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Abstract

We explore the usage of the modal possibility operator
(and its dual necessity operator) in qualitative data anal-
ysis, and show that it – quite literally – complements the
derivation operator of formal concept analysis; we also
propose a new generalization of the rough set approxi-
mation operators. As an example for the applicability of
the concepts we investigate the Morse data set which has
been frequently studied in multidimensional scaling pro-
cedures.

1 Introduction

A frequently used operationalisation of data is an

Object 7→ Attribute

relationship. Such operationalisation comes in various
flavours: Examples include deterministic information sys-
tems a la Pawlak [16], the many–valued tables of Lip-
ski [11] and Orłowska & Pawlak [15], in which each ob-
ject is assigned a set of attribute values, the property sys-
tems of Vakarelov [21], or the relational attribute systems
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of Düntsch et al. [5] which incorporate semantical con-
straints. In its most general form, each object of the uni-
verse of discourse is related to one or more attribute val-
ues. Mathematically, one considers structures 〈U, V,R〉,
where U and V are sets, and R ⊆ U × V is a binary re-
lation between elements of U and elements of V . Based
on the existential and universal quantifiers, one can define
mappings 2U → 2V in a natural way, namely,

〈R〉(X) = {y ∈ V : (∃x ∈ X)xRy} =
⋃
x∈X

R(x),

[[R]](X) = {y ∈ V : (∀x ∈ X)xRy} =
⋂
x∈X

R(x),

where R(x) = {y ∈ V : xRy}. In a general mathe-
matical setting, the mapping [[R]] has been called a po-
larity [1]; it is also the derivation operator of formal con-
cept analysis (FCA) [22]. While [[R]] has received some
prominence via FCA, the operator 〈R〉 seems to have
been largely neglected in the study of object–attribute re-
lations. Interestingly, it is the reverse in logical systems,
where 〈R〉 became the widely studied possibility opera-
tor of modal logics associated with Kripke frames 〈U,R〉,
the roots of which go back to the seminal paper by Jóns-
son & Tarski [10]. The operator [[R]] was introduced to
modal logics by Humberstone [9] and Gargov et al. [6],
who called it a “sufficiency operator”. Their aim was to
be able to express “negative” properties of relations such
as irreflexivity, which could not be expressed by the com-
mon modal operators “possibility” and its dual, “neces-
sity”. Apart from the sufficiency operator in FCA, modal–
style operators have been used in data analysis in connec-
tion with rough set approximation [13, 17], where R is an



equivalence relation on U ; here, 〈R〉 can be interpreted as
an upper approximation, and its dual as a lower approxi-
mation, based on the knowledge of the world given by the
classification induced by R. There is a rich literature on
binary relations among objects, induced by information
systems, and we invite the reader to consult [14] for many
examples and details.

Our aim in this note is to explore the possibilities of the
〈R〉 operator and its dual necessity operator [R] in rela-
tional attribute systems, and we shall show that it (quite
literally) complements the derivation operator of FCA.
Along the way, we will propose a new generalization for
the rough set approximation operators. The paper closes
with an application of the concepts to the Morse data set
[18].

2 Definitions and notation

Throughout this paper, U and V are nonempty sets, and
R ⊆ U × V . For unexplained notation and concepts in
lattices and order theory we refer the reader to [4].

A closure operator on U is a mapping cl : 2U → 2U

such that for all X,Y ⊆ U ,

X ⊆ Y ⊆ U ⇒ cl(X) ⊆ cl(Y ), i.e. cl is monotone,
X ⊆ cl(X), i.e. cl is expanding,
cl(X) = cl(cl(X)) i.e. cl is idempotent.

Dually, an interior operator is a mapping int : 2U →
2U such that for all X,Y ⊆ U ,

X ⊆ Y ⊆ U ⇒ int(X) ⊆ int(Y ), i.e. int is monotone,
int(X) ⊆ X, i.e. int is contracting,
int(X) = int(int(X)), i.e. int is idempotent.

If L is a lattice and M ⊆ L, then M is called join–dense
(meet–dense), if every x ∈ L is a join (meet) of elements
of M .

For each x ∈ U we let

R(x) = {y ∈ V : xRy}

be the R-range of x, and

domR = {x ∈ U : xRy for some y ∈ V }

is the domain of R. Furthermore,

R̆ = {〈y, x〉 ⊆ V × U : xRy}

is the converse of R. If f : 2U → 2V , then the dual of f
is the mapping f∂ : 2U → 2V defined by

f∂(X) = V \ f(U \X).

The operators 2U → 2V which we want to consider are
the following:

〈R〉(X) = {y ∈ V : X ∩ R̆ (y) 6= ∅}, (possibility)
[R](X) = {y ∈ V : R̆ (y) ⊆ X}, (necessity)

[[R]](X) = {y ∈ V : X ⊆ R̆ (y)}, (sufficiency)
〈〈R〉〉(X) = {y ∈ V : (−R)̆ (y) ∩ (U \X) 6= ∅},

(dual suff.)

Here, (−R) = {〈x, y〉 ∈ U×V : 〈x, y〉 6∈ R} is the com-
plement of the relation R in U × V . It is well known that
these mappings have the following structural properties:
Let X ⊆ 2U , x ∈ U ; then

〈R〉({x}) = R(x) = [[R]]({x}),
[R](U \ {x}) = V \R(x) = 〈〈R〉〉(U \ {x}),

〈R〉

( ⋃
X∈X

X

)
=
⋃

X∈X

〈R〉(X),

[R]

( ⋂
X∈X

X

)
=
⋂

X∈X

[R](X),

[[R]]

( ⋃
X∈X

X

)
=
⋂

X∈X

[[R]](X),

〈〈R〉〉

( ⋂
X∈X

X

)
=
⋃

X∈X

〈〈R〉〉(X).

Hence, the mappings 〈R〉 and [[R]] are determined by
their action on the singleton sets, and [R] as well as 〈〈R〉〉
are determined by their action on the complements of sin-
gletons.



As an example, suppose that U is a set of students, V
is a set of problems, and aRb is interpreted as “Student a
solves problem b” [7]. If X ⊆ U is a set of students, then
for a problem b we have

b ∈ 〈R〉(X)⇐⇒ Some student in X solves b,
b ∈ [R](X)⇐⇒ Each student who solves b is in X,
b ∈ [[R]](X)⇐⇒ b is solved by each student in X,
b ∈ 〈〈R〉〉(X)⇐⇒ Not all students in U \X solve b.

If we think of qRs as “s is a property which q has”, then,
for each Y ⊆ V , the set [R̆ ](Y ) collects those objects
all of whose properties are in Y , and [[R̆ ]](Y ) is the set
of objects which possess all properties of Y (and possibly
more).

It is not hard to see (and well known) that 〈R〉 and [R],
as well as [[R]] and 〈〈R〉〉 are dual to each other. Further-
more,

[[R]](X) = [(−R)](U \X), 〈〈R〉〉(X) = 〈(−R)〉(U \X).
(1)

We see from (1) that each of the four operators, along
with the complements on U and U×V and the converses,
defines all others. It may be argued that, in principle, ev-
erything is already said, when we consider, for example,
the sufficiency operator [[R]]. As far as the formal Mathe-
matics and the computational aspects go, this may be true;
however, the semantic interpretations of the various oper-
ators differ widely, and it is useful to start with the other
operators if the situation so requires. Indeed, consider-
ing complementation on the relational level adds another
level to the underlying logic; in order to avoid this, the
sufficiency operator was introduced on the language level.

3 Modal operators in data analysis

In the realm of data analysis the sufficiency operator has
received the widest attention of all four modal–style op-
erators via the context of formal concept analysis [22].
There, a context is a triple 〈U, V,R〉, where U, V are
sets, and R ⊆ U × V . If X ⊆ U, Y ⊆ V , the set
[[R]](X) is called intent of X and [[R̆ ]](Y ) is called the
extent of Y . Here, we think of Y as a set of properties,
and X as the set of objects (of our set U of discourse)

which possess these properties. A concept is defined as
a pair 〈X,Y 〉 ∈ 2U × 2V such that [[R]](X) = Y and
[[R̆ ]](Y ) = X . The main theorem of FCA is the follow-
ing:

Proposition 1. [22] LetM = 〈U, V,R〉 be a context, and
set

CM = {〈X,Y 〉 ∈ 2U × 2V : [[R]](X) = Y, [[R̆ ]](Y ) = X}.

Then, CM can be made into a complete lattice by setting∑
i∈I
〈Xi, Yi〉 = 〈[[R̆ ]][[R]](

⋃
i∈I

Xi),
⋂
I∈I

Yi〉,∏
i∈I
〈Xi, Yi〉 = 〈

⋂
i∈I

Xi, [[R]][[R̆ ]](
⋃
i∈I

Yi)〉.

Conversely, a complete lattice L is isomorphic to some
CM , if and only if there are mappings γ : U → L, µ :
V → L such that

{γ(x) : x ∈ U} is join–dense in L,

{µ(y) : y ∈ V } is meet–dense in L,

xRy ⇐⇒ γ(x) ≤ µ(y) for all x ∈ U, y ∈ V.

CM is called the concept lattice of M .

Concept lattices have proved to be quite useful in qual-
itative data analysis, but they are not a panacea, as the
following example shows [7]: Let U be a set of problems,
V be a set of skills, and R ⊆ U × V such that qRs is
interpreted as

Skill s is necessary to solve q, and
the skill set R(q) is minimally sufficient to solve q.

Suppose that X ⊆ U is the set of all problems which
some student t has solved in a test. If one assumes that X
is a true representation of the student’s state of knowledge,
then

1. For each q ∈ X , the student has all the skills to
solve q (no lucky guesses). By our operationaliza-
tion, these are given by R(q); thus, the student pos-
sesses all skills in

⋃
q∈X R(q) = 〈R〉(X). This is a

somewhat conservative interpretation, since the stu-
dent may possess other skills that are necessary, but
not sufficient, to solve an additional problem not in
X .



2. The student actually has solved all problems which
can be solved with the skills in 〈R〉(X) (no careless
errors). Thus, for each q ∈ U , R(q) ⊆ 〈R〉(X)
implies q ∈ X; in other words, [R̆ ]〈R〉(X) ⊆ X .

We shall see in Lemma 2 that [R̆ ]〈R〉(X) is actually a
closure operator; thus, we have [R̆ ]〈R〉(X) = X in this
case, and the true knowledge states are the closed sets
with respect to this operator. More generally, we can re-
gard [R̆ ]〈R〉(X) as an upper bound of the collection of
problems which t is capable of solving. Similarly, if qRs
is interpreted as

It is possible to solve problem q with skill s,

then 〈R̆ 〉[R](X) is a lower bound of the collection of
problems which t is capable of solving.

The usefulness of [[R̆ ]] or [[R]] is somewhat limited
in this context, since [[R]](X) will be small or empty, in
case the student has managed to solve problems which test
different skills.

These considerations lead to the following: If X ⊆ U
and Y ⊆ V we call 〈R〉(X) the span of X , and [R̆ ](Y )
the content of Y . The span ofX is the set of all properties
which are related to some element of X , and the content
of Y is the set of those objects which can be completely
described by the properties in Y . These operators have
the following properties:

Lemma 2. 1. [R̆ ]〈R〉 is a closure operator on 2U .

2. 〈R〉[R̆ ] is an interior operator on 2V .

3. x ∈ [R̆ ]〈R〉(∅)⇐⇒ x 6∈ domR.

Proof. 1. Using (1) and the fact that 〈S〉 and [S] as well
as [[S]] and 〈〈S〉〉 are dual to each other, we obtain

[R̆ ]〈R〉(X) = [[(−R)̆ ]](V \ 〈R〉(X))

= [[(−R)̆ ]]([R](V \X)) = [[(−R)̆ ]][[−R]](X).

It is well known that [[S ]̆][[S]] is a closure operator for
any S ⊆ U × V [22], and thus, so is [R̆ ]〈R〉.

2. follows from the fact that 〈R〉[R̆ ] is the dual of
[R]〈R̆ 〉.

3. x ∈ [R̆ ]〈R〉(∅) ⇐⇒ R(x) ⊆ 〈R〉(∅) ⇐⇒ R(x) ⊆
∅ ⇐⇒ x 6∈ domR.

We call [R̆ ]〈R〉(X) the upper bound of X and
〈R̆ 〉[R](X) the lower bound of X, both with respect to
R.

In related development, Wong et al. [23] define an in-
terval structure as a pair 〈f, g〉 of mappings between two
Boolean algebras which have approximately the proper-
ties of the pair of operators 〈[R], 〈R〉〉.

If U = V and R is a transitive relation on U , then
[R̆ ]〈R〉 = 〈R〉 and 〈R〉[R̆ ] = [R̆ ]; therefore, [R̆ ]〈R〉
coincides with the upper approximation operator and
〈R〉[R̆ ] with the lower approximation operator of rough
set theory.

For reflexive relations, Słowiński & Vanderpooten [20]
propose 〈R〉 as an upper approximation operator. This
definition has the drawback that, unless R is also tran-
sitive, 〈R〉 is not idempotent, so that we may have the
situation that 〈R〉(X) ( 〈R〉〈R〉(X). On the contrary,
[R̆ ]〈R〉 is a closure operator regardless of the properties
of R.

Let us denote the set of all pairs 〈X,Y 〉 with X =
[R̆ ](Y ), Y = 〈R〉(X) by SCM . We now have a fun-
damental theorem for SCM , analogous to Proposition 1:

Proposition 3. SCM becomes a complete lattice by set-
ting ∑

i∈I
〈Xi, Yi〉 = 〈[R̆ ]〈R〉(

⋃
i∈I

Xi),
⋃
i∈I

Yi〉,(2) ∏
i∈I
〈Xi, Yi〉 = 〈

⋂
i∈I

Xi, 〈R〉[R̆ ](
⋂
i∈I

Yi〉(3)

Conversely, a complete lattice L is isomorphic to some
SCM if and only if there are mappings γ : U → L, µ :
V → L such that

{γ(x) : x ∈ U} ∪ {0} is join–dense in L,

{µ(y) : y ∈ V } ∪ {1} is meet–dense in L,

xRy ⇐⇒ γ(x) 6≤ µ(y) for all x ∈ U, y ∈ V.

Proof. This can be inferred from Proposition 1 and the
fact that [R̆ ]〈R〉(X) = [[(−R)̆ ]][[−R]](X).

The result shows that SC〈U,V,R〉 is isomorphic to the
concept lattice C〈U,V,−R〉. The internal structure, as well



as the semantic interpretation of the two lattices are, how-
ever, different. Unlike the extent–intent operators of FCA,
our construction is asymmetric, since we use one operator
into one direction, and its dual in the opposite direction.
Furthermore, for 〈X0, Y0〉, 〈X1, Y1〉 ∈ SCM , we have

〈X0, Y0〉 ≤ 〈X1, Y1〉 ⇐⇒ X0 ⊆ X1 ⇐⇒ Y0 ⊆ Y1,

so that ≤ is isotone in both components.

4 The Morse data

In this Section we will give an example how the modal-
style operators can be applied to relations of similarity.
For related work in a similar context we invite the reader
to consult [2]. The data under investigation, a flagship
of multidimensional scaling, were originally collected by
Rothkopf [18] in the following context:

“The S[ubject]s of this experiment were ex-
posed to pairs of aural Morse signals sent at a
high tone speed. The signals of each pair were
separated by a short temporal interval. The
S[ubject]s were asked to indicate whether they
thought the signals were the same (or different)
by making the appropriate remark on an IBM
True–False Answer sheet. Each S[ubject] was
asked to respond in this fashion to 351 different
pairs of Morse signals.”

The data is given as a matrix, with rows and columns la-
beled by the alphanumeric characters1. An entry s in cell
〈p, q〉 means that s% of subjects regarded the code for
p and q as the same signal. In the sequel, we will refer
to p as the first stimulus or as being in the first position,
and to q as the second stimulus, or as being in the second
position. We use upper case letters for first stimuli and
lower case letters for second stimuli; the numeric char-
acters are prefixed by a ∗, if they occur as second stim-
uli. We emphasize that these are only notational conve-
niences, so that e.g. a andA or 1 and ∗1 correspond to the
same code sequence. The matrix diagonal corresponds to

1The data are available from http://www.eval-institut.
de/data/morsedat.html

pairs which are truly the same, the off-diagonal entries
correspond to pairs which are truly different. It should be
noted that the matrix is not symmetric, and that the entries
in the diagonal are always less than 100. Thus, we have
an example of a non-reflexive asymmetric relation which
expresses some form of similarity.

Shepard [19] describes the data using the dimensions

1. Length of the signal,

2. Distribution of dots and dashes in the signal, going
from only dots to only dashes.

The distances between the points in a plane spanned by
these dimensions reflect (partially) the ordinal relation
among the given proximities.

For various “cut points ” s we consider the relation

Rs = {〈p, q〉 : At least s% of the subjects responded “same”,
when 〈p, q〉 was presented}.

Observe that Rs ⊆ Rt in case t ≤ s.
As the length of the signal is one of the dimension iden-

tified in [19] (and also in [3]), we are interested in the
behavior of the modal–style operators on the sets

Xn = {p : The length of the Morse code for first stimulus p is n},
Yn = {q : The length of the Morse code for second stimulus q is n},

which are given in Table 1.

Disregarding for the moment the cut off parameter, the
equality interpretation of the operators is as follows: If we
start with the first stimuli, in particular the sets Xn, then

q ∈ 〈R〉(Xn) ⇐⇒ q was gauged to be the same as
some first stimulus of length n.

q ∈ [R](Xn) ⇐⇒ q was gauged to be the same only
as first stimuli of length n.

q ∈ [[R]](Xn)⇐⇒ q was gauged to be the same to all
first stimuli of length n, and possi-
bly others.

If we start with a set Y of stimuli at the second position,
we replace R by R̆ , which means that “first” is replace
by “second” in the definition of the sets. Putting these
together, we obtain



Table 1: Distinguished sets

Stimulus (first position) Stimulus (second position)
X1 = {E, T} Y1 = {e, t}
X2 = {A, I,M,N} Y2 = {a, i,m, n}
X3 = {D,G,K,O,R, S, U,W} Y3 = {d, g, k, o, r, s, u, w}
X4 = {B,C, F,H, J, L, P,Q, V,X, Y, Z} Y4 = {b, c, f, h, j, l, p, q, v, x, y, z}
X5 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Y5 = {∗0, ∗1, ∗2, ∗3, ∗4, ∗5, ∗6, ∗7, ∗8, ∗9}

p ∈ [R̆ ]〈R〉(Xn) ⇐⇒ Every signal, which cannot be dis-
tinguished from p cannot be dis-
tinguished from some stimulus of
length n.

p ∈ 〈R̆ 〉[R](Xn) ⇐⇒ Some signals, which cannot be
distinguished from p were gauged
to be the same only to stimuli of
length n.

p ∈ [[R̆ ]][[R]](Xn)⇐⇒Whenever q cannot be distin-
guished from all stimuli of length
n, then q cannot be distinguished
from p.

If we consider cut off points s and t, we interpret, for
example, for a first stimulus p,

p ∈ [Rs̆ ]〈Rt〉(Xn)⇐⇒ Every second stimulus which
could not be distinguished from
p by at least s% of all subjects
could not be distinguished from
some first stimulus of length n by
at least t% of all subjects.

p ∈ 〈Rs̆ 〉[Rt](Xn)⇐⇒ There is a second stimulus q such
that at least s% of subjects gauged
q to be the same as p, and at least
t% of subjects gauged q to be the
same only as stimuli of length n.

A first impression of the difficulties encountered by the
subjects when discriminating the first and second stimuli
is offered by the binary relations R50 and R50̆ , which are
generated, when the probability cut point p = 0.5 is used.
Table 2 presents the results of the operators applied to the
sets Xn of first and Yn of second stimuli. One can see

that applying the sufficiency operators is not suitable for
this situation, since the results are too coarse (see the last
column of Table 2). The combination of content and span
operators seem to be more promising in either direction.

Each signal can be interpreted in two ways – as confus-
ing the first stimulus with the second one and vice versa–,
and we can apply the operators starting with either case.

Stimuli of length 1 or 2 are easily distinguished from
those of different length. Starting with second stimuli of
length 3, we see that none of d, k, s, u is contained in
the lower bound 〈R〉[R̆ ](Y3). When we consider these
signals as first stimuli, then this is not the case, since
〈R̆ 〉[R](X3) = X3. This result is hard to present in ge-
ometrical terms, as the scaling proposed by Shepard [19]
uses a non-metric MDS approach .

Signals of length 4 and 5 are harder to distinguish. We
observe that the signals H and h of length 4, and 6, *6, 7,
*7 of length 5 cause considerable confusion. This cannot
be determined from the geometrical MDS representation.
Indeed, the first stimulus H seems to have the largest dis-
tance of any element of set X4 to the set X5, and thus,
according to the model, not much confusion should arise.

Another interesting stimulus seems to be the Morse

codev of character V, because this code of length 4
is confused with stimuli of length 3 and 5. Therefore, V
should be presented in a “bridging position” in a geomet-
rical presentation.

Variation of the cut point offers further insights. In
Tab. 3 we present the set differences of lower and upper
bound of the signal sets for s = 80, 70, 60, 40. The first
entry in a cell 〈Z, s〉 is the set of elements which are in the
set Z, but not in the lower bound, and the second entry is
the set of those elements which are not in Z, but belong to



Table 2: Modal-style operators applied to Morse data (Cut point p=0.5)

Xn [R̆ ]〈R〉 〈R̆ 〉[R] [[R̆ ]][[R]]
E T e t e t t

E T E T E T
A I M N a i m n a i m n ∅

A I M N A I M N 1
D G K O R S U W b d g h k l o p r s u v w x d g o r s u w ∅

D G K O R S U V W D G K O R S U W 1
B C F H J L P Q V X Y Z b c f h j k l p q v x y z *1 *2 *5 *6 *7 *8 c f j q y ∅

B C F H J L P Q V X Y Z 6 7 C F J P Q X Y Z 1
1 2 3 4 5 6 7 8 9 0 b h v x z *1 *2 *3 *4 *5 *6 *7 *8 *9 *0 *3 *4 *9 *0 ∅

B H V 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 8 9 0 1
Yn [R]〈R̆ 〉 〈R〉[R̆ ] [[R]][[R̆ ]]
e t E T E T E

e t e t e t
a i m n A I M N A I M N ∅

a i m n a i m n 1
d g k o r s u w D G K O R S U W X O R W ∅

d g k o r s u w g o r w 1
b c f h j l p q v x y z B C D F G H J K L P Q S U V X Y Z 4 5 6 7 8 C F L P V Y ∅

b c d f h j k l p q s u v x y z *4 *5 *6 *7 b c f j l p q v x y z 1
*1 *2 *3 *4 *5 *6 *7 *8 *9 *0 B H J Q X Z 1 2 3 4 5 6 7 8 9 0 1 2 3 9 0 ∅

*1 *2 *3 *4 *5 *6 *7 *8 *9 *0 *1 *2 *3 *8 *9 *0 1

Bold letter in “codes”: Letter does not appear in the lower bound.
Bold letter in “[R̆ ]〈R〉”, resp. “[R]〈R̆ 〉”: Letter is added in the upper bound.
The first line in a second column cell is the result when applying the inner operator to the original set, the second line is the result when
applying the outer operator to the first line.

the upper bound of Z. Inspecting the result in Tab. 3, we
observe that the signals 6 and *6 seem to be very hard to
distinguish from the signals of length 4, – an effect which
is worse for *6. Furthermore, 5 and *5 frequently appear
in one of the differences.

Summarising, we recognize the troublesome first stim-
uli 5,6,7 of length 5, B,H,V of length 4 and their second
position counterparts, and, in addition, the second stimuli
{d, k, s, u}.

With respect to the second dimension of the MDS
model, namely, the distribution of dots and dashes, we see
that, except for k, the problematic signals contain more
short than long impulses. A geometric representation has
to present the data in a “long–short” dimension, but –
since the result pattern is asymmetric – the representa-
tion cannot deal with the data in an adequate manner. It
was shown in [12] that in fact an asymmetric “drift” from
short to long can be extracted, when MDS is applied to
“residual proximities”; these can be computed by the dif-

ference of the original data and the estimated symmetric
proximity matrix, which is the base of the classical MDS
approach.2

Therefore, our operator–based qualitative analysis sup-
ports the findings of the MDS model, and offers some ad-
ditional explanations. These are, in short,

• The signal length is the first determining factor for
the discrimination of the stimuli, because:

– Signals of length 1 or 2 are easy to discriminate
from other stimuli.

– Signals of length 3 are easy to discriminate
from other stimuli, if they are located at the first
position.

– Signals of length 3 in the second position over-
lap with signals of length 4. Signals of length

2It is interesting to note that the first MDS approach [19] was pub-
lished in 1963, and the “asymmetric extensions” by Möbus [12] ap-
peared 16 years later.



Table 3: Difference of lower and upper bound given varied cut points in Morse Data

Codes Cut = 0.8 Cut = 0.7 Cut = 0.6 Cut = 0.5 Cut = 0.4
ET ∅, ∅ ∅, ∅ ∅, ∅ ∅, ∅ ∅, ∅
et ∅, ∅ ∅, ∅ ∅, ∅ ∅, ∅ ∅, ∅

AIMN ∅, ∅ ∅, ∅ ∅, ∅ ∅, ∅ ∅, ∅
aimn ∅, ∅ ∅, ∅ ∅, ∅ ∅, ∅ ∅, ∅

DGKORSUW ∅, ∅ ∅, ∅ ∅, ∅ –,V K,–
dgkorsuw ∅, ∅ ∅, ∅ {d, k}, ∅ {d, k, s, u}, ∅ {d, k, s, u}, ∅

BCFHJLPQVXYZ ∅, ∅ ∅, {5, 6} {B,H},{1, 2, 6} {B,H,L, V },{6, 7} {B,F,H,L, V },{K, 2, 3, 4, 5, 6, 7}
bcfhjlpqvxyz ∅,{∗6} {b, h},{∗6} {h},{d, k, ∗4, ∗5} {h},{d, k, s, u, ∗4, ∗5, ∗6, ∗7} {b, f, h, j, l, q, v, x, z},{d, k, s, u, ∗4, ∗5}
1234567890 ∅, ∅ {5, 6},∅ {1, 2, 6},{H} {6, 7},{B,H, V } {2, 3, 4, 5, 6, 7},{B,H, V }

*1*2*3*4*5*6*7*8*9*0 {∗6},∅ {∗6},{b, h} {∗4, ∗5},{h} {∗4, ∗5, ∗6, ∗7},∅ {∗4, ∗5},{f, j, q}

4 overlap mainly with signals of length 5.

• The character of the impulses is of less effect be-
cause a signal must contain mainly short Morse im-
pulses, and should contain at least 4 (first stimuli)
or 3 (second stimuli) Morse impulses to be hard to
discriminate.

• Asymmetric features of the data are reflected by the
construction. There is no need for an extra analysis
of method–dependent “residual matrices”.

5 Discussion

The presented modal operator approach offers a comple-
mentary view of data with respect to derivation operator
of formal concept analysis. In principle, the proposed op-
erators can be derived from concept analysis by applying
the intent–extent operators to −R, and building comple-
ments of the resulting concept sets. This is nice, because
the computation of convolutions of possibility and neces-
sity operators can be performed by programs for concept
analysis, and using the de Morgan rules. Of course, this
does not mean that the proposed analysis based on pos-
sibility and necessity operators is the same as applying
concept analysis, because

• Both proposed operators act asymmetrically, while
intent and extent of FCA are symmetric.

• The combination of 〈R〉 and [R] can be interpreted as
a generalization of rough sets approximations, which
are based on equivalence relations.

Comparing the proposed theory with MDS, we observe
that it offers comparable results, and that these results are
presented in a direct manner: There is no need for a 2-
dimensional representation (which is not even adequate
for Morse data as Shepard [19] remarks), and the risk of
so called divergence artifacts [8] is reduced. It should be
noted, however, that the proposed theory offers a literally
“rough approximation” to the data: Once a cut point p is
chosen, all differences below this cut point are neglected:
It has to be assumed that these differences are not relevant
for further interpretation. This is different to the MDS
approach; there, the rank order of the proximities is used,
which contains more information than taking a simple cut.

Although the proposed theory is nice, handy and appli-
cable from scratch, there is an observation which opens a
box of further questions: Unlike for equivalence relations,
the⊆ ordering on relations is not reflected by the new def-
inition of lower and upper bounds, i.e. R ⊆ S does not
necessarily imply [R̆ ]〈R〉(X) ⊆ [S ]̆〈S〉(X). The ques-
tion arises, which kind of compatibility assumptions must
hold in order for the structural properties of the relations
to generate comparable properties in the results of the op-
erators.
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[20] Słowiński, R. & Vanderpooten, D. (2000). A Gen-
eralized Definition of Rough Approximations Based
on Similarity. IEEE Transactions on Knowledge and
Data Engineering, 12, 331–336.

[21] Vakarelov, D. (1998). Information systems, similar-
ity relations and modal logics. In [14], 492–550.

[22] Wille, R. (1982). Restructuring lattice theory: An
approach based on hierarchies of concepts. In I. Ri-
val (Ed.), Ordered sets, vol. 83 of NATO Advanced
Studies Institute, 445–470. Dordrecht: Reidel.

[23] Wong, S., Wang, L. & Yao, Y. (1995). On modeling
uncertainty with interval structures. Computational
Intelligence, 11, 406–426.



Table 4: Morse data [19]
a b c d e f g h i j k l m n o p q r s t u v w x y z *1 *2 *3 *4 *5 *6 *7 *8 *9 *0

A 92 4 6 13 3 14 10 13 46 5 22 3 25 34 6 6 9 35 23 6 37 13 17 12 7 3 2 7 5 5 8 6 5 6 2 3
B 5 84 37 31 5 28 17 21 5 19 34 40 6 10 12 22 25 16 18 2 18 34 8 84 30 42 12 17 14 40 32 74 43 17 4 4
C 4 38 87 17 4 29 13 7 11 19 24 35 14 3 9 51 34 24 14 6 6 11 14 32 82 38 13 15 31 14 10 30 28 24 18 12
D 8 62 17 88 7 23 40 36 9 13 81 56 8 7 9 27 9 45 29 6 17 20 27 40 15 33 3 9 6 11 9 19 8 10 5 6
E 6 13 14 6 97 2 4 4 17 1 5 6 4 4 5 1 5 10 7 67 3 3 2 5 6 5 4 3 5 3 5 2 4 2 3 3
F 4 51 33 19 2 90 10 29 5 33 16 50 7 6 10 42 12 35 14 2 21 27 25 19 27 13 8 16 47 25 26 24 21 5 5 5
G 9 18 27 38 1 14 90 6 5 22 33 16 14 13 62 52 23 21 5 3 15 14 32 21 23 39 15 14 5 10 4 10 17 23 20 11
H 3 45 23 25 9 32 8 87 10 10 9 29 5 8 8 14 8 17 37 4 36 59 9 33 14 11 3 9 15 43 70 35 17 4 3 3
I 64 7 7 13 10 8 6 12 93 3 5 16 13 30 7 3 5 19 35 16 10 5 8 2 5 7 2 5 8 9 6 8 5 2 4 5
J 7 9 38 9 2 24 18 5 4 85 22 31 8 3 21 63 47 11 2 7 9 9 9 22 32 28 67 66 33 15 7 11 28 29 26 23
K 5 24 38 73 1 17 25 11 5 27 91 33 10 12 31 14 31 22 2 2 23 17 33 63 16 18 5 9 17 8 8 18 14 13 5 6
L 2 69 43 45 10 24 12 26 9 30 27 86 6 2 9 37 36 28 12 5 16 19 20 31 25 59 12 13 17 15 26 29 36 16 7 3
M 24 12 5 14 7 17 29 8 8 11 23 8 96 62 11 10 15 20 7 9 13 4 21 9 18 8 5 7 6 6 5 7 11 7 10 4
N 31 4 13 30 8 12 10 16 13 3 16 8 59 93 5 9 5 28 12 10 16 4 12 4 6 11 5 2 3 4 4 6 2 2 10 2
O 7 7 20 6 5 9 76 7 2 39 26 10 4 8 86 37 35 10 3 4 11 14 25 35 27 27 19 17 7 7 6 18 14 11 20 12
P 5 22 33 12 5 36 22 12 3 78 14 46 5 6 21 83 43 23 9 4 12 19 19 19 41 30 34 44 24 11 15 17 24 23 25 13
Q 8 20 38 11 4 15 10 5 2 27 23 26 7 6 22 51 91 11 2 3 6 14 12 37 50 63 34 32 17 12 9 27 40 58 37 24
R 13 14 16 23 5 34 26 15 7 12 21 33 14 12 12 29 8 87 16 2 23 23 62 14 12 13 7 10 13 4 7 12 7 9 1 2
S 17 24 5 30 11 26 5 59 16 3 13 10 5 17 6 6 3 18 96 9 56 24 12 10 6 7 8 2 2 15 28 9 5 5 5 2
T 13 10 1 5 46 3 6 6 14 6 14 7 6 5 6 11 4 4 7 96 8 5 4 2 2 6 5 5 3 3 3 8 7 6 14 6
U 14 29 12 32 4 32 11 34 21 7 44 32 11 13 6 20 12 40 51 6 93 57 34 17 9 11 6 6 16 34 10 9 9 7 4 3
V 5 17 24 16 9 29 6 39 5 11 26 43 4 1 9 17 10 17 11 6 32 92 17 57 35 10 10 14 28 79 44 36 25 10 1 5
W 9 21 30 22 9 36 25 15 4 25 29 18 15 6 26 20 25 61 12 4 19 20 86 22 25 22 10 22 19 16 5 9 11 6 3 7
X 7 64 45 19 3 28 11 6 1 35 50 42 10 8 24 32 61 10 12 3 12 17 21 91 48 26 12 20 24 27 16 57 29 16 17 6
Y 9 23 62 15 4 26 22 9 1 30 12 14 5 6 14 30 52 5 7 4 6 13 21 44 86 23 26 44 40 15 11 26 22 33 23 16
Z 3 46 45 18 2 22 17 10 7 23 21 51 11 2 15 59 72 14 4 3 9 11 12 36 42 87 16 21 27 9 10 25 66 47 15 15
1 2 5 10 3 3 5 13 4 2 29 5 14 9 7 14 30 28 9 4 2 3 12 14 17 19 22 84 63 13 8 10 8 19 32 57 55
2 7 14 22 5 4 20 13 3 25 26 9 14 2 3 17 37 28 6 5 3 6 10 11 17 30 13 62 89 54 20 5 14 20 21 16 11
3 3 8 21 5 4 32 6 12 2 23 6 13 5 2 5 37 19 9 7 6 4 16 6 22 25 12 18 64 86 31 23 41 16 17 8 10
4 6 19 19 12 8 25 14 16 7 21 13 19 3 3 2 17 29 11 9 3 17 55 8 37 24 3 5 26 44 89 42 44 32 10 3 3
5 8 45 15 14 2 45 4 67 7 14 4 41 2 0 4 13 7 9 27 2 14 45 7 45 10 10 14 10 30 69 90 42 24 10 6 5
6 7 80 30 17 4 23 4 14 2 11 11 27 6 2 7 16 30 11 14 3 12 30 9 58 38 39 15 14 26 24 17 88 69 14 5 14
7 6 33 22 14 5 25 6 4 6 24 13 32 7 6 7 36 39 12 6 2 3 13 9 30 30 50 22 29 18 15 12 61 85 70 20 13
8 3 23 40 6 3 15 15 6 2 33 10 14 3 6 14 12 45 2 6 4 6 7 5 24 35 50 42 29 16 16 9 30 60 89 61 26
9 3 14 23 3 1 6 14 5 2 30 6 7 16 11 10 31 32 5 6 7 6 3 8 11 21 24 57 39 9 12 4 11 42 56 91 78
0 9 3 11 2 5 7 14 4 5 30 8 3 2 3 25 21 29 2 3 4 5 3 2 12 15 20 50 26 9 11 5 22 17 52 81 94


