. Such algebras, the cylindric set algebras, arise naturally from models
of first order theories, and therefore they are closely related to the algebras of
formulas. To explain further the connection of cylindric set algebras to algebras
of formulas, we now turn to semantical notions.
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Fix a first order relational language L. Let M be an L-structure. We take it
as well-known what it means for a sequence s ∈ ωM to satisfy a formula φ in M.
We write M |= φ[s] if s ∈ ωM satisfies φ in M. For φ ∈ L, let φM be the set of
all ω-ary sequences, or assignments, that satisfy φ in M , that is

φM = {s ∈ ωM : M |= φ[s]}.

Then φM is an ω-ary relation on M ; it is a point-set in the ω-dimensional space
ωM , and the set of all these, i.e the set

AM = {φM : φ ∈ L}

is the universe of a cylindric algebra of dimension ω. It is easy to see that AM is a
boolean field of sets; it is closed under intersections and complementation (hence
under unions), for indeed

φM ∩ ψM = (φ ∧ ψ)M ,

and
ωM r φM = (¬φ)M .

Certain set-theoretic operations similar to the classical operations of descriptive
set theory can now be introduced corresponding to the basic non-boolean oper-
ations. In harmony with the notation of Henkin, Monk and Tarski [20], we use
capital letters for the interpretation of the cylindric operations in set algebras:
The i− th cylindrification, algebraizing existential quantification with respect to
the i − th variable, is defined as follows:

Ci(φ
M) = {t ∈ ωM : there exists s ∈ φM such that t(j) = s(j) for all j 6= i}

= (∃xiφ)M .

This is simply the cylinder obtained by moving φM parallel to the i-axis, hence the
terminology of i− th cylindrification. On the other hand, the diagonal elements,
denoted by Dij for i, j ∈ ω, are defined to be the following hyperplanes:

Dij = {s ∈ ωM : si = sj} = (xi = xj)
M .

Now let Γ be an L-theory. Suppose further that M is a model of Γ, i.e. that every
sentence in Γ is true in M . Then this is reflected algebraically by the fact that
AM is a homomorphic image of AΓ via the natural map

[φ]/Γ → φM .
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If ψ is satisfiable in M , then this can be expressed algebraically by the fact
that the image of ψ under the above map is non-zero, for indeed ψM contains a
sequence that satisfies ψ in Γ, i.e. is non-empty.

Having at hand the concrete notion of a cylindric set algebra based on models,
we now make another abstraction from this notion to obtain a more general (but
still concrete) set-theoretic object. There is no reason why we should restrict our
attention to ω-dimensional set algebras. Accordingly, relaxing the restriction of
dimension, a cylindric set algebra of dimension α, α an arbitrary ordinal, and
base U , for short a CsU

α or simply a Csα, when U is clear from context, is an
algebra

A = 〈A,∪,∩, r, Ci, Dij〉i,j∈α

such that A is a boolean field of subsets of αU closed under each Ci and containing
the Dij’s for all i, j ∈ α defined as above replacing ωM by αU and undergoing
the obvious changes.

Note that set algebras can have arbitrary dimensions. It turns out that in
the ω-dimensional case, the cylindric set algebras corresponding to models are
precisely the locally finite regular ones. The property of local finiteness reflects the
fact that such algebras consist of relations that are essentially “finitary”, though
of course the rank of such relations can grow without bound. On the other hand,
A ∈ Csω is regular if for all X ∈ A and s, t ∈ ωU , whenever s and t agree on ∆X,
then s ∈ X implies that t ∈ X. This, in turn, reflects the metalogical property
that if two assignments agree on the indices of the free variables occurring in a
formula, then they both satisfy the formula or none does.

For a detailed and extensive exposition of cylindric set algebras (and related
structures like relativized cylindric set algebras) the reader is referred to Monk’s
survey article [39] and to [21].

The Completeness and Incompleteness Theorems of Gödel
algebraically.

In terms of the concept of a cylindric set algebra, a purely algebraic form of
Gödel’s Completenesss Theorem can now be stated. For that we need to recall
that a subdirect product of a family of algebras is a subalgebra of the product of
this family such that the (natural) projections are onto. A locally finite cylindric
algebra A ∈ CAα is one for which ∆x = {i ∈ α : cix 6= x} is finite for every
x ∈ A.

Theorem 2. (Tarski) If A ∈ CAω is locally finite, then A is isomorphic to a
subdirect product of Csω’s. Furthermore these Csω’s can be chosen to be locally
finite and regular.
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The proof of Theorem 2 is somewhat deeper than that of Theorem 1. In fact,
Theorem 2 is equivalent in ZF (Zermelo-Fraenkel set theory without choice) to
Gödel’s classical Completeness Theorem. As regular locally finite set algebras of
dimension ω are simple, thus Theorem 2 shows that every locally finite algebra
is actually semisimple i.e. isomorphic to a subdirect product of simple algebras.
Since, on universal algebraic grounds, the kernel of a homomorphism is a maxi-
mal ideal if and only if its range is simple, this in turn, is equivalent to that the
intersection of maximal ideals in any locally finite algebra is the trivial algebra.
We note that Halmos’ proof that semisimplicity of (locally finite) polyadic alge-
bras is equivalent to Gödel’s Completeness Theorem was to him a revelation. In
fact, Halmos in [18] was concerned with the algebraization of two of the deepest
theorems in logic; the original formulations and proofs of these justly celebrated
theorems are due to Gödel; these are Gödel’s Completeness and Gödel’s Incom-
pleteness Theorems. The algebraic counterpart of Gödels Completeness Theorem
is semisimplicity of locally finite polyadic algebras, as illustrated in Fact 2, bear-
ing in mind that locally finite polyadic algebras are essentially the same as locally
finite cylindric algebras. Now algebraizing Gödel’s Incompleteness results is more
intricate, and is still (to the best of our knowledge) an unfinished task. However,
Halmos [19] has work in this direction, which we now briefly review. There is
no difficulty in constructing locally finite polyadic algebras, and for that mat-
ter locally finite cylindric algebras, with sufficiently rich structure to mirror the
axiomatic system of complex systems like for example Peano arithmetic or even
the stronger Zermelo-Fraenkel set theory in detail, so that the resulting algebra
is what Halmos calls a Peano algebra. A Peano algebra is adequate to mirror
elementary arithmetic; so for example we can “talk about” recursive functions
in a Peano algebra. Now Gödel’s Incompleteness Theorem says (very roughly)
that in any strong enough formal system to encode recursive functions there are
propositions that are neither refutable nor provable. We recall that a simple al-
gebra is one that has no proper congruences. The algebraic version of Gödels’s
incompleteness Theorem, turns out surprisingly rather simple. It states:

Theorem 3. (Halmos) Not every Peano algebra is simple.

Halmos identifies a Peano algebra with Mathematics, and rephrases his result
in the following pun: “Mathematics is not simple”. We refer the interested reader
to [18] for a very interesting survey of the history of polyadic algebras.

In passing, we note that Tarski and Givant [59] formalized set theory in the
calculus of relations, i.e in relation algebras. A similar task was done by Németi,
when he formalized an essentially undecidable fragment of Peano Arithmetic due
to Tarski and Robinson in the so-called class of semi-associative relation algebras
of Maddux. This interpretation of essentially undecidable fragments of set theory,
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into the calculus of relations, was used to prove undecidability of the equational
theory of several classes of relation algebras, cf. [3]. Recent results on undecid-
ability of various classes of relation and cylindric algebras involve the more so-
phisticated methods of the interpretation of the (undecidable) tiling problem and
the equational theory of semigroups. Conversely, Gödel’s Incompleteness Theo-
rem was used to solve problems in algebraic logic. In cylindric algebra, Gödels’
Incompleteness was used by Németi to show that the (boolean reduct of the) free
cylindric algebras of dimension at least 3 are not atomic. A long-standing open
question here posed by Németi and Maddux is the following:

Open question 1 (Németi-Maddux) Is the equational theory of the diag-
onal free reducts of cylindric algebras of dimension 3, or Df3 for short, strong
enough to encode Peano arithmetic ?

In fact, it is conjectured by Németi that set theory (and not just Peano arith-
metic) might be interpreted in Df3, in the manner of Tarski-Givant [59]. The lat-
ter is also related to the “Finitization Problem” in algebraic logic to be discussed
in a while. Another interesting application of Gödel’s Incompleteness results is
the Németi-Sági result in [42] which shows that the equational theory of Halmos’
polyadic equality algebras is strong enough to “encode” second order Peano arith-
metic; thus the representable polyadic equality algebras cannot be axiomatized
by any reasonable schema, let alone a finite one, which is an interesting contrast
to the classical Daigneault-Monk representation theorem for polyadic algebras
without equality [14].

The algebraization of first order logic, the Representation
problem.

Coming back from this fascinating short detour into the algebraization of Gödel’s
incompleteness results, we turn our attention for a while to the class Lfω of locally
finite CAω’s. Soon in the development of the subject, it transpired that the class
Lfω, the algebraic counterpart of first order logic, has some serious defects when
treated as the sole subject of research in an autonomous algebraic theory. In
Universal Algebra one prefers to deal with equational classes of algebras i.e. classes
of algebras characterized by postulate systems in which every postulate has the
form of an equation (an identity); such classes are also referred to as varieties.

The reason for this preference is the fact that every variety is closed under
certain general operations frequently used to construct new algebras from given
ones; we mean here the operation of forming subalgebras, homomorphic images
and direct products. By a well known theorem of Garrett Birkhoff, the varieties
are precisely those classes of algebras that have all three of these closure prop-
erties. Local finiteness does not have the the form of an identity, nor can it be
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equivalently replaced by any identity or system of identities, nor indeed any set
of first order axioms. This follows from the simple observation that the ultra-
product of infinitely many Lfω’s is not, in general locally finite and a first order
axiomatizable class is necessarily closed under ultraproducts.

When Alfred Tarski introduced cylindric algebras, he introduced them in the
form satisfying (ii) in Theorem 1, and proved the representation Theorem ex-
pressed in Theorem 2. But some modifications in the definition of Tarski’s cylin-
dric algebras seemed desirable. The definition contains certain assumptions which
considerably restrict the applicability of the definition and thus can be dispensed
with. One such is the fixed dimension ω. The other is local finiteness. The restric-
tive character of these two notions becomes obvious when we turn our attention
to cylindric set algebras. We find there are algebras of all dimensions, and set al-
gebras that are not locally finite easily constructed. For these reasons the original
conception of a cylindric algebra has been extended: the restriction to dimension
ω and local finiteness were removed, and the class CAα was introduced.

A central and indeed still active part of research in algebraic logic is the,
vaguely posed, lengthly discussed problem concerning improvements of Theorem
2.

This problem is referred to as The Finitization Problem by the Budapest group
specifically by Andréka and Németi [40] while it is referred to as the Represen-
tation Problem by the London group specifically by Ian Hodkinson and Robin
Hirsch [25]. This problem has invoked extensive amount of research, and is still
a very active part of research in algebraic logic.

Let us try to make the problem a little bit more precise and tangible. To-
wards this end, let RCAα be the class of CAα’s isomorphic to subdirect products
of Csα’s. RCAα turns out to be a variety. The class RCAα is indeed a plausible
“natural” candidate for substituting boolean set algebras in the quest of a Repre-
sentation Theorem for cylindric algebras, analogously to that of Stone. It is easily
seen that every cylindric set algebra of given dimension α < ω is simple (has no
proper congruences) and therefore subdirectly (and directly) indecomposable in
the sense of the general theory of algebras. Hence when discussing the problem as
to which CAα’s are isomorphic to cylindric set algebras, it is natural to restrict
ourselves to subdirectly indecomposable algebras.

On the other hand, as a consequence of a classical theorem of Birkhoff, every
CAα is isomorphic to a subdirect product of subdirectly indecomposable CAα’s.
Therefore we are naturally led to the problem of characterizing those CAα’s which
are isomorphic to subdirect products of set algebras. Henkin, Monk and Tarski
declare that these are the representable algebras, thus the notation RCAα. RCAα

consists of the standard models so to speak. The definition of representability,
without any change in its formulation, is extended to algebras of infinite dimen-
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sion.1 Members of RCAα can be still represented as algebras consisting of genuine
α-ary relations over a disjoint union of cartesian squares, the class consisting of
all such algebras is denoted by Gsα, with Gs standing for generalized set algebras.
Generalized set algebras thus differ from the ordinary cylindric set algebras in
one respect only: the unit of the algebra i.e. the α dimensional cartesian space αU
is replaced everywhere in their construction by any set which is a disjoint union
of arbitrary many pairwise disjoint cartesian spaces of the same dimension. The
class of generalized cylindric set algebras, just as that of ordinary cylindric set al-
gebras, has many features which make it well qualified for representing CAα. The
construction of the algebras in this (bigger) class retains its concrete character,
all the fundamental operations and distinguished elements are unambiguously
defined in set-theoretic terms, and the definitions are uniform over the whole
class; geometric intuition underlying the construction gives us good insight into
the structures of the algebras. Thus there is (geometric) justification that RCAα

consists of the standard models of CA-theory. Its members consist of genuine α-
ary relations. Now, in elementary terms the definition of RCAα runs as follows: A
is representable if and only if for every non -zero x ∈ A there is a homomorphism
h from A onto a Csα such that h(x) 6= 0. Thus Theorem 2 is equivalent to the
statement that every locally finite CAω is representable. But it soon transpired
that the CA axioms (originating from the (complete) axiomatization of locally
finite algebras) do not exhaustively generate all valid principles governing α-ary
relations, when α > 1. More precisely, for α > 1, RCAα is properly contained
in CAα. CAα, for α > 1, is only an approximation of RCAα. Tarski proved that
RCAα is a variety. Henkin proved that RCA2 is finitely axiomatizable. However
for α > 2, the class RCAα cannot be axiomatized by a finite schema of equations
analogous to that axiomatizing CAα, a classical result of Monk [38] to be recalled
below. Furthermore, there is an unavoidable and inevitable degree of complexity
to any (potential) axiomatization of RCAα, as shown by Andréka [1] for any
α > 2. The Finitization Problem is thus the attempt to circumvent or sidestep
such complexity.

If we look at RCAα as the standard models to which the CAα’s aspire, the
Finitization Problem can thus be rephrased as the attempt to capture the essence
of the standard models by thorough “finitary” means, or else find other broader
comprehensible classes of “standard models” that are sufficiently concrete and
tangible and most important of all would exhaust the class CAα, or at worst

1 In this case, however, an intuitive justification is less clear since cylindric set algebras of infinite
dimension are not in general subdirectly indecomposable. In fact, for α ≥ ω no intrinsic property is
known which singles out the algebras isomorphic to set algebras among all representable CAα’s, as
opposed to the finite dimensional case where such algebras can be intrinsically characterized by the
property of being simple.
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possibly a slightly smaller class i.e. a variety that is finitely axiomatizable (by
equations) over CAα.

Possible solutions, the feedback between algebraic logic, modal logic,
finite combinatorics and games. Several different strategies to get round the
obstacle of the non-finite axiomatizability of the class of representable algebras
were evolved.

(1) One promulgated by Tarski especially was to find elegant intrinsic condi-
tions for representability. For example, certain comprehensible subclasses of
abstractly defined CAα’s turn out to be representable. In this connection,
examples include locally finite, dimension complemented, semisimple and di-
agonal algebras of infinite dimension, cf. [20] Theorem 3.2.11. Another sample
of such results in this direction is the classical result of Henkin and Tarski,
formulated as Thm 3.2.14 in [20], that states that any atomic CAα whose
atoms are rectangular is representable. This was strengthened by Andréka et
all [4] by looking at dense subsets consisting of rectangular elements, that
are not necessarily atoms and Venema [58] extended this result to the diag-
onal free case. This approach of finding simple intrinsic sufficient conditions
for representability has continued to the present, and now forms an extensive
field [40].

(2) Another strategy of attacking the Finitization Problem is to define variants
of RCAα, α > 2 that are finitely axiomatizable and are still adequate for
algebraizing first order logic. Such an approach originates with William Craig
[11], and is further pursued by Sain [45], [46], Simon [50] and Sayed Ahmed
[56]. Here the desired class of algebras is looked for in the uncountably many
reducts of Halmos Polyadic algebras, whose equational theory turns out to
be extremely complex from the recursive point of view as shown by Németi
and Sági [42]. The reasoning here is that maybe the negative results we al-
ready mentioned are merely a historical accident resulting from the particular
(far from unique) choice of extra non-boolean operations, namely the cylin-
drifications and diagonal elements. This approach typically involves changing
the signature of CAα by either taking reducts or expansions or perhaps even
changing the signature altogether but bearing in mind that cylindrifications
and diagonal elements are term definable in the new-signature and broadening
the notion of representability allowing representation on arbitrary subsets of
an α-ary relation, rather than just (disjoint unions of) cartesian squares. The
notion of representation here though is unaltered, it is essentially the same: set
algebras, i.e algebras whose universes are sets of sequences with set theoretic
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concrete operations. In particular, the set algebra is completely defined once
its universe is determined.

(3) A classical result of Resek [20] p. 101 that is relevant in this connection
shows that algebras satisfying the CA axioms plus the-so called merry go
round identities, for short, can be represented as relativized set algebras, a
primary advance in development of the theory of CA’s, as indicated in the
introduction of [20]. Resek’s result was polished and “finitized” by Andréka
and Thompson [8] where they replaced the infinite MGR by a finite schema,
but, in the process, had to modify slightly the notion of representability. This
approach of broadening the permissable units is referred to in the literature
as relativization or the non-square approach. The former terminolgy comes
from the Budapest group [35], while the second comes from the Amsterdam
group, in fact it is due to Venema [57]. Relativization might involve adding
new operations that become no longer term definable after relativization, like
for example the difference operator [57]. This approach is related to dynamic
Logic, cf. [2]. Modalizing set algebras yield variants of the n-variable fragment
of first order logic differing from the classical Tarskian view because the unit
W of the set algebra in question may not be of the form of a “square” nU ,
but merely a subset thereof. These mutant logics are under intensive study at
the present time and we cite [2] and [36] as sources.

(4) To get positive results (i.e. finite axiomatizations of the class of representable
algebras), one changes the ontology, i.e. the underlying set theory. This is
done by dropping the axiom of foundation, and adopting an anti-foundation
axiom saying that non-well-founded sets exist. This approach was started
by a question of Maddux answered by Németi and his co-workers. In this
context, Németi proves that solutions to (several versions of) the finitization
problem is independent from Aczel set theory, i.e. ZF (Zermelo Fraenkel set
theory) minus foundation, [47] and [49], which adds a set-theoretic dimension
to the problem. If anything, this suggests the richness of the problem. In
particular, it is proved in [29] that the finitization problem receives a positive
solution in Boffa’s set theory (which is, roughly, “ZF without Foundation
+ Boffa’s anti-foundation axiom”). One of the algebras for which Németi
proves a positive solution, i.e. finite axiomatizability of the true set algebras,
are fork algebras suggested by e.g. Haeberer et al [15]. (These algebras are
definitionally equivalent with Tarski’s quasi-projective relation algebras in e.g.
[59].) Sági [48] also obtains positive solutions for the representation problem
in non-well-founded set theories. Among others, he proves such results for the
cylindric algebraic version CA↑ of the above mentioned expansion of relation
algebras. This class CA↑ of directed cylindric algebras was introduced and
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studied in [41], where it turns out that CA↑ can be applied to some higher
order logics, cf. also Sági [49].

(5) Another more adventurous approach is to “stay inside” ZFC and so to speak
the “CA-RCA infinite discrepancy” and to try to capture the essence of (the
equations holding in) RCAα in as simple a manner as possible. It is not hard
to show that the set of equations holding in RCAα for any α is recursively
enumerable, and indeed, using a well-known trick of Craig, several (recursive)
axiomatizations of RCAα exist in the literature, the first such axiomatiza-
tion originating with Monk, building on work of McKenzie. Robinson’s finite
forcing in Model theory proves extremely potent here as shown by Hirsch
and Hodkinson. The very powerful recent approach of synthesizing axioms by
games due to Hirsch and Hodkinson [25], building on work of Lyndon [30], is
a typical instance of giving an intrinsic characterization of the class of rep-
resentable algebras by providing an explicit axiomatization of this class in a
step-by step fashion. This approach is of a very wide scope; using Robinson’s
finite forcing in the form of games, Hirsch and Hodkinson [25] axiomatize, not
only the variety of representable algebras, but almost all pseudo-elementary
classes existing in the literature, an indeed remarkable achievement. It turns
out, as discovered by Hirsch and Hodkinson, that being a representation of
an algebra can be described in a first order 2-sorted language. The first sort
of a model of this defining theory is the algebra itself, while the second sort
is a representation of it. The defining theory specifies the relation between
the two, and its axioms depend on what kind of representation we are con-
sidering. Thus the representable algebras are those models of the first sort
of the defining theory with the second sort providing the representation. The
class of all structures that arise as the first sort of a model of a two sorted
first order theory is a venerable old notion in Model theory introduced by
Maltsev in the forties of the 20th century, and since studied by Makkai and
others. It is known as a pseudo-elementary class. We mean here a PC∆ class
in the sense of [28] but expressed in a two sorted language. The term pseudo
elementary class strictly means PC∆ when the second sort is empty, but the
two notions were proved to be equivalent by Makkai. Any elementary class is
pseudo elementary, but the converse is not true; the class of α dimensional
neat reducts of β dimensional cylindric algebras for 1 < α < β is an example
[52] and [55]. Another is the class of strongly representable atom structures
and the completely representable ones as proved by Hirsch and Hodkinson in
[23]. Many classes in algebraic logic can be seen as pseudo-elementary classes.
The defining theory is usually finite and simple and essentially recursively
enumerable, since we expect that a Turing machine can write down what we
mean by a representation. A fairly but not completely general definition of
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the notion of representation is just the second sort of a model of a two sorted
(perhaps recursively enumerable) first order theory, the first sort of the theory
being the algebra. Now model theoretic forcing as seen in Hodges in [28] and
indeed the classical Completeness Theorem of Henkin, and his Neat Embed-
ding Theorem to be recalled below, typically involves constructing a model
of a first order theory by a game. The game builds the model step-by-step,
elements of the model being produced by the second player called ∃, in his
response to the first player’s criticism called ∀ [22]. The approach of Hirsch
and Hodkinson is basically to combine the forcing games with the pseudo el-
ementary approach mentioned above to representations to build the second
sort of a model of the defining theory whose first sort is already fixed to be the
algebra whose representability is at issue. Taking the defining theory of the
pseudo elementary class to be given, this defines the notion of representation
to be axiomatized.

(6) Another approach initiated by van Benthem and Venema consists of viewing
the class of cylindric set algebras as complex algebras of Kripke frames that
have the same signature as atom structures of cylindric algebras [57], thus
opening an avenue to techniques and methods coming from modal logic. This
typically involves introducing Gabbay-style rules on the logic side. These ex-
tremely liberal Gabbay-style inference systems correspond to classes that are
inductive i.e. axiomatized by ∀∃ -formulas. An example of such classes is the
class of rectangularly dense cylindric algebras, [4] and [58]. We should men-
tion that this approach is an instance, or rather, an application of the triple
duality, in the sense of Goldblatt [17], existing between abstract modal logic,
Kripke frames or relational structures, and boolean algebras with operators.
In this connection, we refer to the article by Venema in [36] for explaining
and applying this duality to relation algebras and to [3], [35], [57], for further
elaboration on this duality.

(7) There has been work in changing the notion of representation completely,
i.e by representing cylindric algebras using concrete structures other than set
algebras. This includes using quasigroups cf. [20] or sheaves [10]. Andréka and
Givant use groups to represent CA3’s and relation algebras. Simon [51] in
an amazing result proved that any abstract 3-dimensional cylindric algebra
satisfying the MGR can be obtained from a Cs3 by the so-called methods of
twisting and dilation studied in [20] pp. 86-91 which adds to our understanding
as to the distance between the abstract notion of cylindric algebra and its
concrete one, at least in the case of dimension 3. However, Simon had to
broaden Henkin’s notion of dilation to exhaust the class CA3. The analogous
problem for higher dimension is an intriguing open problem. This problem,
due to Leon Henkin is,
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Open Problem 2(Henkin-Simon) Can every CAn, 3 < n < ω be obtained
from a Csn by a finite sequence of the operations of relativization, twisting
(as defined in [20]) and dilation (as defined in [51]) - not necessarily in this
order?

A form of the Representation Problem is to describe properties of the class
RCAα and try to give a useful characterization of it in abstract terms.

Back to classical algebraic logic; Neat Reducts An old result of Henkin
which gives an abstract sufficient and necessary condition for representability fits
here. An algebra A is in RCAα if and only if for every β > α, it can be embedded
as a neat subreduct in some cylindric algebra of dimension β - equivalently using
ultraproducts - into an algebra in ω extra dimensions. This Theorem is referred
to as the Neat Embedding Theorem of Henkin, or NET for short. For α < β,
NrαCAβ stands for the class of α neat reducts of algebras in CAβ as defined in
[20] Definition 2.6.28. In symbols, for any α the NET can be expressed more
succinctly as:

RCAα = SNrαCAα+ω.

Here S is the operation of forming subalgebras. Infinity manifests itself in the
above in the form of ω, and it does so essentially in the case when α > 2, in the
sense that if A neatly embeds into an algebra in finitely many extra dimensions,
then it might not be representable, as shown by Monk. All ω extra dimensions
are needed for representability, one could not truncate ω to any finite ordinal.
The ω extra dimensions play the role of added constants or witnesses in Henkin’s
classical Completeness proof. Therefore it is no coincidence that variations on the
NET lead to metalogical results concerning interpolation and omitting types for
the corresponding logic; such results can be proved by Henkin’s methods of con-
structing models out of constants [54] and [56]. Conversely, the NET (conjuncted
with some form of Ramsey’s theorem) has been applied to prove the following
classical algebraic result of Monk that established the “infinite distance” between
CA’s and RCA’s. Monk’s result marked a turning point in the development of
the subject, and is considered one of the most, if not the most, important Model-
theoretic result concerning cylindric algebras:

Theorem 4. rmLetomegan2andminomega. Then RCAn is properly contained
in NrnCAn+m. In particular, RCAn is properly contained in SNrnCAn+m.

Monk used Ramsey’s Theorem to construct for each m ∈ ω and 2 < n < ω,
an algebra Am ∈ NrnCAn+m that is not representable. The ultraproduct of the
Am’s m ∈ ω, constructed by Monk (relative to any non-principal ultrafilter on
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ω) is in SNrnCAn+ω, hence is representable. Using elementary model theory, it
follows thus that the class RCAn, for ω > n > 2, is not finitely axiomatizable.

The Am’s are referred to in the literature as Monk’s or Maddux’s algebras.
Both authors used them. The key idea of the construction of a Monk’s algebra is
not so hard. Such algebras are finite, hence atomic, more precisely their boolean
reduct is atomic. The atoms are given colours, and cylindrifications and diagonals
are defined by stating that monochromatic triangles are inconsistent. If a Monk’s
algebra has many more atoms than colours, it follows from Ramsey’s Theorem
that any representation of the algebra must contain a monochromatic triangle, so
the algebra is not representable. We note that Monk’s algebras established a very
interesting connection between finite combinatorics and algebraic logic a recurrent
theme in algebraic logic. A recent use - establishing this link - of Monk’s algebras
with a powerful combinatorial result of Erdős has been used to show that the
class of the so called strongly representable atom structures of relation algebras
and 3 dimensional representable cylindric algebras is not elementary [25].

Refinements of Monk’s result

Had it been otherwise, i.e. if for ω > n > 2, RCAn had turned out finitely
axiomatizable by a finite set of equations Σ say, then this Σ would have been
probably taken as the standard axiomatization of CAn. This turned out not to
be the case. As it seemed, the hopes of workers over a hundred years starting
with De Morgan and culminating in Tarski’s work to produce a (simple, elegant,
or at least finite) set of algebraic properties - or in modern terminology - equa-
tions that captured exactly the true properties of n-ary relations for ω > n > 2
were shattered by Monk’s result. This impasse is still invoking extensive research
till the present day, in essentially two conflicting (but complementary) forms.
One form, which we already discussed is to try to circumvent this negative non-
finite axiomatizability result. The other form is to sharpen it. To understand the
“essence” of representable algebras, one often deals with the non-representable
ones, the “distorted images” so to speak. Simon’s result in [51], of “representing”
non-representable algebras, seems to point out that this distortion is, after all,
not completely chaotic. This is similar to studying non-standard models of arith-
metic. Indeed, Monk’s negative result - as far as non-finite axiomatizability is
concerned - stated in Theorem 5 was refined and strengthened by many authors
in many directions. Biro [9] proves that RCAn, ω > n > 2, remains non-finitely
axiomatizable if we add finitely many first order definable operations. Andréka [1]
building on work of Jónsson for relation algebras, proves the same result in case
we add other “kinds” of operations like for example modalities, i.e. operations
distributing over the boolean join, as long as the added operations are finitely
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many. While Biro’s result excludes axiomatizations by a finite set of equations,
Andréka’s, on the other hand, excludes axiomatizations involving universal formu-
las in which only finitely many variables occur. Sági, building on work of Lyndon,
addresses the most general formulation of the problem showing that the Finiti-
zation Problem cannot be solved by adding finitely many permutation invariant
operations in the sense of Tarski-Givant [59], as long as one hopes for particular
(universal) axiomatizations involving only finitely many variables. An important
result in [49] is reducing the Finitization Problem addressing certain expansions
of relation algebras and for that matter cylindric algebras to working inside the
class of relation and cylindric algebras, respectively. Madarász addresses the case
when the (finitely many) added operations are binary and L3

∞ω definable. One
general form of the Finitization Problem for both cylindric algebras and relation
algebras is to the best of our knowledge still open.

Open Problem 3: A more tangible form of the Finitization Problem
(Tarski-Givant-Henkin-Monk-Maddux-Németi)

Can we expand the language of RCAn, ω > n > 2 by finitely many permuta-
tion invariant operations so that the interpretation of these newly added oper-
ations in the resulting class of algebras is still of a concrete set-theoretic nature,
and the resulting class becomes a finitely axiomatizable variety or quasi-variety.

Solutions do exist for the infinite dimensional case [45] and [56]. The require-
ment of permutation invariance defined in the introduction of [45] here is crucial
for it corresponds to the (meta-logical) fact that isomorphic models satisfy the
same formulas, a basic requirement in abstract model theory. This requirement,
seems to keep the problem on the tough side [50]. Without this requirement there
are rather easy solutions to the Finitization Problem for the finite dimensional
case due to Biró, Maddux, and Simon, [9], [34], and [51].

No matter what, there is an unavoidable and inevitable degree of complexity
to any (potential) axiomatization of RCAα, as shown by Andréka [1] for any
α > 2. Venema further shows that such varieties cannot be axiomatized by the
so-called Sahlqvist equations. Hodkinson and Mikulás show that such negative
non-finite axiomatizability results cannot be avoided when we pass to certain
reducts, complementing Andréka’s results in [1] addressing certain expansions.
Hodkinson and Venema show that no axiomatization can be canonical. All this
suggests that the notion of representability for cylindric algebras is unruly, subtle
and difficult to capture. On the other hand, the Finitization Problem (in its
algebraic form) is indeed non-trivial as the following quote from Henkin, Monk
and Tarski in [20] might suggest:

“An outstanding open problem in cylindric algebra theory is that of exhibiting
a class of cylindric algebras which contains an isomorphic image of every cylindric
algebra and hence serves to represent the class of all these algebras, and which
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at the same time is sufficiently concrete and simply constructed to qualify for
this purpose from an intuitive point of view. It is by no means certain or even
highly plausible that a satisfactory solution of this problem will ever be found!
(our exclamation mark).”

Fortunately today the situation seems to be not as drastic! However, it still
involves some open questions. Indeed the three open questions we highlighted are
related to the Finitization Problem. The First problem concerns the Finitization
of Set Theory, while the second and third address the question as to

“How far are the representable algebras - consisting of n-ary rela-
tions n > 2 - from a simple finite axiomatization”?

1 Neat reducts, some recent results.

In a paper written by J. D. Monk in 1991, but published in the Logic Journal
of IGPL in 2000, [39], Hajnal Andréka writes the final survey section on the
subject, to update the article. It is clear from Andréka’s section that among the
important problems that were still open in Algebraic logic are those in Pigozzi’s
landmark paper on amalgamation [44] and two problems, both on neat reducts.
Maddux’s conjecture formulated in [33] is important, too. This conjecture was
confirmed by Hirsch and Hodkinson. In [33], Maddux introduces the notion of
relation algebra of every dimension. The class of relation algebras of dimension n
is denoted by RAn. In the case of n = 3, the class RA3 coincides with Maddux’s
semi-associative relation algebras. RA4 is just the class of relation algebras and
RAω is the class of representable relation algebras. In between RAn ⊆ RAm for
n < m forms a (strict) hierarchy approaching the class of representable relation
algebras. Maddux proves that for 3 ≤ n < m < ω RAn and RAm are distinct.
What remained unresolved was whether RAn+1 is finitely axiomatizable over
RAn, for 4 ≤ n < ω. Maddux conjectures that the answer is no, i.e. RAn+1 is not
finitely axiomatizable over RAn. Hirsch and Hodkinson confirm this conjecture
[24], using the so called Rainbow construction. The Rainbow construction is an
extremely powerful technique in providing counterexamples and has solved major
open problems in the field. For example the Rainbow construction was used to
show that the class of completely representable relation and cylindric algebras
is not first order axiomatizable [23]. We refer the reader to [25] for many other
applications of the Rainbow constructions.

All of Pigozzi’s question are solved in [32]. The two problems on neat reducts
are the consecutive problems 2.11 and 2.12 posed by Henkin, Monk, Tarski in [20].
Hirsch and Hodkinson solve problem 2.12. They show that for 2 < n < ω and
k ∈ ω, SNrnCAn+k+1 is a proper subclass of SNrnCAn+k. Thus the decreasing
sequence CAn ⊇ SNrnCAn+1 ⊇ SNrnCAn+2 · · · converging to RCAn is not only,
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not eventually constant, as proved by Monk, but is in fact strictly decreasing. This
shows that for every 3 ≤ n < m there is a formula built up of n variables that
can be proved using m + 1 variables, but cannot be proved using m variables.
Historically, one motivation for defining the class SNrnCAm, of all subalgebras of
n-dimensional neat reducts of m-dimensional cylindric algebras for n < m < ω,
was connected to proof theory of first order logic. Algebraic logic, via the notion
of neat reducts, is a useful tool for analyzing the number of variables needed in
proofs.

Problem 2.11 in [20], on the other hand, asks whether the class NrαCAβ for
1 < α < β is closed under forming subalgebras. Proved not to be closed under
subalgebras by Németi, the question as to whether it is perhaps closed under
elementary subalgebras appears as problem 4.4 in the monograph [20]. Németi
conjectures that for 1 < α < β, the class NrαCAβ is not closed under elementary
subalgebras, hence is not elementary, i.e. cannot be axiomatized by any set of first
order axioms. In [52] Németi’s conjecture is confirmed. In [53] it is generalized
to other algebras. The notion of neat reducts is an old venerable notion. But
it often happens that an unexpected viewpoint yields new insight. Indeed, the
repercussions of the very seemingly innocent fact that the class of neat reducts is
not closed under forming subalgebras turns out to be enormous. Indeed Henkin
proves that an algebra is representable if it neatly embeds into another cylindric
algebra in ω extra dimensions. In [56] and [54] it is shown that for a class of
representable algebras to have the strong amalgamation property or to consist
exclusively of completely representable algebras, each algebra in this class should
embed neatly into another algebra in ω extra dimensions in a special way. This is
further connected to metamathematical notions like interpolation and omitting
types for variants of first order logics.

2 To sum up

In the history of the development of Algebraic logic, there have been, we believe,
three important turning points. One as mentioned before was in the nineteenth
century when De Morgan set out to find the laws governing binary relations
launching thereby an investigation into algebras of relations. This approach was
taken up by Pierce and Schröder and was put on a modern footing by Tarski.

This brings us to the other turning point. This was in the forties when Tarski
and his school in Berkeley laid down the axioms for relation algebras, and in the
fifties when the modern approach to algebraization of first order logic via cylin-
dric algebras was initiated. At the same time Halmos initiated work on polyadic
algebras. By 1991 when Andréka Németi and Monk edited a volume on Algebraic
Logic, it was thought that a lot of the central problems were fairly understood.
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Quoting Monk: “The relationships between relation algebras, cylindric algebras,
and polyadic algebras is well understood. The representation theory has been
carefully studied, and the relationships between various types of representable
algebras such as cylindric set algebras, has been thoroughly investigated”.

Today it seems that we are at a third turning point. The subject is taking
new turns that is very likely to revive it. Hirsch and Hodkinson introduced Robin-
son’s finite forcing in the form of games in their recent book, showing the power
and elegance of game-theoretic techniques in model theory. Indeed as they illus-
trate in a profusion of ways, games lie very close to some of the most general
and fundamental notions of model theory such as axiomatizability, step-by-step
constructions and even satisfaction of formulas.

Quoting Hodges “It often happens that an unexpected view point yield divi-
dends, and today relation algebras take their proper place as an important tool
of theoretical computer science among other things.”

Following Tarski and Suppes, Andréka, Madarász and Németi applied alge-
braic logic to general relativity [6] an indeed fascinating application of algebraic
logic to geometry and physics. It therefore seems that the ideas of Boole have not
borne their full fruit, yet!
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41. Németi, I., Strong representation theorem for fork algebras, a set theoretical foundation. Logic
Journal of the IGPL 5,1 (1997), 3-23.
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