
Applied Intelligence 13, 285–300, 2000
c© 2000 Kluwer Academic Publishers. Manufactured in The Netherlands.

Probabilistic Pattern Matching and the Evolution of Stochastic
Regular Expressions

BRIAN J. ROSS
Department of Computer Science, Brock University, St. Catharines, Ontario, Canada L2S 3A1

bross@cosc.brocku.ca

Abstract. The use of genetic programming for probabilistic pattern matching is investigated. A stochastic regular
expression language is used. The language features a statistically sound semantics, as well as a syntax that promotes
efficient manipulation by genetic programming operators. An algorithm for efficient string recognition based on
approaches in conventional regular language recognition is used. When attempting to recognize a particular test
string, the recognition algorithm computes the probabilities of generating that string and all its prefixes with
the given stochastic regular expression. To promote efficiency, intermediate computed probabilities that exceed
a given cut-off value will pre-empt particular interpretation paths, and hence prune unconstructive interpretation.
A few experiments in recognizing stochastic regular languages are discussed. Application of the technology in
bioinformatics is in progress.

Keywords: stochastic regular expressions, genetic programming

1. Introduction

Language inference is a classical problem in machine
learning, and continues to be an important and ac-
tive research topic. The basic problem is, given a
set of example behaviours or strings, automatically
infer a corresponding language (grammar, automata,
expression, . . .) which generates or recognizes those
examples. Genetic algorithms (GA) and genetic pro-
gramming (GP) have been applied towards language
inference, with varying degrees of success. Although
successful inference is possible, the generic inference
problem is not entirely well-suited for solution by evo-
lutionary search. There are a number of reasons for
this. For example, some genome encodings do not pre-
serve useful language characteristics during crossover.
Even small local changes to such genomes can be
catastrophic, which does not lend itself well to genetic
reproduction and evolutionary search.

An even more acute weakness is that “all or nothing”
problems such as the language inference problem are
not entirely natural for GP. An acceptable language in-
ference minimally requires that the solution language

correctly recognize all positive test cases, and reject
all negative ones. This essential criteria may also be
supplemented by efficiency concerns, such as a rel-
atively small number of states or grammar rules. The
resulting search space is a difficult one to navigate with
evolutionary techniques, due to these stringent require-
ments for language correctness and completeness. On
the other hand, it is generally recognized in the GP
community that problems which require an “accept-
ably close” solution are typically the best candidates for
successful solution with GP. Pragmatically speaking,
giving the fitness function a larger degree of freedom
for evaluating a successful solution will substantially
increase the chances of the discovery of acceptable
solutions.

This research addresses the inference of stochas-
tic regular languages using genetic programming.
Stochastic languages are formal languages with prob-
ability distribution associated with the language set.
The stochastic language inference problem is similar
to the classical inference problem, with the additional
requirement that the distribution of strings recognized
by the stochastic language conform to some desired



286 Ross

target distribution. At first, this may seem intuitively
more complex than non-stochastic language inference,
since it is unclear what impact the determination of
probability distributions has on the inference. It turns
out, however, that the inclusion of string distributions
can simplify the inference problem. Hypothesized lan-
guages are now allowed to generate erroneous strings
so long as they fall within an acceptably small prob-
ability of occurence. In other words, the use of lan-
guage distributions introduces a more generous degree
of freedom for generated solutions. This is ideal in a
GP setting, as it simplifies the search space substan-
tially for evolutionary search.

The target language used here is a probabilistic reg-
ular expression language, henceforth called Stochastic
Regular Expressions (or SRE). Although theoreti-
cally weaker than stochastic context-free languages
studied elsewhere, it was nevertheless chosen due to
both its amenability to concise GP representation, and
its ability to naturally solve the substantial number
of problems in the “regular language domain”. The
stochastic regular expression language is closely re-
lated to stochastic regular grammars and stochastic
finite automata, the latter commonly referred to as
Hidden Markov Models in the literature.

Some SRE language implementation issues had to be
addressed before GP could be successfully applied to
stochastic regular expression problems. Firstly, an effi-
cient implementation of SRE interpretation was neces-
sary. Interpretation of an SRE expression requires that
the probability of recognizing a given string is gener-
ated. Since intermediate probabilities would be com-
puted during the interpretation of a string, these values
can be used to terminate or prune unproductive inter-
pretation paths whose probabilities are smaller than
some supplied cut-off probability. Given the extensive
testing that is necessary during fitness evaluation, such
pruning greatly increases the speed of GP runs. The
SRE language is implemented in a grammatical GP
system, which permitted the use of syntactic language
constraints to further enhance evolution efficiency.

Two example experiments proved that probabilistic
language inference is indeed possible with SRE and GP.
The more complex of these experiments indicated that
the complex search space often resulted in premature
convergence. A minor language enhancement to this
experiment resulted in failed inferences by the GP sys-
tem. From this experience, it can be deduced that the
fitness evaluation strategy used here is not a general
purpose solution to all stochastic language problems,

but rather, is suitable to a class of stochastic regular
languages whose members are structurally related to
one another.

An outline of the paper is as follows. Related work
is reviewed in Section 2. Section 3 defines the syn-
tax and semantics of the stochastic regular expression
language, and discusses the algorithm for processing
SRE expressions. Section 4 outlines the genetic pro-
gramming system used. Two example experiments are
discussed in Section 5. A discussion and future direc-
tions conclude the paper in Section 6.

2. Related Work

Formal language induction has a long history as a fun-
damental problem in machine learning [1–4]. The spe-
cialized topic of stochastic languages has also been
studied for some time [5]. A stochastic grammar differs
from a conventional grammar in that each grammar rule
is marked with a probability associated with its use, and
the set of probabilities for a grammar encode a prob-
ability distribution for the resulting derived language.
[6] has an extensive treatment of stochastic grammars,
their derivation, and their application in pattern recog-
nition. Stochastic grammars are also more complex
than their non-stochastic kin, as the distributions in-
herent with the language introduce a new dimension
of membership criteria. For example, all context free
languages are also stochastic context free languages
(all probabilities are 1); however, there may be many
stochastic context free languages having essentially the
same membership set, but vastly different distributions
over that set. Language equivalence issues are therefore
more discriminating than in a non-stochastic setting.
Stochastic context free languages enjoy both expres-
sitivity and tractable properties, for example, the ex-
istence of useful inference algorithms [7]. They have
also found practical use in language processing [8].

Stochastic regular languages, albeit descriptively
weaker than stochastic context-free languages, have
also found their practical niche in applications. Reg-
ular languages are definable by finite automata, regu-
lar grammars, and regular expressions [9]. Similarly,
stochastic regular languages are defined by stochastic
versions of these three representations. Examples of
work in stochastic grammar inference are in [10–13].
Stochastic finite automata are defined in terms of
Hidden Markov Models (HMM) [14]. An HMM is a
finite automaton with probabilities marking the transi-
tion links between nodes. Each node is connected to all



Stochastic Regular Expressions 287

other nodes, and so the network itself is maximally con-
nected. When particular transitions are not required,
the probabilities associated with those nodes are set to
zero. HMMs have found extensive use in language and
speech processing [8, 15]. Strangely enough, stochastic
regular expressions have not been extensively studied;
one example paper is [16].

Language inference has been successfully done us-
ing genetic algorithms (GA) and genetic programming
(GP). The distinguishing difference between GA and
GP approaches is one of denotation: a pure GA uses
a binary encoding for the genome, while a GP uses a
variable-sized parse tree. Some of the following use
encodings with characteristics of both approaches.

With respect to regular languages, an early work in
evolving finite automata is by Zhou and Grefenstette
[17]. They used a GA with a binary encoding of the
automata as a set of state transitions, capped at a size
of 8 states. A weakness of this encoding is that the rep-
resented automata are susceptible to destructive effects
during crossover and mutation. Their unspecified fit-
ness function scores language performance (ability to
accept positive strings and reject negative examples)
and automata size.

Dunay et al.’s approach [18] is similar to [17], ex-
cept that finite automata are denoted in GP-style nested
S-expression notation.

Dupont [19] proposes an automata-theoretic parti-
tion representation for regular languages. This has the
advantage of preserving language properties of chro-
mosomes during GA reproduction, unlike the more
fragile FA represention in [17]. His fitness function
scores both language performance and automata size.
He successfully evolved a large set of regular lan-
guages, including the benchmark Tomita languages
[20].

Brave [21] uses an abstract “cellular encoding” rep-
resentation for deterministic FA’s, which builds the
network structure of a FA during interpretation. The
intention of this denotation is to preserve structural
properties of a language during evolutionary repro-
duction. His automata are embellished with boolean
operators which permit automata composition. The fit-
ness function tallied the number of correctly classified
sentences. All but one of the Tomita languages were
successfully inferred using this technique.

Longshaw [22] adopts a straight-forward state-
transition representation for automata. However, his
GA uses a population seeded with correct but overly
general automata. Specialized reproduction operators

manipulate automata by duplicating or refining states.
The overall intention is to refine the general automata
into a more specific one for the language in question.
His fitness function scores example classification per-
formance and automata size.

Svingen [23] applies GP on regular expressions.
Regular expressions are directly encoded as program
trees, and fitness is based on correct example classifi-
cation. He successfully evolved the Tomita languages.

Context-free languages have also been studied.
Wyard [24] uses a GA to evolve context-free gram-
mars. Chromosomes takes the form of lists of pro-
duction rules, which guarantees correctness at all
times. The fitness function scores example classifica-
tion performance. Two simple CFG’s were successfully
evolved.

Lankhorst [25] applies a vector encoding to repre-
sent grammar productions. His fitness function is more
involved than most others, as it scores example classi-
fication performance, the length of substrings of exam-
ples correctly classified, the degree of determinism of
grammars, and the ability of the grammar to generate
correct strings not included in the example set. These
additional evaluation considerations give the GA more
information with which to drive evolution. He applied
the GA to a number of CFG and regular languages.

Lucas [26] suggests a binary-encoded normal form
for CFG productions, which preserves language prop-
erties during reproduction, and promotes convergence.
His fitness strategy scores example classification and
grammar size.

Sen and Janakiraman [27] apply a GA towards in-
ferring deterministic pushdown automata, which is an
alternative to the grammar representation for CFG’s.
Fitness scores example recognition performance, and
whether the PDA attempts to erroneously ‘pop’ an
empty stack. Lankhorst [28] extends this idea towards
nondeterministic pushdown automata. His fitness ad-
ditionally considers prefix sizes and the stack size after
a string has been consumed.

Dunay and Petry [29] utilize a Turing machine repre-
sentation in their GA experiments. Although this pow-
erful notation can denote the entire set of languages in
the Chomsky hierarchy, it does not necessary mean that
search will be easy to accomplish, given the inherent
enormity of the search space in question. To solve some
relatively simple examples of regular, context-free and
context-sensitive languages, they used a compositional
approach, in which the GA had access to TM building
blocks evolved in earlier runs.



288 Ross

Finally, the evolution of stochastic languages has
been studied. Schwehm and Ost [30] use a GA for
evolving stochastic regular languages. Two different
encodings are studied—production rules with probabil-
ities, and quotient automata. The fitness function uses
grammar complexity (number of productions), a modi-
fiedχ2 test for distribution conformance, and a measure
of the grammar’s ability to accept prefixes of the target
grammar. A few experiments were performed, and their
GA performance compares well with standard regular-
language inference algorithms.

Kammeyer and Belew [31] investigate the applica-
tion of GA’s to evolve stochastic context-free gram-
mars. They use a liberal representation for grammars
in which correct grammars are parsed from the genome
when evaluated; this permits intron or junk material
to be included in chromosomes. The fitness func-
tion evaluates the size of test example prefixes con-
sumed by a grammar, and uses cross-entropy to eval-
uate distribution conformance. They also use a local
search technique for finding production probabilities
during evolution. A couple of CFG’s were successfully
evolved.

3. Stochastic Regular Expressions

3.1. Language Definition

The target language for the GP system is stochastic reg-
ular expressions, or SRE. The language is very similar
to one in [16], which is used for modeling the quali-
tative behaviour of stochastic discrete event systems.
Amongst other properties, they prove that probabilistic
regular language operations such as choice, concate-
nation, and Kleene-closure forms a closed language,
and hence an algebra. Although a few basic properties
will be illustrated here, the reader is referred to [16] for
further details. It is assumed the reader is familiar with
basic concepts from formal language theory [9].

Two language variations, SRE and Guarded SRE (or
gSRE), are used. We first define SRE. Letα range
over alphabet

∑
, E range over SRE expressions,n

range over positive integers (0≤ n ≤ 1000), andf
range over decimal values with a precision of 2 dec-
imal places (0≤ f < 1.00). The syntax of SRE is
recursively defined as:

E ::= α
∣∣∣∣∣ ∑

i

Ei (ni )

∣∣∣∣∣ E1 : E2 | E∗ f | E+ f

Without loss of generality, the empty stringε is not
included in the alphabet.

The operators have the following meaning:

1. Atomic actionα: The actionα is generated.
2. Choice

∑
i Ei (ni ): This denotes a probabilistic

choice of terms. Each choice expressionEi can be
chosen with a probability:

ni∑
j n j

For example, given the expressionE1(3) + E2(5),
the termE1 can be chosen with a probability of 3/8
andE2 with a probability of 5/8.

3. Concatenation“ E1 : E2”: Term E1 is interpreted,
followed by that ofE2.

4. Kleene Closure E∗ f : TermE can be repeatedly exe-
cuted 0 or more times, and each iteration occurs with
a probability of f . The probability ofE terminating
execution is 1− f .

5. +Closure E+ f : TermE executes once, after which
it repeatedly executes 0 or more times using
the same probability scheme as Kleene closure.
+Closure is an abbreviation for the following:

E+ f ≡ E : E∗ f

The Guarded SRE language is identical to SRE, ex-
cept that a guarded choice operator is used instead
of the general choice in 2 above:

6. Guarded Choice
∑

i E′i (ni ), whereE′ = (αi : Ei )

or E′ = αi , and∀αi , α j :αi 6= α j : Here, each term
in the choice expression is either prefixed with a
unique atomic action that is found nowhere else
in the expression, or consists of a unique action
by itself. This makes guarded choice deterministic,
unlike SRE’s nondeterministic choice.

Note that, even with guarded choice, gSRE is still a
nondeterministic language, since the closure operators
are nondeterministic. The rest of the discussion in this
section pertains equally to both SRE and gSRE.

A derivation of a conventional regular expression
E is the set of sentences, or strings over the alpha-
bet, derivable from it. This defines the languageL(E)
of E. This notion of language derivation is similarly
applicable to SRE, except that each string has a proba-
bility value associated with it, and hence the language
itself is associated with a probability distribution of its
members.

Alternatively, an intuitive way to consider SRE
expressions is that every expression defines a specific



Stochastic Regular Expressions 289

probability function over strings in6∗:

E :6∗ → p (0≤ p ≤ 1)

Using a denotational semantics style of representation
[32], the probability function for SRE expressionE
is denoted by [[E]], and its application to a particular
strings is denoted [[E]]s, which denotes the probability
associated with strings in the languageL(E).

A probability function model of SRE is now given.
Let s= α1, .. αn ∈ 6∗.

• Atomic actions:

[[α]]β = 1 if α = β
[[α]]β = 0 if α 6= β (1)

• Choice (including guarded choice):[[∑
i

Ei (ni )

]]
s=

∑
k

(
nk∑
j n j
· [[ Ek]]s

)
(2)

Since every term might recognizes, the overall prob-
ability for a choice expression is the sum of all the
term probabilities with respect tos.
• Concatenation:

[[ E1 : E2]]s =
n∑

i=1

([[ E1]]α1.. αi · [[ E2]]αi+1.. αn)

+ [[ E1]]s · [[ E2]]ε

+ [[ E1]]ε · [[ E2]]s (3)

In the first summation,s is decomposed into two
substrings, each of which may be consumed by a
concatenated expression. Even though one term may
recognize its substring argument, if the other term
does not recognize its respective substring, then that
term returns a probability of 0, and the overall prob-
ability for that instance of decomposition is 0. The
rest of the formula represents the cases when one
entire expression consumess, while the other con-
sumesε. If these other cases do not succeed, then
they return 0.
• Kleene closure:

[[ E∗ f ]]ε = 1− f

[[ E∗ f ]]s =
n∑

i=1

( f · [[ E]]α1.. αi−1 · [[ E∗ f ]] × αi .. αn)

+ f · [[ E]]s · [[ E∗ f ]]ε s 6= ε (4)

The first formula accounts for empty strings, as the
only way an iterated expression should recognize an
empty string is by not iterating. The other formula
recursively defines the general case. Here, one iter-
ation of E will consume some portion ofs, and the
rest ofs is consumed by further iterations. The final
term in this formula represents when the first itera-
tion consumes the entire string. It is assumed that an
iteration of a loop always consumes some non-empty
string. Otherwise, the semantic model would have to
account for Kleene closure iterating indefinitely on
an argument, which is not useful behaviour.
• +Closure:

[[ E+ f ]]s =
n∑

i=1

([[ E]]α1.. αi · [[ E∗ f ]]αi+1.. αn)

+ [[ E]]s · [[ E∗ f ]]ε (5)

This is similar to the non-empty argument formula
for Kleene closure, except that the expressionE will
consume part of the string before iterations com-
mence. This can be seen by the lack off value in
the formula.

The nondeterministic nature of regular expressions is
modeled in the above by multiple argument decompo-
sition in the concatenation and closure operators. Non-
determinism can also arise in the (nonguarded) choice
operator.

Membership in SRE is reflected by SRE expressions
returning non-zero probabilities for particular strings:

s ∈ L(E) iff [[ E]]s > 0

s 6∈ L(E) iff [[ E]]s = 0

Definition 3.1. All probability functionsp f must ad-
here to the following two characteristics [33]:

(i) for all xi in the sample space of the experiment:∑
i

p f (xi ) = 1 (6)

(ii) For every eventxi :

0≤ p f (xi ) ≤ 1 (7)

Consequently, if SRE expressions are to define well-
formed probability functions, all expressions must sim-
ilarly respect these requirements.



290 Ross

Theorem 3.1. The SRE operators are well-formed
probability functions.

Proof: The proof uses structural induction on SRE
expressions. We show conditions (i) and (ii) of Defini-
tion 3.1 hold for all operators. Lets ∈ 6∗.

(a) Atomic actions: trivially.
(b) Choice: (i) From Eqs. (2) and (6):

∑
i

∑
k

(
nk∑
j n j
· [[ Ek]]si

)

By the induction hypothesis,∑
i

[[ Ek]]si = 1.

Thus we have,∑
k

nk∑
j n j
= 1.

(ii) From Eq. (2), the greatest value for the sum

∑
k

(
nk∑
j n j
· [[ Ek]]s

)

occurs when [[Ek]]s = 1 for all k. In this case, the
sum reduces to ∑

k nk∑
j n j
= 1

Equivalently, when all [[Ek]]s= 0, the summation
is zero. And when any 0< [[ Ek]]s < 1, the re-
sulting summation is a fraction between 0 and 1.
Hence it is a probability.

(c) Concatenation: (i) From Eq. (6):∑
i

[[ E1 : E2]]si

Using Eq. (3), becausesi ranges over all6∗, this
becomes: ∑

i, j

[[ E1]]si · [[ E2]]sj

This translates to:(∑
i

[[ E1]]si

)
·
(∑

j

[[ E2]]sj

)

By the induction hypothesis, this simplifies to:

1 · 1= 1.

(ii) Given a concatenation,

[[ E1 : E2]]s

By the induction hypothesis, each ofE1 and E2

return probabilities 0≤ pi ≤ 1 (i = 1, 2). Hence
their productp1 · p2 must likewise be a probability.

(d) Kleene closure:
(i) Starting with Eq. (6):∑

i

[[ E∗ f ]]si

Using Eqs. (4), it translates as follows:

= [[ E∗ f ]]ε +
∑

i

[[ E∗ f ]]si (si 6= ε)

= (1− f )+
∑

i

f · [[ E]]s′i · [[ E∗ f ]]si (si 6= ε)

By the inductive hypothesis:∑
i

[[ E∗ f ]]si = (1− f )+ f · 1 ·
∑

i

[[ E∗ f ]]si

Doing some algebraic manipulation:

f
∑

i

[[ E∗ f ]]si −
∑

i

[[ E∗ f ]]si = f − 1∑
i

[[ E∗ f ]]si ( f − 1) = f − 1∑
i

[[ E∗ f ]]si = 1

Note that the division byf −1 is permitted because
f < 1 by definition.

(ii) By induction on the length of a strings, it
can be shown that

0≤ [[ E∗ f ]]s ≤ 1

The base case is whens = ε, in which case the
probability isp = 1− f from the first equation in
(4), and 0< p ≤ 1. For an arbitrarys 6= ε, the
probability from the second equation in (4) is:

n∑
i=1

( f · [[ E]]α1.. αi−1 · [[ E∗ f ]]αi .. αn)

+ f · [[ E]]s · [[ E∗ f ]]ε



Stochastic Regular Expressions 291

By incorporating the second term into the first
term’s summation, this is rewritten:

n∑
i=1

( f · [[ E]]α1.. αi · [[ E∗ f ]]αi+1.. αn)

whereαmαn = ε whenm > n. By the inductive
hypothesis overs,

∑
i [[ E∗ f ]]αi+1.. αn is a proba-

bility. Furthermore, by the structural induction of
expressions,

∑
i [[ E]]α1.. αi is a probability. Hence

their product withf is a probability.
(e) +Closure: Similar to (c) and (d) above. 2

3.2. Implementation of an SRE Processor

Given a regular expression, determining whether par-
ticular strings are members of its language is a tractable
problem [9, 34]. There are different ways in which this
may be performed. One technique is to convert the
regular expression into an equivalent nondeterminis-
tic finite automaton, which can be done in polynomial
time. Once this is done, a graph-searching algorithm
reads a string character by character, marking states
of the FA that are still elligible as paths towards an
acceptance state. An advantage of the FA approach is
that the nondeterministic FA can be polynomially-time
translated into a deterministic FA, which will then have
more efficient recognition characteristics during lan-
guage recognition.

Alternatively, regular expressions can be symboli-
cally interpreted directly. The behaviour of each reg-
ular expression operator has a corresponding opera-
tional semantics, which can be used to define a regular
expression interpreter. This may be done from the per-
spective of either language generation or language ac-
ceptance. One technical requirement of the expression
interpretation approach is that the interpreter must be
able to handle the nondeterministic nature of expres-
sion derivations, since regular expressions are naturally
nondeterministic in nature. The expression interpreta-
tion is similar to the FA approach, in that there is a
mapping between the states of a translated FA and the
derivation paths used by the interpreter when process-
ing an expression.

Stochastic regular language recognition uses the
same basic recognition schemes as conventional reg-
ular languages, with the additional requirement that
probabilities be computed for strings. For example, if
a FA is derived for a stochastic language, then the links
are marked with probabilities. The overall probability

of accepting a given string is then computed by comput-
ing the product of all the transition probabilities used
from the start state to the final accepting state. This
probabilistic FA is known as a Hidden Markov Model
or HMM [14]. Therefore, given a stochastic regular lan-
guage as defined by SRE, the formulae of Section 3.1
are incorporated into a translated FA or a SRE inter-
preter.

The SRE recognition system uses the expression in-
terpretation approach described above. The operational
semantics use two relations. One relation,−→ over
E× (6, p)× E, where p is a probability, represents
single action transitions of expressions. This relation is
denoted,

E
(α,p)−→ E (α ∈ 6)

The other relation,H⇒ over E × (6∗, p) × E, is the
transitive closure of−→∗, and models the generation
of strings:

E
(α1,p1)−→ · · · (αk,pk)−→ E ≡ E

(s,pk)H⇒ E (s= α1, . . . , αk)

Figure 1 contains transitional rules for the relations,
which define the structural operational semantics of the
SRE operators [35]. These inference rules define an ab-
stract interpreter for SRE expressions, and are the basis
of an SRE recognizer. In fact, with languages such as
Prolog, these rules can be compiled into Prolog state-
ments, and then directly interpreted using Prolog’s in-
ference engine [36]. Furthermore, multiple solutions
are obtained for nondeterministic SRE expressions
using Prolog’s builtin backtracking mechanism.

The actual implementation of the SRE processor
uses the above fundamental ideas. The operational se-
mantics implemented are a superset of the rules in
Fig. 1. The implementation uses a logical grammar def-
inition of SRE, which is part of the DCTG-GP system
[37] (see Section 4). Prolog’s backtracking is advan-
tageously used to investigate different paths of an ex-
pression’s derivation. In addition, string recognition is
performed by pattern matching on an argument string
and the generated string as shown in the transitional
semantics: when a match occurs, the current deriva-
tion path is correct, while mismatches cause the current
derivation to backtrack and test another possible non-
deterministic path. For example, one instance of back-
tracking may try different terms in a Choice expression,
while another may unwrap an iterative expression a
varying number of times. Such backtracking is assured



292 Ross

Figure 1. Transitional semantics of SRE.

of terminating because of the finite size of input strings
to be checked, as well as the assertion within the SRE
semantics that empty stringsε can never be generated
within the generative component of iterative operators
(they can only be generated when the iteration termi-
nates).

One advantage of a stochastic language is that the
computed probabilities of strings can be used as an effi-
ciency mechanism during expression recognition. The
implementation of the SRE recognizer is such that the
probability of intermediate strings are always known

throughout the interpreter. When the current probabil-
ity becomes smaller than a user-supplied threshold, the
current derivation path can be forced to terminate. This
prunes derivations of an expression which yield prob-
abilities too small to be of consequence. Of course,
setting this threshold too large results in inaccurate
probability values for recognized strings, and may even
erroneously reject legal strings. However, for many ex-
periments, especially with large strings to be recog-
nized, this speeds up processing significantly.

4. Genetic Programming System

4.1. Grammatical SRE and gSRE

The GP system used for the SRE experiments is the
DCTG-GP system [37]. DCTG-GP performs grammar-
based genetic programming, in which the target lan-
guage of the evolved program population is defined in
terms of a context-free grammar [26, 38–40]. A major
advantage of grammatical GP systems is that the search
space is syntactically constrained so that evolution is
given a helpful push towards program structures that
are more sensible for the problem at hand.

The grammar used by DCTG-GP is a definite clause
translation grammar, or DCTG [41]. A DCTG is a log-
ical version of a context-free attribute grammar. Each
DCTG production has a syntactic component, which
defines a context-free syntax rule. In addition, each pro-
duction can have included with it one or more seman-
tic components. A semantic component defines some
characteristic of the syntactic component to which it
is attached. For example, one important SRE charac-
teristic that is defined in the DCTG grammar is the
string recognition algorithm of Section 3.2. During fit-
ness evaluation, the GP system tests whether gSRE
expressions can recognize different example strings of
the target language. Hence the operational semantics of
gSRE are encoded so that expression interpretation at-
tempts to recognize the membership of strings, and pro-
duce their corresponding probabilities if so recognized.
Given a string to recognize, the actual implementation
finds the probability of the largest prefix recognized by
an expression (more details are in Section 5). Since the
operational semantics of the SRE operators are mod-
ular in nature, their recognition behaviours can be en-
coded with the grammar rules that define the syntax of
the operators themselves. The overall result of this is a
compact definition of the SRE language, in which the
syntax and semantics are conveniently unified together.



Stochastic Regular Expressions 293

Figure 2. Operational semantics of choice operator (excerpt).

To give a flavour of the system, Fig. 2 shows an
excerpt of the DCTG grammar and semantics for the
guarded choice operator. The rules forguardedexpr
(not shown) defining the guarded choice terms are
encoded within the grammar as syntactic constraints.
Rather than permitting any SRE expression as a term
within a choice operator, only uniquely guarded terms
are permitted. This generally forces expressions to be
more concise, with no loss in descriptiveness. The rule
in Fig. 2 is pertinent when there are two choices pos-
sible. The rulerecognize(S, S2, Sum, PrSoFar,
Pr) has 5 arguments: the stringS at the start of pro-
cessing of this choice expression; the stringS2 after
processing (S2 is either equal toS or a suffix of it);
the Sum of the probability values terms in the choice
list (i.e. the overall denominator value); the probability
PrSoFar computed so far while processing the current
string (other expression components may have read ear-
lier prefixes of the example string, and have this prob-
ability); and the final computed probabilityPr after
processingS is completed.

There are two rules forrecognize, and each rule
processes one of the terms from the pair of choice ex-
pressions. The call toconstruct retrieves the actual
integer value from the probability field for that term.
The probability for that term is calculated, and multi-
plied by the overall probability so far. This new inter-
mediate probability is then passed to the recognition
semantics for the expression embedded in that choice
term. During processing, both rules will be invoked—
the first followed by the second—because there are
multiple ways a string can be recognized by an sGRE
expression. The operational semantics for gSRE will
exhaustively try all rules until the string is completely
recognized, and no alternative derivations of the gSRE
expression are possible. All the probabilities obtained

for these difference derivation paths are collected and
summed, to yield an overall probability for that string
(or the greatest prefix read, as the case may be).

Another syntactic constraint applied to both SRE
and gSRE in the experiments in Section 5 is the fol-
lowing. Although not specified in the grammar of SRE
(or gSRE), the grammatical definition of SRE disal-
lows iterative operators to be directly nested within one
another. In other words, expressions such as

((E)∗ f )∗ f or ((((E)∗ f )+ f )∗ f )+ f

are not allowed. The reason for this restriction is a prag-
matic one. When GP was performed without this re-
striction, many programs had multiply nested iterative
expressions. Such expressions are relatively expensive
to interpret, due to the variety of nondeterministic
paths possible for interpreting them. In addition, nested
iteration typically results in strings with very low prob-
abilities, since there is a probabilistic factorf associ-
ated with executing every nested iterative expression.
Moreover, the expense of nested iteration is not justi-
fied by results, since any of these expressions can be
replaced with a semantically equivalent expression that
uses only one iterative operator. This restriction does
not imply that an expression like

((a : E∗ f )∗ f

is illegal, since the concatenation operator means that
the iteration operators are not directly nested.

4.2. Other GP System Details

DCTG-GP uses standard GP strategies, such as tour-
nament or roulette-wheel selection, and steady-state or



294 Ross

generational evolution. Relevant experimental param-
eters will be illustrated in Section 5. The system is
implemented in Sicstus Prolog 3 on both Windows 98
and Silicon Graphics platforms.

5. Experiments

5.1. General Strategy

The inference of a stochastic language can be con-
sidered to involve two different objectives. Given a
training set of positive (and possibly negative) exam-
ples, one task is to infer a language which correctly
classifies the training examples. This is equivalent to
non-stochastic language inference. An additional task
required for stochastic language inference, however, is
to ascertain the stochastic distribution of the training
examples. One might naively presume that a statistical
analysis of the training set could be performed, and the
results applied to the inferred language. Unfortunately,
the situation is typically more complicated than this,
because the representation of the stochastic language as
used in the hypothesis will not likely permit a straight-
forward application of the final string distributions to
its internal encoding. For example, if an HMM rep-
resentation is used in hypotheses, finding appropriate
probability values for intermediate links in the network
that will correspond to the example set distribution is
a challenging task. The significance of the problem of
determining distributions for HMM’s and context-free
languages has spawned specialized training algorithms
[7, 8].

The inference strategy undertaken with the GP ex-
periments is to let evolution determine stochastic dis-
tributions in concert with example classification. Since
SRE incorporates probability values directly in expres-
sions, treating numeric probability fields is straight-
forward in GP. It was found that this approach was
sufficient for many experiments undertaken. In fact, it
was discovered that evolution using local search for
fine-tuning probability parameters lent no advantage
over simple evolution of the parameters.

The training sets used in the GP experiments consist
of sets of positive examples for the target language to
be inferred. Each member of the set is a string, along
with its frequency with respect to the total number of
strings in the set (typically 1000). Since the format of
the target languages is already known via a stochastic
regular expression or grammar, generating these sets is

straight-forward. Unlike conventional language infer-
ence, the implicit probability distributions in training
example sets permits stochastic languages to forgo the
need for negative examples. This is because the infer-
ence of a distribution that matches that of the training
set will automatically account for ‘negative examples’,
which have 0 probability in the distribution.

Stochastic language inference incorporates an im-
plicit degree of error in any inferred solution. This has
ramifications on the GP fitness evaluation described
below. It also can be used to boost efficiency of com-
putations performed during inference. As detailed in
Section 3.2, string recognition can be pre-empted when
intermediate probabilities become smaller than some
threshold limit set for the experiment. Similarly, the
test set can be pruned of strings whose frequency is
below some limit set by the user. This limit parameter
should be set with the recognition threshold in mind.
For example, if the threshold is set to 0.001, then the test
set limit could be likewise set to 1 for a test set of size
1000. Of course, there may be many nondeterministic
derivations of an expression when recognizing a string,
and all the probababilities of these derivations will be
summed to an overall probability for that string. The
less discriminating the recognition threshold and test
set limit, the more precise (albeit slower) the results.

Since GP experiments use a steady-state algorithm,
there are not any discrete generations. For convenience,
however, a new generation is said to have occurred ev-
ery K reproductions, whereK is the population size.
Between generations, the test set is regenerated. This
prevents overfitting to one set of test data, and reflects
the nature of the stochastic languages, as each test set
reflects a sampling from the actual distribution. One
disadvantage, however, is that a discrete test set is an
approximation of the real distribution of the language,
and hence this introduces an unavoidable measure of
noise. This noise is compensated by the fact that mul-
tiple test sets are used during successive generations,
and their cumulative effect should reflect a more ac-
curate model of the target distribution. However, the
population is not reevaluated for each newly generated
test set, and so the fitnesses of much of the population
may be legacy values from earlier generations. This is
acceptable, because the test sets used for those gener-
ations are presumed to be as statistically valid as those
from any other generation.

The fitness evalution strategy used in the experi-
ments is a modifiedχ2 test [42]. The known distri-
bution is taken to be the setT of test examples, and the



Stochastic Regular Expressions 295

experimental set will be the results of the SRE recog-
nition algorithm on each memberti ∈ T . Each test
set example string is given to the SRE processor, and
an overall probilityPr(ti ) for that string is computed.
Non-membership is reflected in a probability of 0. The
fitness formula is:

Fitness=
∑
ti∈T


(di − (Pr(ti )× N))2

di
Pr(ti ) ≥ 0

|ti | − |maxprefi |
|ti | · di Pr(ti ) = 0

wheredi is the frequency of exampleti in test setT ,
N = |T |, andmaxprefi is the maximum prefix ofti
recognized. The first term is theχ2 formula, and it is
used when the example stringti is completely recog-
nized. The second formula is used when only a prefix
of ti is recognized. Its value is inversely proportional
to the size of the prefix recognized. Should none ofti
be recognized, then this value becomes 2· di (a nor-
mal χ2 formula would use justdi ). This prefix scor-
ing gives credit to expressions that recognize portions
of the examples, which helps drive evolution towards
expressions that recognize complete examples.

5.2. Experiment 1: Stochastic Iteration

The first experiment uses a simple stochastic regular
language which can be naturally encoded in SRE. The
main intention of this experiment is to test the evolv-
ability of stochastic Kleene closure as modeled in SRE.
The target language is a stochastic rendition of a reg-
ular language suggested by Tomita1 from his popular
benchmarks for machine learning [20]. The target lan-
guage written in SRE is:

L1 = a∗.5 : b∗.5 : a∗.5 : b∗.5

This is a non-trivial language, especially in the stochas-
tic domain, as the overall distribution of eacha andb
term in all the strings should conform to the given prob-
ability of 0.5. These terms may also generate empty
strings, should iterations terminate immediately.

The parameters for the experiment are in Table 1.
Most are self-explanatory, and the fitness function strat-
egy was discussed earlier in Section 5.1. The ini-
tial population is oversampled, and the running pop-
ulation is pruned from it using tournament selection.
Replacement is done using a reverse tournament selec-
tion (a sample ofK members are randomly selected,

Table 1. Parameters (L1).

Parameter Value

Target language gSRE

Terminals a, b

Fitness function Modifiedχ2

Generation type Steady-state

Initial population size 750

Running population size 500

Unique population members Yes

Maximum generations 50

Probability of crossover 0.90

Probability of mutation 0.10

Probability internal crossover 0.90

Probability terminal mutation 0.75

Probability numeric mutation 0.50

Numeric mutation range ±0.1

Max reproduction attempts 3

Initial population shape Ramped half & half

Min/max depth initial popn. 6, 12

Max depth offspring 24

Tournament size 5

Test set size 1000

Max test string size Approx. 20

Min test example frequency 3

SRE probability limit 0.0001

and the member with the lowest fitness is selected to
be replaced).

Mutation is performed on either terminal or nonter-
minals. If a nonterminal is to be mutated, there is a 0.5
probability that it should be a numeric field. When a
numeric field is selected for mutation, its current value
is perturbed±10% of the entire range for that numeric
type (a range of±100 for integers, and±0.1 for prob-
abilities).

A test set is generated before every generation. Ini-
tially, 1000 strings are generated forL1, and their fre-
quencies are tallied. The maximum string size is ap-
proximately 20 (some may exceed this length). Should
there be less than 3 instances of a given string, it is
pruned from the test set. This means that there are typ-
ically between 55 to 60 unique strings in the test set,
each of which has its particular frequency for that par-
ticular sample of the language. The number of unique
strings in the test set is important forχ2 analyses, as it
is equivalent to bin size in theχ2 formula.



296 Ross

Table 2. SummaryL1.

Total runs 15

# unique examples 65

Avg. test setχ2 142.22
(50 cases)

Fitness

Min 89.4 (χ2 = 88.8)

Max 251.55 (χ2 = 203.75)

Avg 127.91 (χ2 = 124.27)

Summary statistics for the best solutions from 15
runs are given in Fig. 2. These values are obtained using
a common test set, since each run will have used a dif-
ferent test set during its prior evolution. An averageχ2

test of the test sets themselves is included, in order to
better evaluate the expression results. 50 pairs of ran-
dom test sets were generated. One of the pair was fixed
as the independent variable, while the other was the de-
pendent variable. The sets were filtered for frequencies
below the minimal test example frequency (2 in Fig. 1),
and theχ2 was computed. The resulting 50χ2 values
were averaged.

A performance chart of the best and average popu-
lation fitness averaged for 15 runs is in Fig. 3. It can be

Figure 3. Fitness curves (avg. 15 runs).

seen that convergence to a local optimum has largely
occured by generation 10.

The best solution found (χ2 = 88.8), is:

a∗.5 : b∗.44 : a.49 : b.49

This is a nearly perfect solution, and the iterative prob-
abilities within the range of what might be expected
given the stochastic error inherent with the random test
sets. The second best solution (χ2= 89.63) is:

a∗.52 : b∗.49 : a.37 : (a(94)+ b(759))∗.54

The last term is interesting, in that the erroneous choice
of a is not too acute a problem, given the low probability
of choosing it (0.11).

One of the poorer solutions (χ2= 132.85) is:

(a(468)+ b(235))∗.25 : a∗.55 : (a(182)+ b(963))∗.73

The inaccuracy occurs with the first term, which erro-
neously permitsb to occur too frequently, even though
the low probability of 0.25 for the enclosing iteration
helps reduce its likelihood.



Stochastic Regular Expressions 297

Table 3. SummaryL2.

Total runs 50

# unique examples 35

Avg. test setχ2 99.75
(50 cases)

Fitness

Min 66.39 (χ2 = 65.06)

Max 281.93 (χ2 = 274.1)

Avg 199.5 (χ2 = 193.26)

Figure 4. Target language.

The worst solution obtained (χ2= 203.75) is:

(a∗.58 : (a(362)+ b(805))+.67)+.04

: (b+.2 : b+.59 : ((a : (a(364)+ b(320))∗.08(320)

+ b(947) : (a(191)+ b(141))+.67)+.2

: ((a(352)+ b(360))+.56 : b+.59)∗.04)∗.04)∗.04

Figure 5. Fitness curves (avg. 50 runs).

Note the repetition of particular numeric fields, such
as 320 and 0.04, which is a sign of population
convergence. Simplifying this expression by remov-
ing iterative probabilities less than 0.10 and expanding
+Closure terms, it becomes:

a∗.58 : (a(362)+ b(805))+.67

which is obviously a suboptimal solution. This example
shows the nature of introns within SRE expressions:
virtually any expression can be intron code, so long
as the associated choice or iterative probability is low
enough.

5.3. Experiment 2: Stochastic Regular Grammar

The second experiment evolves a more complex
stochastic regular language. The target languageL2 is
taken from [10], and is defined by the stochastic regular
grammar in Fig. 4. Each production has a probability
on the right, which denotes the probability that rule is
selected with respect to the other productions for that
nonterminal.

The experimental parameters for these runs are iden-
tical to those in Fig. 1. The summary for 50 runs are
in Fig. 3. A performance plot for the best fitness and
average population fitness averaged for the 50 runs is
in Fig. 5.



298 Ross

The best solution (χ2 = 65.06) is:

((a : (a(674)+ b(895))∗.03)(895)+ b : b(960))∗0.37

: (b : (a : (a)+.02(674)+ b : b(284))∗.29

: (a : a+.02(895)+ b : b(284))∗.29

: b : (a(490)+ b(524))∗.03)∗.09

: b : a+.02 : (a : a+.02(895)+ b(284))∗.37

Simplifying by expanding+Closures and removing
terms with probabilities less than 0.03, this becomes:

(a : (a(674)+ b(895))(895)+ b : b(960))∗0.37

: (b : (a : a(674)+ b : b(284))∗.29

: (a : a(895)+ b : b(284))∗.29 : b)∗.09

: b : a : (a : a(895)+ b(284))∗.37

It is difficult to see how this expression maps to the
target grammar of Fig. 4, and an intuitive mapping may
not even exist. However, itsχ2 is impressive compared
to the test set average.

5.4. Limitations

Many language inference algorithms are easily
thwarted by target languages having characteristics an-
tagonistic to the peculiarities of the algorithm in ques-
tion. Often, these languages are only subtlely different
from ones that the algorithms have no problems infer-
ring.

The GP paradigm suffers a similar limitation. A vari-
ation of the language in Section 5.3 was tried,

L ′2 = L2(9)+ bbaaabab(1)

which is just languageL2 with an additional string
bbaaababwith probability 10%. 50 runs were per-
formed using the same parameters as Fig. 1. None of
the runs found an acceptably close solution: the best
solution had a fitness of 259 andχ2 = 234 (bin size=
40).

One reason that GP had problems evolvingL ′2 can be
attributed to the linguistic characteristics of SRE. Even
though the above definition ofL ′2 is a concise statement
of the language, the evolutionary process tries to unify
the termbbaaababand L2 together in a regular ex-
pression. This is difficult to do, because this string is an
anomaly with respect to the other strings inL2. Consid-
ering the stochastic regular grammar used to generate

L2, it is clear that strings are derived progressively and
incrementally from one another, and so strings ofL2

equal in length tobbaaababare natural extensions of
smaller strings of the language. The anomalous string,
however, is not derivable fromL2, and hence a natural
model of the union of these languages in SRE cannot be
inferred. This is especially true given thatbbaaabab
has a 10% probability, which makes it a populous mem-
ber. If it had a smaller probability, it might be ignored
as noise.

The above must be considered in light of the linguis-
tic nature of all formal languages: some representations
more naturally model particular languages than oth-
ers. Even though regular expressions, finite automata
and regular grammars have the same expressive power,
some languages are more naturally and concisely de-
noted by regular expressions than by finite automata,
and vice versa. It could be the case that another rep-
resentation language, for example HMM’s, may more
naturally denoteL ′2 than SRE.

6. Conclusion

This paper presented a new means for evolving stochas-
tic regular languages. Using a probabilistic version of
regular expressions as a language for evolution, genetic
programming is capable of evolving accurate expres-
sions for stochastic regular languages. However, some
stochastic regular languages are more amenable to suc-
cessful evolution than others. It can be speculated that
languages in which members have structural similar-
ities with one another are the most suitable for this
paradigm. For more complex languages, more sophis-
ticated evolutionary techniques may be required.

It was found during experimentation that SRE had
no evolutionary advantage over gSRE with respect to
the quality of solutions discovered. On the other hand,
SRE expressions were less efficient to process, and runs
took much longer than the gSRE ones.

The use of SRE in a genetic programming con-
text presents advantages over other evolutionary ex-
periments with stochastic languages. One advantage
is that SRE is akin to a programming language, with
operators that have syntactic and semantic definitions
akin to conventional languages. Since GP is typically
applied towards such languages as Lisp, the encod-
ing and processing of SRE within a GP environment
is straight-forward. More importantly, however, is that
SRE has linguistic advantages over finite automata and
regular grammars: some stochastic languages are more



Stochastic Regular Expressions 299

naturally encoded in SRE than these other represen-
tations. TheL1 experiment is a clear example of this
point. The linguistic clarity ofL2 is less apparent, al-
though the solution is not overly complex compared to
the target grammar.

Like [23], this work uses a regular expression lan-
guage directly for GP. His work required fairly large
populations and parallel populations in order to evolve
the Tomita languages. The fitness strategy used here is
similar to that used in [25, 30], in that both language
recognition performance and prefix consumption are
taken into consideration.

There are many directions for future work. The GP
strategies used here were fairly conventional, and more
sophisticated approaches may be more applicable to
stochastic languages. In the experiments, the wide de-
gree of qualitative variations between runs indicates
that evolution quickly gets stuck at suboptimal solu-
tions. Parallel subpopulations may help in this regard.
Although it was found that local search using hill-
climbing over numeric fields was not advantageous to
evolution, it is worth investigating the utility of more
sophisticated local search techniques akin to those used
in stochastic context-free languages (eg. the inside-
outside algorithm).

Currently, the applicability of SRE in bioinformatics
problems is being investigated. A fundamental prob-
lem in DNA and protein sequencing is to determine a
common pattern shared amongst a family of sequences
[43], which can be used for both search and analyti-
cal purposes. A number of techniques, such as HMM’s
and regular pattern languages, are used for this pur-
pose. SRE is a natural vehicle for this problem area,
since its regular expression basis conforms to the pat-
tern languages commonly used (eg. that used in the
PROSITE database [44]), while its stochastic features
conveniently model the probabilistic characteristics of
DNA sequences themselves.

Acknowledgment

Thanks to Tom Jenkyns for helpful discussions
about probability. This research is supported by
NSERC Operating Grant 138467-1998.

Note

1. His language isa∗b∗a∗b∗.

References

1. D. Angluin, “Computational learning theory: survey and se-
lected bibliography,” inProceedings of the 24th Annual ACM
Symposium on the Theory of Computing, ACM Press: New York,
1992, pp. 351–369.

2. K.S. Fu and T.L. Booth, “Grammatical inference: introduction
and survey—Part I,”IEEE Transactions on Systems, Man, and
Cybernetics, vol. 5, no. 1, pp. 95–111, January 1975.

3. K.S. Fu and T.L. Booth, “Grammatical inference: introduction
and survey—Part II,”IEEE Transactions on Systems, Man, and
Cybernetics, vol. 5, no. 4, pp. 409–423, July 1975.

4. Y. Sakakibara, “Recent advances of grammatical inference,”
Theoretical Computer Science, vol. 185, pp. 15–45, 1997.

5. K.S. Fu and T. Huang, “Stochastic grammars and languages,”
International Journal of Computer and Information Sciences,
vol. 1, no. 2, pp. 135–170, 1972.

6. K.S. Fu, Syntactic Pattern Recognition and Applications,
Prentice-Hall: Englewood Cliffs, NJ, 1982.

7. K. Lari and S.J. Young, “The estimation of stochastic context-
free grammars using the Inside-Outside algorithm,”Computer
Speech and Language, vol. 4, pp. 35–56, 1990.

8. E. Charniak, Statistical Language Learning, MIT Press:
Cambridge, MA, 1993.

9. J.E. Hopcroft and J.D. Ullman,Introduction to Automata Theory,
Languages, and Computation, Addison Wesley: Reading, MA,
1979.

10. R.C. Carrasco and M.L. Forcada, “Inferring stochastic regular
grammars with recurrent neural networks,” inProceedings 3rd
International Colloqium on Grammatical Inference (ICGI96),
edited by I. Miclet and C. de la Huguera, Springer-Verlag: Berlin
1996, pp. 274–286. LNAI 1147.

11. R.C. Carrasco and J. Oncina, “Learning deterministic regular
grammars from stochastic samples in polynomial time,” Tech-
nical Report DLSI-96-01, Universidad de Alicante, April 1998.

12. F.J. Maryanski and T.L. Booth, “Inference of finite-state proba-
bilistic grammars,”IEEE Transactions on Computers, vol. C26,
pp. 521–536, 1977.

13. A. van der Mude and A. Walker, “On the inference of stochastic
regular grammars,”Information and Control, vol. 38, pp. 310–
329, 1978.

14. L.R. Rabiner and B.H. Juang, “An introduction to Hidden
markov models,” inIEEE ASSP Magazine, pp. 4–16, January
1986.

15. L.R. Rabiner, “A tutorial on Hidden markov models and selected
applications in speech recognition,” inProceedings of the IEEE,
vol. 77, no. 2, pp. 257–286, February 1989.

16. V.K. Garg, R. Kumar, and S.I. Marcus, “Probabilistic lan-
guage framework for stochastic discrete event systems,” Tech-
nical Report 96-18, Institute for Systems Research, April 1996.
http://www.isr.umc.edu/.

17. H. Zhou and J.J. Grefenstette, “Induction of finite automata by
genetic algorithms,” inProc. 1986 IEEE Intl. Conference on
Systems, Man, and Cybernetics, Atlanta, GA, IEEE Press: New
York, 1986, pp. 170–174.

18. B.D. Dunay, F.E. Petry, and B.P. Buckles, “Regular language
induction with genetic programming,” inProc. 1st IEEE Con-
ference on Evolutionary Computation, 1994, pp. 396–400.

19. P. Dupont, “Regular grammatical inference from positive and
negative samples by genetic search: the GIG method,” in2nd



300 Ross

Intl. Coll. on Grammatical Inference and Applications, Springer-
Verlag: Berlin, 1994, pp. 236–245.

20. M. Tomita, “Dynamic construction of finite automata from ex-
amples using hill-climbing,” in4th Annual Conf. of the Cognitive
Science Soc., 1982, pp. 105–108.

21. S. Brave, “Evolving deterministic finite automata using cellular
encoding,” inProc. Genetic Programming 1997, Stanford Uni-
versity, CA, USA, edited by J.R. Koza et al., Morgan Kaufmann:
Los Altos, CA, 1997, pp. 39–44.

22. T. Longshaw, “Evolutionary learning of large grammars,” in
Proc. Genetic Programming 1997, Stanford University, CA,
USA, edited by J.R. Koza et al., Morgan Kaufmann, Los
Altos, CA, 1997, pp. 406–409.

23. B. Svingen, “Learning regular languages using genetic pro-
gramming,” inProc. Genetic Programming 1998, edited by J.R.
Koza et al., Morgan Kaufmann: Los Altos, CA, 1998, pp. 374–
376.

24. P. Wyard, “Context free grammar induction using genetic algo-
rithms,” inProceedings 4th International Conference on Genetic
Algorithms, 1991, pp. 514–518.

25. M.M. Lankhorst, “Grammatical inference with a genetic algo-
rithm,” in Proceedings of the 1994 EUROSIM Conference on
Massively Parallel Processing Applications and Development,
1994, pp. 423–430.

26. S. Lucas, “Structuring chromosomes for context-free grammar
evolution,” inProceedings 1st International Conference on Evo-
lutionary Computation, IEEE Press: New York, 1994, pp. 130–
135.

27. S. Sen and J. Janakiraman, “Learning to construct pushdown
automata for accepting deterministic context-free languages,”
Applications of Artificial Intelligence X: Knowledge-Based
Systems, vol. 1707, pp. 207–213, 1992.

28. M.M. Lankhorst, “A genetic algorithm for the induction of push-
down automata,” in1995 IEEE Intl. Conference on Evolutionary
Computation, IEEE Press: New York, 1995.

29. B.D. Dunay and F.E. Petry, “Solving complex problems with
genetic algorithms,” inProc. 6th Intl. Conf. on Genetic Algo-
rithms, edited by L. Eshelman, Morgan Kaufmann: Los Altos,
CA, 1995.

30. M. Schwehm and A. Ost, “Inference of stochastic regular gram-
mars by massively parallel genetic algorithms,” inProc. 6th Intl.
Conf. on Genetic Algorithms, Morgan-Kaufmann: Los Altos,

CA, 1995.
31. T.E. Kammeyer and R.K. Belew, “Stochastic context-free gram-

mar induction with a genetic algorithm using local search,” in
Foundations of Genetic Algorithms IV, edited by R.K. Belew
and M. Vode, Morgan-Kaufmann: Los Altos, CA, 1997.

32. J. Stoy,Denotational Semantics, MIT Press: Cambridge, MA,
1977.

33. K. Subrahmaniam,A Primer in Probability, Marcel Dekker:
New York, 1979.

34. M. Sipser,Introduction to the Theory of Computation, PWS Pub.
Co., 1996.

35. M. Hennessy,The Semantics of Programming Languages—An
Elementary Introduction Using Structural Operational Seman-
tics, John Wiley and Sons: New York, 1990.

36. W.F. Clocksin and C.S. Mellish,Programming in Prolog, 4th
ed, Springer-Verlag: Berlin, 1994.

37. B.J. Ross, “Logic-based genetic programming with definite
clause translation grammars,” inProc. GECCO-99, edited by
J.R. Koza et al., 1999.

38. P.A. Whigham, “Grammatically-based genetic programming,”
in Proceedings Workshop on Genetic Programming: From The-
ory to Real-World Applications, edited by J.P. Rosca, 1995,
pp. 31–41.

39. M.L. Wong and K.S. Leung, “Learning programs in differ-
ent paradigms using genetic programming,” inProceedings 4th
Congress of the Italian Association for AI, 1995, pp. 353–364.

40. A. Geyer-Shulz, “The next 700 programming languages for
genetic programming,” inProc. Genetic Programming 1997,
Stanford University, CA, USA, edited by J.R. Koza et al.,
Morgan Kaufmann: Los Altos, CA, 1997, pp. 128–136.

41. H. Abramson and V. Dahl,Logic Grammars, Springer-Verlag,
1989.

42. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery,
Numerical Recipes in C, 2nd edn. Cambridge University Press:
Cambridge, 1992.

43. A. Brazma, I. Jonassen, I. Eidhammer, and D. Gilbert, “Ap-
proaches to the automatic discovery of patterns in biosequences,”
Technical Report 113, Department of Informatics, University of
Bergen, Norway, December 1995.

44. K. Hofmann, P. Bucher, L. Falquet, and A. Bairoch, “The
PROSITE database, its status in 1999,”Nucleic Acids Research,
vol. 27, no. 1, pp. 215–219, 1999.


