Published in Interfaces, No. 45 Winter 2000, 4-7.

Noddy's guide to consistency

Andrew Monk, University of York, UK., A.Monk@psych.york.ac.uk

Most people would feel that consistency in a web site or
user interface is a GOOD THING, but are not terribly sure
what consistency is. This article describes some basic kinds
of consistency and why they are important in interface
design.

Consistency not uniformity

Imagine a window where the menu tabs were labelled "Menul”, "Menu2",
"Menu3". Each lead to the same number of items each of which was labelled
"Item1, "Item2", "Item 3" and so on. This is an interface designed on the military
principle "if it doesn't move paint it white". Everything looks uniformly the same.

The point is that uniformity does not necessarily lead to usability as it makes
things difficult to discriminate. An examples of uniformity that recently irritated
me was a standard front page for internal reports. The information that
distinguished the reports from one another, title, authors, date etc., was in 8
point text and hidden in a mass of logos and titles that appeared on all the
reports. Put together the collection of reports looked very neat and uniform but
finding the one you wanted was a nightmare. The same principle applies to user
interfaces. If all the icons are identical, except for the labels under them, why
have icons at all?

So if consistency is not uniformity, what is it? Actually it is several things and to
explain them | will need to develop a THEORY.

The bluffer's theory of human-computer interaction

Goals

Actions p Effects

mailto:A.Monk@psych.york.ac.uk

Figure 1. The Monk & Dix Triangle ([20])

Figure 1 is a caricature summarising several classic theories of what goes on
when someone interacts with a computer (see [18] for a review of these models).
The arrows indicate that it is cyclic. It works as follows.

The user has goals. Perhaps you are using some untrustworthy software
(several examples come to mind) and you are getting nervous about the
machine crashing. You decide it would be a good idea to save the work you
have done so far. We can describe this state of mind as having the goal "save
your work".

The goal "save your work" leads you to take some action. As this is a graphical
user interface you scan the screen for something that might do this. Your eye
lights on the "File" menu tab. You click on it. We can describe that as taking
the action "click on menu tab File".

Clicking on the menu tab makes the display change, the menu drops down.
This can be described as an "effect".

The visible effects of your action lead you to change your goals. Let us say that
the goal "save your work" had lead you to generate the sub-goal "reveal save
command". The effect "file menu drops down" could lead you to replace this
sub-goal with another sub-goal "select save command".

The new goal set and new display state lead to a new action and the cycle
continues.

OK, I suspect that many readers will be glazing over at this point. What is the
point of all this? Well it leads to the two most important definitions of
consistency: action-effect consistency, that is, consistency in the effects of actions;
and task-action consistency, that is consistency in the way actions relate to task
goals.

Action-effect consistency

Consistency is mainly about ease of learning. The hope is that if a user interface
or web page is consistent then one will get what psychologists call "transfer of

training". That is to say, learning to do one thing in one context will make it
easier to learn how to do similar things in similar contexts. This will of course be

easier if the same action always leads to the same effect.

[l =—————"—"—— () MailForm: An email gati

=) Q@ @ 2 £

Back Farward Stop Fefresh Harne = dutoFill Fri

=:: : ::: : :: @ hitp S Swewew vorkac uk Sdeptz Speveh Swwew Fhelp £

(@) Met Search () Railtrack (EJEHCIG (D) Me (@) HCI Seminars (L) P

dlll| ¥ho are You: |&ndrew Monk
E-mail: AMonkEpsychyork.ac.uk

-
=)
£
-~

Figure 2. Action-effect consistency says that the same action will have the
same effect irrespective of the context. What will happen if someone double
clicks on the word "york™ in the url ("Address:") and in my email address?
My browser is action-effect consistent, the rules for what gets to be selected
seems to be the same. Is yours?

Action-effect consistency then is the principle that if the user takes some action it
should have the same effect whatever the context. Let us say you are working on
a web page that contains a form as in Figure 2. Double clicking on a word
should have the same effect whether one is editing a field in the form or editing
the url. Try it on your own browser. Is your browser action-effect consistent?

Action-effect consistency has been the main contribution of the "style guide".
This rather misleading term is taken to mean a set of guidelines describing how a
graphical user interface should work. For example, they lay down what a
dialogue box should look like, how it should behave when the user interacts with
it and when it should be used rather than some other device such as a menu.
Apple produced the first style guide in 1987 [1, 2]. Style guides encapsulate a
great deal of empirical and analytic work carried out by HCI researchers to find
out what actually was the best way of doing things. There are now style guides
for all the commonly used graphical user interfaces, e.g.,[14]. A user interface
designer will not generally have to consult a style guide because style guides are
enforced by software tools. Thus a software developer using a programming tool
such as Visual Basic will find it much easier to obey the style guide than to
ignore it and develop idiosyncratic action-effect inconsistent interfaces.

So, action-effect consistency is enforced by style guides. Because of the Windows
style guide, a user only needs to learn the effects of actions on a Windows
component once. If you know how a dialogue box behaves in Excel then you also
know how it behaves in Word. This was not always the case.

Another way of expressing this principle is to say that interfaces should be
"mode free". Unnecessary modes (e.g., Excel-mode versus Word-mode) should
be avoided but sometimes they are inevitable. In particular, small device like
mobile phones have only a few buttons that are the only channel of
communication from the user to the device. The enormous number of commands
the user could issue to the phone have to be funnelled through this narrow
channel. Inevitably the action of pressing a particular button will have different
meanings depending on the mode the phone is in. For example, in normal mode

pressing a number key has the effect of putting a number on the phone's display.
In letter-entry mode pressing a key adds a letter.

Modednesss (action-effect inconsistency) is less of a problem if the user is aware
what mode they are in. The above example of modedness is workable because
the mode is clearly signalled by the prompt in the display. Hidden modes
should always be avoided. Actually there are two letter-entry modes on my
mobile phone (see Figure 3). If you press "*" you can toggle between upper and
lower case letters. Unlike the shift lock on a keyboard this changes the case of the
last letter entered. This is rather clever. The shift lock on a keyboard is effectively
a hidden mode. When you are looking at the screen, there is no way of telling
what case the next letter will appear in. This regularly catches me out and | often
type half a line before | realise it is all in capital letters. With the mobile phone
the mode is signalled by the case of the last letter on the display. The only times
that mode is not signalled in the display is when you have not yet entered any
letters or the last character was not a letter. This was the only case of a hidden
mode | have detected in my phone. It would appear that the people who devised
the interface for Ericssen phones gave some thought to minimising the impact of
action-effect inconsistency.

-

Name: A

Figure 3. Hidden modes and the Ericssen PF768. Will the next letter be upper
case or lower case? This mode is signalled by the last letter so we know that
pressing the key for G will result in "G" not "g". Only when there is no last
letter is this a hidden mode.

Task-action consistency

I use the terms "task™ and "goal" interchangeably here. "Task-action consistency"
is preferable to "goal-action consistency” as it links to work on Task Action

Grammars [23, 25]. "Goal" is preferable in the Monk & Dix triangle (figure 1)
because it links to Card, Moran and Newell's model human processor [4].

Task-action consistency is intended to result in transfer of training when learning
the set of actions needed to achieve similar goals. The idea is that similar goals
should require similar sets of action to achieve them. The original work in this
area took the example of a drawing package that allowed one to draw circles
squares and so on, as well as to enter text. The set of actions required to enter text
were quite different to those need to the other drawing commands. To draw a
circle one selected the relevant tool and then drew the object. In contrast, there
was no text tool, one simply clicked and typed. From the point of view of the
designers this is eminently reasonable as, in terms of the software architecture,
these are very different tasks. The problem was that the users saw these tasks as
very similar. The users found it confusing to have to learn one set of rules for
drawing objects and another to enter text. They would have found it easier to
learn a single rule "select the tool for the thing you want to insert and then insert
it",

rm [-f] [-] file ...

Is [-RadLCxminogrtucpFbqisf1AM] [names]
mv [-if] filel [file2 ...] target

cp - [-fip] source target

cat [-u] [-s] [-v [-1] [-e]] file . . .

Ip [-c] [-ddest] [-nnumber] [-s] file...

Figure 4. Unix commands with their syntax, an example of task-action
consistency?

As another example of task-action consistency take the UNIX command set (see
Figure 4). These have a consistent syntax for the arguments they take, also key
command names may be generated by deleting vowels. So the task "move" (a
file) is achieved by the command "mv", copy is achieved by "cp”, list by "Is" and
so on. This soon breaks down (cat, Ip?) but was an admirable attempt at task-
action consistency all the same.

Task-action consistency turns out to be more difficult to pin down than action-
effect consistency. It is apparent in the examples given above that task-action
consistency, like beauty, is in the eye of the beholder [8, 26]. Different people will
see different tasks as similar and dissimilar. For this reason, style guides
encourage task-action consistency by suggesting multiple task-action methods.
Some people will see entering text in a drawing package as similar to entering
text in a word processor, so, give them a method that is similar. Some people will
see it as similar to drawing a circle, give them an additional tool that works that
way. This accounts for the fact that there are many ways of achieving a given
task in a large application like Microsoft Word, and that most people only ever
use one of them.

Other sorts of consistency

So far we have two rules for consistency: (i) the same actions should lead to the
same effects and (ii) similar tasks should require similar sets of actions. The
former action-effect consistency rule has to be tempered by the knowledge that
sometimes it will have to be broken and if this is the case one should avoid
hidden modes. The latter task-action consistency rule is tempered by the
knowledge that different people will see different tasks as similar and so there
may need to be several ways of doing things. What other forms of consistency
may lead to usability?

What about the third side of the Monk & Dix triangle? This would imply a need
for consistency in the way effects on the display lead to changes in goals of the
user. A designer can change the actions needed to achieve a goal or the effects of
an action but has little control over what goes on in the head of a user. It is
difficult to see what form these consistency rules might take.

Consistency of syntax can be seen as an example of task-action consistency at a
very high level of generality. So, there is a general "noun-verb rule" stated in the
style guides for most graphical user interfaces. This simply says that one should
select an object before the action to be taken on it. This is task-action consistency
at the level of all tasks.

Reversibility is another of these general principles expounded in all style guides.
Being able to reverse the effect of any action encourages learning by exploration.
Thus style guides prescribe a variety of devices for undoing the unwanted effects
of actions taken by a user, e.g.: the "back" button in a web browser; the "cancel”
button in a dialogue box or the "undo" function in a word processor.

Consistency with principles like reversibility is obviously a good thing but it is
not really the same thing as consistency in the way a user interface works which
is what this article is about. Consistency with style guides and international
standards like ISO 9241 is also a good thing but not what this article is about.

Future research: consistency across heterogeneous user interfaces to the same data

I can access my bank account through an ATM, a call centre or a web browser.
Soon | will probably be able to program my video recorder through my mobile
phone or with a wireless keyboard and the TV screen. In each case the same data
and functionality is accessed through a range of very different devices. The goals
may remain the same but the actions and effects are very different. One could
design for action-effect and task-action consistency within each of the separate
interfaces, but how does one reason about consistency across interfaces?

A possible solution is to abstract. Rather than describing actions at a concrete
level (e.g., click on X, type Y) one can use a more abstract level that applies
whether one is using a keyboard, mouse, a stylus or speech (e.g., select X, enter
Y). A type of consistency across heterogeneous user interfaces can then be
achieved by ensuring that the same goals lead to the same abstract actions with
each interface. This is different to the definition of task-action consistency
provided above which is a requirement for simplicity in task-action mappings.

This is a requirement for the same abstract task-action mappings across
interfaces.

It may also be possible to abstract the effects (e.g., "file menu drops down" ->
"menu displayed"). One could then check that the same abstract action lead to
the same abstract effect in all the interfaces. The problem with this is that
different devices are capable of different effects. The small display on a mobile
phone can display many fewer menu choices than a VDU screen. Menus
implemented by speech will only work if they are limited to three or four items.
Unless all devices are constrained to some lowest common denominator, the
action-effect mappings will be necessarily different. It remains to be seen
whether it will be possible to devise suitable abstractions to solve this problem
and whether the kinds of consistency checking they allow will be enough to give
effective transfer of training.

One problem that abstraction will not solve is how to provide a common product
image. When | access my bank account | want it to appear familiar and to project
the same brand image. | want the process of conducting transactions with it to
be familiar too. Transactions need to have familiar landmarks marking the
beginning and ends. How you ensure consistency of this kind across speech,
very small and large displays is even less clear.

Conclusions

There has been much thought given to consistency over the years. The new
problem of consistency across heterogeneous devices guarantees there will be
even more thought given in the future. What | hope this article demonstrates is
how even quite complex topics such as consistency can be tackled by systematic
analysis. More generally, there is theory in HCI, but it is often hidden behind the
recommendations that are passed on to engineers.

Bibliography

I have attempted to write this as an accessible introduction to the topic of
consistency. To obtain a deeper understanding of the topic the following reading
IS recommended.

Theories of human-computer interaction involving goals [3, 4, 15, 18, 19, 21],
theories of how we learn goal-to-action mappings [10-13] and a simple way of
checking an interface that draws on these theories[24].

Early attempts to describe actions-effects mappings were made in the context
of user interface management systems (UIMS) and "the separable user
interface” [6, 7] where there was a concept of a "dialogue model" to serve just
such a purpose.

More or less formal ways of describing how different actions can lead to
different effects so that one can reason about the usability of a computer
system [5, 9, 16, 17, 22].

Style guides [1, 2, 14].

ISO 9241, "Ergonomics requirements for office work with visual display
terminals (VDTSs)" is the International Standards Organisation standard for

different kinds of human-computer interaction. There is also a standard
describing a user-centred process of design, ISO 13407, "Human-centred
design processes for interactive systems".

References

1. Apple Human Interface Guidelines: the Apple Desktop Interface. Addison-
Wesley: Reading, Massachusetts, 1987.

2. Apple Macintosh Human Interface Guidelines. Addison-Wesley: New York,
1993.

3. Blandford, A. and Duke, D.J. Integrating user and computer system
concerns in the design of interactive systems. International Journal of Human-
computer Studies, 46, (1997), pp. 653-679.

4, Card, S.K., Moran, T.P. and Newell, A. The psychology of human-computer
interaction. Lawrence Erlbaum: Hillsdale, NJ, 1983.

5. Dix, A.J. Formal methods for interactive systems. Academic Press: London,
1991.

6. Edmonds, E. The separable user interface. Academic Press: London, 1992.
7. Green, M. Design notations and user interface management systems. In

Proceedings of the Seeheim workshop on user interface management systems, Springer-
Verlag: Berlin, 1985, pp. 89-107.

8. Grudin, J. The case against user interface consistency. Communications of
the ACM, 32, 10 (1989), pp. 1164-1173.
9. Harrison, M.D. and Dix, A. A state model of direct manipulation in

interactive systems. In Formal methods in human-computer interaction, Harrison,
M.D. and Thimbleby, H., Ed., Cambridge University Press: Cambridge, UK, 1990.

10. Howes, A. A Model of the Acquisition of Menu Knowledge by
Exploration. In Proceedings of ACM CHI'94 Conference on Human Factors in
Computing Systems, Plaisant, C., Ed., ACM Press: New York, 1994, pp. 232.

11. Howes, A. and Young, R.M. Learning consistent, interactive and
meaningful device methods: a computational approach. Cognitive Science, 20,
(1996), pp. 301-356.

12. Kieras, D.E. and Polson, P.G. An approach to the formal analysis of user
complexity. International Journal of Man-Machine Studies, 22, (1985), pp. 365-394.
13. Kitajima, M. and Polson, P.G. A comprehension-based model of correct
performance and errors in skilled, display-based, human-computer interaction.
International Journal of Human-Computer Studies, 43, (1995), pp. 65-99.

14, Microsoft The Windows interface guidelines for software design. Microsoft
Press: Redmond, 1995.

15. Miller, G.A., Gallanter, E. and Pribram, K.H. Plans and the structure of
behaviour. Holt, Reinhart and Winston: London, 1960.

16. Monk, A.F. Mode errors: a user-centred analysis and some preventative
measures using keying-contingent sound. International Journal of Man-machine
Studies, 24, (1986), pp. 313-327.

17. Monk, A.F. Action-effect rules: a technique for evaluationg an informal
specification against principles. Behaviour Information and Technology, 9, 2 (1990),
pp. 147-155.

18. Monk, A.F. Cyclic interaction: a unitary approach to intention, action
and the environment. Cognition, 68, (1998), pp. 95-110.

19. Monk, A.F. Modelling cyclic interaction. Behaviour and Information
Technology, 18, (1999), pp. 127-139.

20. Monk, A.F. and Dix, A. Refining early design decisions with a black-box
model. In People and Computers 3, Diaper, D. and Winder, R., Ed., Cambridge
University Press: Cambridge, 1987, pp. 147-158.

21. Norman, D.A. Cognitive engineering. In User centered system design: new
perspectives on human-computer interaction, Norman, D.A. and Draper, S., Ed.,
Lawrence Erlbaum: Hillsdale, NJ, 1986, pp. 31-61.

22. Olsen, D.R., Monk, A.F. and Curry, M.B. Algorithms for automatic
dialogue analysis using propositional production systems. Human-computer
Interaction, 10, (1995), pp. 39-78.

23. Payne, S.J. and Green, T.R.G. Task-action grammars: a model of mental
representation of task languages. Human-Computer Interaction, 2, 2 (1986), pp. 93-
133.

24. Polson, P.G., Lewis, C., Rieman, J. and Wharton, C. Cognitive
walkthroughs: A method for theory-based evaluation of user interfaces.
International Journal of Man-machine Studies, 36, (1992), pp. 741-773.

25. Reisner, P. Formal grammar and human factors design of an interactive
graphics system. IEEE Transactions on Software Engineering, SE-7, 2 (1981), pp.
229-240.

26. Reisner, P. What is consistency. In Interact'90, (Cambridge, UK), (1990),
North Holland, pp. 175-180.

