Feature Selection and Classification Using Age
Layered Population Structure Genetic Programming

Anthony Awuley
Department of Computer Science
Brock University
St. Catharines, ON, Canada L2S 3A1
Email: anthony.awuley @gmail.com

Abstract—This paper presents a new algorithm called Fea-
ture Selection Age Layered Population Structure (FSALPS) for
feature subset selection and classification of varied supervised
learning tasks. FSALPS is a modification of Hornby’s ALPS
algorithm - an evolutionary algorithm renown for avoiding
pre-mature convergence on difficult problems. FSALPS uses
a novel frequency count system to rank features in the GP
population based on evolved feature frequencies. The ranked
features are translated into probabilities, which are used to
control evolutionary processes such as terminal-symbol selec-
tion for the construction of GP trees/sub-trees. The FSALPS
meta-heuristic continuously refines the feature subset selec-
tion process whiles simultaneously evolving efficient classifiers
through a non-converging evolutionary process that favors se-
lection of features with high discrimination of class labels. We
compared the performance of canonical GP, ALPS and FSALPS
on some high—-dimensional benchmark classification datasets,
including a hyperspectral vision problem. Although all algorithms
had similar classification accuracy, ALPS and FSALPS usually
dominated canonical GP in terms of smaller and efficient trees.
Furthermore, FSALPS significantly outperformed canonical GP,
ALPS, and other feature selection strategies in the literature in
its ability to perform dimensionality reduction.

I. INTRODUCTION

Classification is one of the major tasks in machine learning,
in which of features or attributes are used to predict class labels
[1]. A feature is “an independent measurable property of a
process been observed”[2]. Noisy attributes in data increase
the complexity of the learning space and reduce performance
of learning algorithms with corresponding high computational
requirement in data analysis and machine learning. Feature
selection is the process of refining input data by removing
irrelevant and/or redundant features [3]. Therefore, to improve
the performance of classification algorithms, feature selection
is often performed. For a data set D having m features, a
feature selection algorithm selects a subset of n < m features
by eliminating irrelevant and redundant features such that it
improves or retains the prediction accuracy of the classifier
algorithm. According to [4], relevant feature subset selection
for learning systems may improve understanding of the data,
leads to the design of better classifier models, eliminate irrel-
evant data with benefits such as enhanced data visualization,
reduced computational cost for constructing learning models
and improve generalization of constructed models.
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Genetic programming (GP) has been widely used for clas-
sification [5]. GP evolves an expression that uses a subset
of features from the problem feature vectors to predict class
label(s). In fact, feature reduction is said to automatically arise
when using GP, since most evolved expressions will normally
use reduced semi-optimized sets of features selected from the
overall feature set. Feature extraction with GP is also possible
[5], although we do not consider it in this paper.

Some examples of using GP for feature reduction are as
follows. Smith et al. [6] used GP and GA for feature extraction
and feature selection respectively as a preprocessor for a
C4.5 decision tree-learning algorithm. The approach proved
more successful than direct application of the standard C4.5
decision tree—learning algorithm on the same dataset. Research
in [7] and [8] used C'4.5 decision tree learning algorithm as a
classifier for a GP feature construction problem. Oechsle et al.
[9] separate the feature selection and feature extraction stages,
and used GP to evolve them independently on a vision prob-
lem. The GP classification methodology involved evolution of
a set of partial solutions for a single class. This enables the use
of GP for classification of high multi—class data, and is faster
than conventional GP. Lin et al. [10] used a multi—population
layered GP to perform feature selection. Badran et al. [11]
used a multi-objective GP to perform feature extraction as a
preprocessing stage to a multi-class problem. This involved
the reduction of the original dimensionality space to a new
reduced and optimized multi-dimensional decision space. Both
Bedran ef al. [11] and Lemczyk et al. [12] used GP to handle
a multi-class dataset by addressing the classification problem
through task decomposition.

This paper presents a new evolutionary feature selection
and classification strategy called Feature Selection Age Lay-
ered Population Structure (FSALPS) [13]. FSALPS extends
Hornby’s ALPS algorithm [14][15] to evolve a classifier
and perform feature subset selection with high classification
accuracy. The ALPS algorithm overcomes the problem of
premature convergence by the regular introduction of new
individuals into the population. This results in evolutionary
search that is constantly exploring different parts of the
search space. We extend ALPS by introducing the ability to
evolve feature subsets with high discrimination of class labels.
FSALPS uses a novel frequency-based feature-ranking system



that will affect the probability of feature assignment to new
randomly created individuals. The intention is that the features
used will naturally be refined during evolution, which should
improve the overall performance of results over time.

FSALPS is tested on high dimensional benchmark datasets
and compared to canonical GP, ALPS GP, and others. Com-
bining ALPS search power with GPs dynamic tree encoding to
perform feature subset selection should lead to improvements
in aspects of classification problems involving high dimen-
sional datasets. We show that FSALPS GP significantly re-
duces the number of features whiles maintaining or improving
classification accuracy. This reduces the computational effort
needed to design a classifier system as compared to other
feature selection strategies that rely on external classifiers.
We also did this without consideration of the effect of bloat
(intron) code within the trees, whose existence makes the
frequency estimations less accurate than possible.

Section II reviews the ALPS algorithm. Section III intro-
duces the FSALPS algorithm. In Section IV, the performance
of canonical GP, ALPS GP and FSALPS are compared on
a number of classification problems. A very-high dimension
hyperspectral computer vision problem is explored in Section
V. In Section VI, FSALPS is compared to related works.
Concluding remarks and future research are in Section VIL.

II. REVIEwW: ALPS

The Age Layered Population Structure (ALPS) algorithm
introduced by Hornby[14][15] seeks to reduce the problem of
premature convergence in stochastic algorithms. In ALPS, age
is used as a property of individuals to restrict competition and
breeding in the population. ALPS segregates the population
of individuals into age-layers. Age is measured by how long
an individual’s genotypic material has been evolving in the
population. ALPS outperformed canonical EAs in various test
problems [14][15].

An aging scheme is used to separate individuals into
age layers (see Table I). These values are multiplied by
an age gap parameter to determine the maximum age per
layer. Given an exponential aging scheme with an age gap
of 10 and 6 layers, the maximum ages for the layers will
be 10, 20, 40, 80, 160, 320. Individuals within a layer are not
allowed to outgrow the maximum allowed age for that layer.
Rather, an attempt is made to move such individuals to the
next higher layer. Unsuccessful migrants are destroyed. The
maximum age per layer allows evolution to proceed long
enough in the preceding layer before individuals are old
enough to migrate to the next available layer. It also allows
individuals to improve in fitness before being pushed to the
next higher layer. The last layer has no age limit, hence allows
for the accumulation of the best individuals. According to [14],
an individual in the last layer is only guaranteed to remain
there provided it is the global optimum or else it will be
replaced by other highly fit individuals from the lower layers.

The layered approach of evolution does not only restrict
competition between individuals in the entire population but
also serves as a way of transferring genotypic materials from

TABLE I: Examples of age schemes for ALPS [14]
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different fitness basins to higher layers [14]. In ALPS, the
bottom layer is regularly replaced with randomly generated
individuals. The periodic introduction of such individuals in
the bottom layer results in an EA that is never completely
converged [14]. By using age to restrict breeding, the possi-
bility of highly fit old individuals dominating the population
is reduced, which most often leads to early convergence in
canonical EA.

III. THE FSALPS ALGORITHM
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Fig. 1: FSALPS feature selection refinement loop. The fre-
quencies of features in the population are used to determine
probabilistic tree generation for layer 0.

FSALPS enhances the ALPS algorithm in Section II, by in-
troducing feature selection mechanisms into the general ALPS
strategy. FSALPS performs feature selection by providing a
loop back mechanism (see Figure 1) where evolved feature-
counts are translated into feature-ranking probabilities. These
probabilities are used for selecting terminal symbols in tree
construction during initialization or for sub—tree construction
during mutation. The FSALPS heuristic performs regular
refinement of feature probabilities by reanalyzing the terminal
distributions throughout the GP population during a run.

The FSALPS algorithm is shown in Algorithm 1. FSALPS
calls which differ from the standard ALPS algorithm are
shown in boldface. Lines 2 — 5 initialize the FSALPS al-
gorithm. Initially, the system uses a uniform probability for



Algorithm 1 Pseudocode for FSALPS

1: procedure FSALPS_GEN()
2: AgeScheme «— SelectAgeingScheme()
: layers «— CreateLayers(AgeScheme)

3

4 i « SequentialLayerSelection(layers)

5 probVector < InitialFeatureProbabilities()

6: while not TerminationCondition() do

7 if BottomLayer(i) & TooOld(i) then

8 probVector «— ComputeFeatureProbs()

9 j < CreateRandomGenome(prob Vector)
10 else

11: if mutation then

12: j < DoMutation(probVector)
13: else

14 if crossover then

15: j < DoCrossover()

16: end if

17: end if

18: end if

19: offspringlndex «— SelectSlotNextGeneration(i)
20: j < CreateChild(offspringIndex)

21: EvaluateChild(j)

22: TryMoveUp(i,j )

23: end while

24: end procedure

Algorithm 2 Pseudocode for Feature Ranking
1: procedure COMPUTEFEATUREPROBS()

2: FeatureVector «— null

3 Probability Vector «— null

4: loop:

5 for k in Layer(i) do

6: for terminal in k do

7 FeatureVector[terminal |++;
8 end for

9: end for

10: sum «— Sum(FeatureVector)

11: for t in FeatureVector do

12: Probability Vector «— t/sum
13: end for

14: return Probability Vector

15: end procedure

all terminal symbols. Later, when the last age layer becomes
active, the uniform terminal probabilities are replaced with
computed probabilities, by counting terminals in the trees in
the population.

A frequency count of features in a classifier expression
is by a direct count of features in the GP tree. Terminal
probabilities are directly computed from the frequency counts
of n terminals seen throughout the entire population. If feature

7 has a frequency f;, then its probability is:

fi
; I

Jj=1

P=

The frequency count values are then converted into probabili-
ties on line 8 of Algorithm 1 by invoking Algorithm 2. These
newly computed probabilities for the features are used in the
random creation of new individuals for the first layer when the
FSALPS system enters re—initialization mode (line 7). They
are also used during tree mutation (line 12) to select terminals
during the construction of random sub-trees.

ALPS requires regular inter—layer migration for individuals
that are older than the allowed age limit for a layer (line 19).
An individual’s age is compared to the maximum allowed age
of its layer, and if it is older, an attempt is made to move the
individual to a higher layer. All layers are scanned for the layer
(Lp,) with an age range that can accommodate a new individual
from a lower layer (L;). When moving over—aged individuals
(I;) to a higher layer, a reverse tournament selection strategy is
used to select the weakest individual in a random tournament
of size k, which is then replaced by the migrated individual.

IV. CLASSIFICATION EXPERIMENTS
A. Experimental Design

TABLE II: Dataset summary

Name | Attributes | Examples | Pos | Neg
Pima Indians Diabetes 8 336 | 111 225
Wisconsin Breast Cancer 30 569 | 212 | 357
Ionosphere 34 351 | 225 126
Sonar 60 208 | 111 97

1) Datasets: Four datasets with varying number of features
and training examples are examined (Table II). The datasets
are from the UCI ML database [16]. All use continuous
(floating-point) feature values, and all are binary classification
problems. The labels Pos and Neg refers to diabetes diagnoses
(Pima), tumour malignancy (Wisconsin), good or bad radar
prediction (Ionosphere), and metal cylinder or rock detection
(Sonar). Incomplete data is removed from all the datasets.

2) Fitness Function: For each feature subset, a classifier
is used to test the prediction accuracy of class labels. In a
binary classification problem, the fitness of individuals on a
test data with P positive instances and N negative instances is
translated into metrics such as true positive (TP), true negative
(TN), false positive (FP), and false negative (FN). Class labels
that were correctly discriminated by the evolved GP classifier
make up TP and TN. The sum of TP and FN equals the sum
of positive class labels in the test data. We use classification
accuracy for fitness measurements:

fitness = (TP +TN)/(P+ N)

Positive and negative examples are not distinguished during
sampling, and so their natural distribution in the dataset
determines their frequency as fitness cases.



TABLE III: GP Language

Name Representation Arity Definition
7 0), arg0>0
Log base 10 log 1 {1(?9{1(;1;320 ar q>
Natural Log In 1 {llyfia:ggooibarg 020
Maximum max 2 mazx(arg0, argl)
Minimum min 2 min(arg0, argl)
Multiplication * 2 arg0 x argl
Addition + 2 arg0 + argl
Subtraction - 2 arg0 — argl
Protected Division % 2 {Tiigggoo’ arg070
Constants ERC 0 Ephemerals
Features fo—fn 0 Dataset features

TABLE IV: Canonical GP Parameters

Parameter  Definition
Number of observed Runs 20
Replacement Strategy ~ Generational
Population size 250
Generations 1000
Selection  Tournament, size = 4

Initial Population = Ramped half-and-half
Grow Minimum 2
Grow Maximum 6
Maximum tree size 17
Crossover 90 %
Mutation 10 %
Termination criteria ~ 100% classification accuracy or end run
k-fold cross validation size 20

Training and testing is done using 20-fold cross validation.
Each dataset is shuffled and divided into 20 subsets. We then
iteratively use 19 subsets for training, and one subset for
testing. We designate the individual with the highest training
fitness over a run as being the evolved solution for that run.

3) GP Language: The functions listed in Table III are
used. Functions meet closure requirements to avoid illegal
operations during tree evaluation. ERCs reside in the range
—-1.0 < ERC < 1.0.

4) Parameters: The parameters used for canonical GP are
in Table IV. See [17] for discussion of basic GP parameters.
Each evolutionary run will complete a total of 250,000 eval-
uations.

Parameter settings used in the FSALPS and ALPS systems
are listed in Table V. Five layers are used in each ALPS
system using the polynomial (1, 2, 4, 9 and 16 ) ageing
scheme. When selecting parent(s) for breeding, the selection
pressure parameter determines how often a parent is selected
from either the current or immediate lower layer. A selection

TABLE V: ALPS and FSALPS parameter settings

Parameter  Definition

Number of runs 20
Number of layers 5
Offspring selection pressure 0.8
Population per layer 50
Elite size per layer 3
Ageing scheme  Polynomial (1, 2, 4, 9, 16)
Age gap size 5
Layer replacement  Reverse tournament
FSALPS probability calculation ~ Normal Frequency

TABLE VI: Testing accuracy (%) over 20 runs.

|  Canonical ALPS FSALPS
Avg Best Avg Best Avg Best
Breast cancer | 93.12 100.0 92.80 100.0 93.82 100.0
Ionosphere 88.02  100.0 89.71 100.0 90.65 100.0
Pima 73.47  94.12 73.81 88.24 74.03 94.12
Sonar 71.27  100.0 73.68 100.0 74.36 100.0

TABLE VII: Minimum (Min), maximum(Max) and average
(Avg) number of unique features in best solution tree for all
runs. ERC terminal nodes are included as a single feature
category in the tabulations. Best results are in boldface.

Dataset | Canonical ALPS FSALPS
Pima: Total = 9 Min | 7 8 3
Max | 9 9 9
Avg | 8.6 8.9 6.4
Breast cancer: Total =31 Min | 12 6 5
Max | 26 29 17
Avg | 17.85 20.9 9.3
Ionosphere: Total = 35 Min | 9 13 7
Max | 25 31 20
Avg | 18.65 23.5 12.75
Sonar: Total = 61 Min | 16 28 7
Max | 42 45 27
Avg | 23.65 36.9 16.85

pressure of 0.8 implies 80% of parents are selected from
current layer and 20% from the immediate lower layer.

5) GP system and Hardware Configuration: All the al-
gorithms tested (Canonical GP, ALPS, FSALPS) are imple-
mented in ECJ [18].

We used a cluster with 9 nodes with 6 cores each, making
a total of 54 cores with 2 different hardware configurations:

1) Intel Core i7 920 2.66GHz with 12GB ram
2) AMD Phenom X6 1055 3.6GHz with 8GB ram

The runs were deployed in parallel such that each run was
handled by one compute node.

B. Results

1) Classification Accuracy: The prediction accuracy of a
classifier is a measure of how the predictor performs on all
training examples. The best solution tree in the training phase
is tested on a test dataset. Using k—fold cross validation,
all instances of the datasets are used for testing. Table VI
contains the average testing performance (classification accu-
racy measured in percentage) for each k—subset of the best-
evolved training solution tree. The results recorded for all three
strategies were not significantly different when compared at a
95% confidence interval using Tukey’s HSD ANOVA test.

2) Feature Analysis: Feature reduction is analyzed for the
best solutions in each of the 20 runs. Table VII summarizes
feature reduction per dataset, in terms of the average/min/max
number of features within best solution trees per experiment.
Feature reduction is most evident in the FSALPS strategy.
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Fig. 2: Sonar: Frequency histogram of features found in solutions (average 20 runs).

TABLE VIII: Pearson correlation coefficients for feature fre-
quency distributions.

Canonical Canonical ALPS
vs ALPS vs FSALPS vs FSALPS
Pima —0.183 —0.254 0.914
Breastcancer 0.545 0.587 0.803
Tonosphere 0.624 0.675 0.786
Sonar 0.333 0.391 0.589

TABLE IX: Comparing mean difference between feature se-
lection performed for each strategy at the 0.05 significance
level using Tukey’s HSD ANOVA test for Breastcancer(®),
Ionosphere(&), Pima(S) and Sonar(©) dataset for all 20 runs.

An arrow points to the dominant strategy while a — means
there is no significant difference between the two strategies.
| ALPS | FSALPS
Canonical | —®° %7 [ 19980
ALPS T®€B@®

Figure 2 show the frequencies of the individual objectives
as found within solutions in the Sonar runs, averaged over 20
runs. The frequencies are affected by the overall tree sizes of
solutions. Some features were almost completely eliminated
for each subsequent run, while others are more commonly
found in solutions. This shows that features vary in importance
with respect to their value during classification.

We compared the distribution shapes of the objective fre-
quencies by computing Pearson correlation coefficients of the
frequencies between the three strategies (Table VIII). ALPS
and FSALPS show a high correlation to each other in terms
of objective frequencies, while there is less correlation of
them with canonical GP. In Table IX, Tukey’s HSD ANOVA
test shows that FSALPS is the superior algorithm for feature
reduction (95% confidence interval).

Figure 3 is a visualization of the feature frequencies in
the lowest and highest layers of ALPS and FSALPS. This

TABLE X: Comparing mean difference between best solu-
tion tree-size for each strategy at the 0.95 significance level
for Breastcancer(®), Ionosphere(®), Pima(©) and Sonar(©®)
dataset for all 20 runs. An arrow points to the dominant

strategy while a — means there is no significant difference
between the two strategies.
| ALPS | FSALPS
Canonical | —% 199 [ & 109
ALPS _ QP00

is measured in one single run of each algorithm.

3) Tree Size Analysis: Figure 4 shows the average tree size
growth rate per generation for the three strategies, in 2 of
the experiments. Tree growth rate is very high for canonical
GP compared to ALPS and FSALPS. In Table X, tree size
of the best solution tree used for testing was compared at a
95% confidence interval using Tukey’s HSD test. The results
show a significant size difference between the canonical GP
and ALPS variants for all but one dataset.

Execution time was significantly lower for ALPS and
FSALPS compared to canonical GP. This follows directly from
the smaller tree sizes of these algorithms. Details are in [13].

C. Discussion

We were surprised that there is no significant difference in
classification accuracy between the 3 strategies. Nevertheless,
there is a significant difference in feature reduction. First,
canonical GP outperformed ALPS in terms of feature reduc-
tion. This is because ALPS continually reintroduces all fea-
tures into the population at regular intervals, which negatively
impacts its feature selection capabilities. FSALPS fixes this
issue by selecting a refined set of features to introduce into the
population. This resulted in significant reduction of features
compared to both canonical GP and ALPS.

ALPS and FSALPS also create smaller trees than canon-
ical GP. This affects the time efficiency for initializing and
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Fig. 4: Average population tree size per generation (avg 20 runs).

evaluating trees, which results in faster evolutionary runs and

classification times in general.

V. EXPERIMENT: HYPERSPECTRAL IMAGE
CLASSIFICATION

A. Experimental Setup

TABLE XI: Number of samples used per training class
Class | Positive samples  Negative samples
Corn-notill 73 102
Soybean-mintill 60 150
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(b) Ground truth of 16 classes.

Fig. 5: A sample spectral band from the Indian pins hyperspectral data and its ground truth image

Hyperspectral imaging allows for simultaneous collection of
image data in hundreds of narrow adjacent spectral bands [19]
and is achieved using hyperspectral remote sensors, which are
usually airborne on planes or satellites. Hyperspectral images
are ideal for classifying various physical phenomena such as
vegetation or mineral resources [19]. This is possible because
organic and inorganic materials produce unique absorption
and reflection properties at particular bandwidths. GP has
been used to evolve hyperspectral classifiers for a number of
applications [20] [21] [22] [23] [24].

We will use GP to evolve classifiers for detecting specific
class labels (crops) on the Indian pines hyperspectral data,
which was obtained from [25]. The images consist of sets
of 145 by 145 pixel data obtained over the Indian Pines test
site in northwestern Indiana using the AVIRIS sensor. The site
predominantly consists of agriculture and other vegetation. We
use 200 image bands with a wavelength range of 0.4 — 2.5
meters. Since each band is considered a feature, this is a very
high dimensional problem to test the capabilities of FSALPS.

Fig 5a shows the reflectance image of the Indian Pines data
at the 2.09um bandwidth. The ground truth image contains a
total of 16 classes with known samples (see Fig 5b). Here,
we will evolve classifiers for two cases: Corn—notill and
Soybean—mintill. Positive and negative examples are obtained
from image regions according to the ground truth image in
Figure 5b. For each image band, we normalize the RGB
color channel between 0.0-1.0. The training examples were
manually selected (Table XI). We selected pixels such that a
wide range of points of the ground truth image was sampled.
At the same time, we did not examine the hyperspectral
data during sampling. Hence a similar quality of training
examples would likely have arisen if random sampling were
performed. 95% of training examples are from regions with
100% intensity of observable reflectance of class labels. The
remaining 5% are boundary regions with reduced intensity
of resident spectra. The Corn—notill class contains 5.26% of
the total samples available on each hyperspectral band while
Soybean—mintill covers 8.9% of each band.

As before, we will compare canonical GP, ALPS and
FSALPS classifiers on this data. We use the same experimental
setup used earlier (Tables III, IV V). The 200 bands are
represented as 200 features (terminals), and each returns the

TABLE XII: Average and best classification testing accuracy
(%) for Indian Pines data.

| Canonical ALPS FSALPS
Corn—notill Avg | 87.07 88.02 86.64
Best | 92.52 93.69 92.16
Soybean—mintill Avg | 88.63 89.84 89.66
Best | 91.30 92.43 91.40

TABLE XIII: Minimum (Min), maximum(Max) , average
(Avg) and Standard Deviation (StD) number of unique objec-
tives found in the solution set for each dataset. Total objectives
considered for each dataset including ERC is 201.

| Canonical ALPS FSALPS

Corn-notill Min 18 28 8

Max 47 81 31

Avg 30.15 51.85 18.25

StD 7.62 11.95 6.15
Soybean—mintill Min 17 29 8

Max 49 78 40

Avg 30.6 49.55 20.55

StD 8.26 13.31 8.46

band value at that pixel being classified. An image pixel is
processed during one tree evaluation, and a positive or negative
classification decision for that pixel is determined from the
classifier expression.

B. Results

1) Classification Accuracy: We found that the 3 strategies
did not show signs of premature convergence (Figure 6). The
best—evolved classifier obtained from training is applied to the
test data. Classification performance of the best classifiers are
shown in Figure 7. The raw percentage scores of classifica-
tion accuracy are recorded in Table XII. All three strategies
performed well on both cases. An ANOVA test using (95%
confidence interval) did not reveal any statistically significant
differences.

2) Feature reduction: Table XIII highlights the feature
reduction seen. FSALPS reduced the features the most, and
ALPS the least. We used an ANOVA test at 95% significance
interval to compare feature reduction between all 20 runs,
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Fig. 6: Training performance plots (avg 20 runs)

(a) Canonical GP: 87.67%
(32.73% TP, 95.51% TN)

(b) ALPS: 87.53%
(59.95% TP, 92.76% TN)

(c) FSALPS:87.57%
(48.01% TP, 95.44% TN)

Fig. 7: Classification accuracy of best classifiers for Corn-notill: TP - green, TN - black, FP - red, FN - yellow.

TABLE XIV: Comparing mean difference between feature
selection performed for each strategy at the 0.05 significance
level for Corn—notill(®) and Soybean—mintill ()

l ALPS l FSALPS
3] T 3]

T@

Canonical | «
ALPS

for all algorithms (see Table XIV). FSALPS significantly
outperformed canonical and ALPS for both crop types on
feature reduction. Figure 8 compares the frequency of features
in layer O for ALPS and FSALPS for two hyperspectral runs.

3) Tree Size: Canonical GP has the highest rate of tree
growth, while ALPS and FSALPS grew at the same rate (see
Figure 9). An ANOVA test (95% significance) confirmed that
the tree sizes of ALPS and FSALPS are significantly smaller
than canonical GP.

C. Discussion

The results for the hyperspectral experiments follow the ear-
lier findings in Section I'V. Classification accuracy was equiv-
alent between canonical GP, ALPS, and FSALPS. FSALPS
was the best in feature reduction, and FSALPS and ALPS
both generated smaller trees than canonical GP.

TABLE XV: Comparing classifier accuracy of FSALPS with
others in the literature.

[ Pima WBC New  Ionosphere  Sonar
CHCGA+SVM[2] | 80.47 - 94.27 —
CHCGA+RBF[2] 76.82 — 94.29 -
GAP (avg)[26] 75.72  96.14 89.90 85.57
GAP (best)[26] 79.62  98.86 96.17 96.42
Simple Meta[26] 76.04  95.09 89.82 86.64
C4.5[26] 67.94 - 69.69
HIDER[26] 74.10 - 56.93
XCS[26] 68.62 — 53.41
O.F.A[26] 69.80 - 79.96
LVSM[26] 7812 - -
Krawiec[26] 76.41 - - -
GAP (J48)[6] 73.64  95.71 90.69 75.89
GAP (IBK)[6] 68.96  94.82 91.38 83.72
GAP (NB)[6] 75.77  96.75 90.60 77.64
C4.5J48)[6] 73.32  93.88 89.82 73.86
IBK][6] 69.90 95.44 86.95 86.65
N.B.[6] 75.13  93.26 82.37 67.16
FSALPS(avg) 74.03  93.82 90.65 74.36
FSALPS(best) 94.12  100.0 100.0 100.0

VI. COMPARISONS TO RELATED WORK

Harper [27] used a variation of ALPS called spatial
co—evolution ALPS (SCALPS). SCALP was found to produce
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Fig. 8: Percentage contribution of features in Layer O of (a)
FSALPS and (b) ALPS for two hyperspectral runs. FSALPS
is noticeably more stable than ALPS.

smaller and simpler solution trees compared to canonical GP,
which is consistent with our results.

Pedro et al. [5] identify computational cost and bloat as two
main pitfalls associated with the use of GP-based classifiers.
The ability of FSALPS and ALPS to produce smaller and more
efficient solution trees mitigates these perceived shortcomings.

Table XV compares FSALPS with others in the literature
on datasets we used. FSALPS is competitive with the other
results in terms of classification accuracy. Our “best” clas-
sifiers showed superior performance to others in the table.
However, further work using similar testing procedures is

TABLE XVI: Comparing feature selection of some published
strategies and FSALPS.

Research | | Pima WBC New  Ionosphere Sonar

CHCGA + | Min | 7 - 16 -

SVM [2]

CHCGA + | Min | 7 - 16 -

RBF [2]

[26] Min | — - - -
Avg | 6.4 15.7 19.7 38.0

FSALPS Min | 3 5 7 7
Avg | 6.4 9.3 12.75 16.85
Tot: | 8 30 34 60

needed to confirm these results, and especially using similar
experimental methodologies.

Our primary goal in the hyperspectral experiments is to
study a very high-dimensional classification problem, rather
than focus on the quality of the hyperspectral classifiers
themselves. Preliminary investigation shows that our classifiers
are competitive with those in the literature [13]. However,
more work is required for accurate comparisons to be made.

VII. CONCLUSIONS AND FUTURE WORK

FSALPS is a new heuristic for GP that performs dynamic
feature reduction during evolution. FSALPS emerged domi-
nant over canonical GP and ALPS in terms of feature reduc-
tion capabilities. Surprisingly, on the problems investigated
here, FSALPS solutions did not score significantly higher
classification accuracy than canonical and ALPS GP contrary
to the usual expectations that simpler search space means
more accurate classifiers. Canonical GP and ALPS are able
to compensate and sacrifice feature selection for classification
accuracy. FSALPS was also shown to be competitive with
other approaches in the literature, in terms of classification
accuracy, while often superior in feature reduction capabilities.
Therefore, FSALPS is worthy of consideration in classification
problems, given that it creates accurate classifiers that are
efficient to execute.



There are many directions for future work. First, the fea-
ture analysis done by FSALPS could be improved. Because
FSALPS uses the entire tree for frequency calculations, bloat
(intron) sub-expressions will contribute to inaccurate feature
counts. Although bloat will affect our frequencies in our exper-
iments, the results show that feature reduction still arose. Since
FSALPS trees are smaller, bloat is probably not as prevalent as
with standard GP. More effective feature probabilities could be
computed if bloat expressions could be reduced, perhaps via
size-fair crossover [28], expression simplification, or linear GP.
Since classification accuracy was not affected in our results,
another approach might be to take a classifier evolved from
standard GP and perform source-code simplification on it. On
the other hand, FSALPS performs significant bloat reduction
automatically, with minimal overhead.

We used classification accuracy to measure fitness of GP
individuals. Additional criteria could be used, such as sen-
sitivity, specificity, information gain, maximum relevance,
feature correlation and mutual information [2]. The use of
more sophisticated fitness evaluation may result in improved
classifier performance and feature reduction.

Other than Figure 2, we did not examine in detail the
specific value of particular features in different problems.
Future work should investigate this further, especially with
respect to information gain measurements.

Feature extraction [2][5] could be incorporated into the
FSALPS algorithm. There are situations where the original
feature vectors are not representative of the given problem and
will require the discovery of interesting hidden relationships
between the features. Thus it is possible to exploit GPs repre-
sentational power to construct a system that performs feature
selection and feature extraction as done in [10]. We believe that
an FSALPS-like system will facilitate the discovery of new
relevant features leading to improved classification accuracy
and a more refined feature subset.

In our work on the Indians Pines hyperspectral data, we
used a very basic image classification language. Improved
results would arise when spatial operators and other spectral
operators [24] are added to the GP language. These additions
could easily facilitate detection of more difficult regions (e.g.
boundaries and edges) on the hyperspectral image.

The problems investigated here involve binary clas-
sifications. A new direction would be to investigate
multi—classification problems using FSALPS. For example,
we could evolve a classifier that simultaneously discriminates
multiple classes on hyperspectral images.
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